

May-June 2020

ISSN: 0193-4120 Page No. 10558 - 10563

10558 Published by: The Mattingley Publishing Co., Inc.

Data Integrity for Encrypted Text INHDFS

Saurabh Singhal,GLA University, Mathura, India

Deepak Mangal,GLA University, Mathura, India

Asheesh Tiwari,GLA University, Mathura, India

Article Info

Volume 83

Page Number: 10558 - 10563

Publication Issue:

May - June 2020

Article History
Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 18 May 2020

Abstract:

Big data can be defined as a large set of data which is collected from different

source such as sensors, logs used for analysis. The result of this analysis is used for

predicting the next step in an organization. In the world of increasing digital data,

data security has become one major challenges and the rate by which data is

increasing, processing the data with proper security measures shall not be ignored.

The paper introduces a model for securely storing the data in HDFS by maintaining

the Integrity of data.

Keywords: HDFS, Cryptography, Storage, Integrity.

I. INTRODUCTION

In the growing era of Digital World, the passion

of general public has increased for new information

technologies which has lead to exponential growth of

data. Because of this the protection and security of

the exchanged data has become a major issue.

Indeed, from their digital nature, data can be

duplicated, modified, transformation, and diffused

very easily. Information Security can be defined as

the protection of information and components

including systems and hardware that use, store, and

transmit that information [1]. However, the most

critical thing is Data, whatever the type of data is, it

should be held confidential.

Approx 2.5 quintillion bytes of data is generated,

from which 90% of the total data is generated in last

2 to 3 years alone [2], [3]. Processing, storing and

managing the data has become another big issue. Big

data talks about the data sets whose volume is

beyond the ability of typical database software tools

to capture, store, manage and analyze [4].The most

famous tool to process, store, manage, analyze is

Hadoop. Hadoop was first introduced in 2005 by

Doug Cutting who named it after his sons toy

elephant. It has improved overtime in terms of to

process and analyze the data. However, generic tools

and techniques fail to provide security on Hadoop.

The confidentiality of data stored on HDFS is at

stake.

The Data storage for Hadoop is Hadoop

Distributed File System [HDFS] [6]. Before actually

putting the data on HDFS, it processes the data and

divide it into chunks and store it on different nodes

with transparency from the user. When Hadoop 1

was introduced, it was created with no security in

mind. Hadoop 2 has some security mechanisms like

for applications Kerberos RPC authentication are

available; for web services, Hadoop Services, HTTP

SPNEGO authentication is there, and the use of

delegation tokens, block tokens, and job tokens.

Further, three encryption mechanisms for network

encryption are there that must be configured Quality

of Protection for SASL mechanisms, and SSL for

web consoles, HDFS Data Transfer Encryption [5],

[7] .However, all the data stored is in the same

format as it is being input. Once attacker is inside the

Data Centre either physically or electronically is free

to steal, modify or delete the data they want, as there

May-June 2020

ISSN: 0193-4120 Page No. 3672 - 3680

10559 Published by: The Mattingley Publishing Co., Inc.

is unencrypted data being saved and there is no

authentication enforced for access [8].

A. Big Data Issues

There are various issues in Big data, which can be

categorized into Processing issue [9], Storage issues,

management issues and security issues [10].

1) Processing Issues: Since the size of data is

enormous, usually in Petabytes, the real time

processing is not always possible. The user has to opt

from batch processing or stream processing.

2) Storage Issues: Storing data which is in huge

volume, coming at a varied pace and is of diverse

nature itself becomes a challenge. Most organization

uses virtualization to hold the information.

3) Management Issues: The data in big data can be

classified into structured, unstructured or semi-

structured generated from various sources as public,

private or government sectors. To manage this data is

the biggest management issue. The purpose of the

big data management is to ensure that it provides a

high quality data, while maintaining data ownership,

standard and accessibility.

4) Security Issues: There are various threats

associated with managing big data in a secure way as

the tools for the same are limited. There are chances

of unexpected data leakage, fragmented data and so

on. To secure data in an untrusted environment is

itself difficult and if the variety is also added it

become more challenging. With the varied pace and

heterogeneity present in big data, it is very difficult

to implement a security policy to it. to increase

security of big data while at rest, some kind of

framework that include cryptographic solution must

be developed. In our work, we have proposed such

framework.

The scheme proposed in the paper work on the

model of encrypting the data before putting it on

HDFS. We have analyzed different security

parameters and the performance of different

algorithms while encryption and decryption.

The rest of the paper is organized as follows:

Section II provides the related work in the field of

security in HDFS, Section III has proposed work.

Section IV has result and analysis and finally

conclusion is in section V.

II. RELATED WORK

In Haddop one of the important issue is data

availability. Hadoop follows a master-slave structure.

Therefore, if master fails the entire Hadoop cluster

fails. Thus, making master node a single point of

failure. In HDFS, the namenode is also a name given

to the master node. The namenode or masternode,

stores and manages metadata of the entire Hadoop

file system.

Data availability may be lost if some errors occur

happens in namenode. The provision of a secondary

namenode was started from Hadoop2 to overcome

the problem of single point of failure in namenode.

The secondary namenode, periodically contacts

primary namenode and archives the metadata present

in namenode. The secondary namemode is basically

designed for saving the namenodes storage space.

In [11], for Hadoop the authors had proposed a

security enhancement that uses Kerberos to provide

strong mutual authentication. Access control for the

stored files is carried by the central server. The

confidentiality of these files is always in danger as

these files are stored as plain text on the storage

servers. So, if the server get compromised by an

attacker, the files stored in the servers are also

compromised.

In [12], the author introduce a system for

checking the integrity of file by considering a master

slave structure of secure distributed storage system.

In this distributed system, the master is introducer

node and slave node is a storage node. Every user

has key which is known as its signing key. When the

i=user want to store a file in system, a key k1 is

derived from the singing key. Then the user

calculates the hash value key k2 of k1. Then the file

is encrypted by using AES encryption using key k2.

This double encrypted file is stored in the distributed

storage system.

The Data Security model given in [10] gives the

basic idea of first authenticating the user, then

May-June 2020

ISSN: 0193-4120 Page No. 3672 - 3680

10560 Published by: The Mattingley Publishing Co., Inc.

encrypting the data provided by the user and

securely storing the key provided to the user, the data

is stored on server after encrypting it successfully.

III. PROPOSED WORK

A. Propsoed Scheme

The scheme states that the data should be

encrypted before storing in Hadoop Distributed File

System. We have setup a Hadoop single node cluster

on a Virtual Machine of Ubuntu 14.04 64-bit. For

Encryption & Decryption, various cryptographic

algorithms available in literature has been used. For

Integrity of files, MD5 and SHA-5 are used. We

have used Python PyCrypto Module for Encryption

and Decryption of files. A text file is with varying

sizes is taken on the local machine. The hashes of

files are taken using MD5 and SHA-5 and are stored

on local machine. The file is encrypted using various

Cryptographic algorithm reading.

The proposed encryption model is shown in figure

1 and decryption model is shown in figure 2. The

algorithm uses 128-bytes block at a time. The

encrypted file is stored into Hadoop Distributed File

system [HDFS]. The file is then retrieved to the local

file system and decrypted using the shared / private

key from the Key-pair. The hashes of the decrypted

file are checked for Integrity. The hashes of the

original file and of decrypted file are compared. The

hashes are found to be same which means there is no

data loss while encryption/decryption of files stored

in HDFS. The same task is done by different file

sizes and time taken by each algorithmfor varying

sizes are compared. The simulation is done only for

text files ranging from 1KB to 1MB of sizes.

Fig. 1. Encryption model used in proposed work

Fig. 2. Decryption model used in proposed work

IV. PERFORMANCE ANALYSIS

We have set-up a VMWare Virtual Machine of

Ubuntu 14.04 64-bit on an Intel i5-4210U @1.70 -

2.40 GHz machine with 8GB of RAM and on

Windows 10 Pro 64-bit. Specifications for Ubuntu

Virtual Machine is 2-core CPU and 4GB of RAM.

The time taken for Encryption and Decryption with

varying file sizes from 1KB to 1MB are compared

for four algorithms, RSA with 1024-bit key, AES

with 128-bit key, DES3 with 192-bit key and

Blowfish with 256-bit key.

1) Time taken in mili-seconds for Encryption with

keysize in bits:

 As the size of file increases encryption time per

algorithm increases exponentially. The time for

encryption also depends upon the size of key.

2) Time taken in mili-seconds for Decryption of

Encrypted files with key-size in bits:

As the size of file increases decryption time per

algorithm increases exponentially. The time for

decryption also depends upon the size of key.

TABLE I. EXPERIMENTAL PARAMETERS

FOR ENCRYPTION AND DECRYPTION

Enti

ty
Parameters

Value

s

Syst

em

Processor i5

RAM 4 GB

Storage 20 GB

Operating Systems
Windo

ws

TABLE II. CRYPTOGRAPHIC ALGORITHM

WITH KEY SIZE

May-June 2020

ISSN: 0193-4120 Page No. 3672 - 3680

10561 Published by: The Mattingley Publishing Co., Inc.

S.No Name of Algorithm

Key

Size

(in

bits)

1 Blowfish 256

2 AES 128

3 3-DES 192

4 RSA 1024

TABLE III. TIME TAKEN IN MILLISECONDS

FOR ENCRYPTION WITH KEY-SIZE IN BITS

 Blowfi

sh

(256)

AES(12

8)

DES3(1

92)

RSA(

1024)

1KB 1.195 0.151 0.463 5.598

10K

B

10.258 0.865 4.519 53.449

100

KB

103.69

6

8.142 44.851 546.08

5

1MB 1085.8

73

84.568 447.445 5436.2

44

Fig. 3. Comparison of various Encryption Algorithms

on test system

TABLE IV. TIME TAKEN IN MILLISECONDS

FOR DECRYPTION WITH KEY-SIZE IN BITS

 Blowfi

sh(256

)

AES

(128)

DES3

(192)

RSA

(1024)

1KB 0.126 1.641 0.463 0.646

10K

B

0.905 6.524 4.488 5.094

100

KB

9.079 55.146 44.87

6

52.99

1

1M

B

90.323 556.543 450.8

76

463.3

57

Fig. 4. Comparison of various Decryption Algorithms

on test system

From the table and figures, we can deduct that

time taken to encrypt and decrypt for each algorithm

is constantly increasing with size of the file.

However, the time taken to encrypt / decrypt large

files is very high, so files over size more than 1MB

are not considered here. From the measurements we

have taken, we have deduced the relation which is

true for 80% of the cases:

Total Time taken to encrypt = αx Size of the file (in

KB) ± 5%

Total Time taken to decrypt = β x Size of the file (in

KB) ± 5%,

where α, β(in secs) are for unit time in Encryption

and Decryption respectively

The time taken to encrypt and decrypt files up to

1MB with high performance machines is quite low

and acceptable. So, the scheme is feasible for files up

to 1MB in real world. Although, Asymmetric

May-June 2020

ISSN: 0193-4120 Page No. 3672 - 3680

10562 Published by: The Mattingley Publishing Co., Inc.

cryptographic algorithms like RSA is quite slow for

larger files as compared to symmetric cryptographic

algorithms, so it will not be feasible for larger files.

However, Symmetric algorithms like AES and DES3

are quite fast and can be used for even larger files.

The time taken to decrypt files with AES is low, so it

will be the best choice of these four as far as time

complexity is concerned.

V. SECURITY ANALYSIS

A. Brute Force Attack

More the key size, more the time taken to brute-force

it. So,the order of decreasing time will be: RSA

>Blowfish >DES3 >AES

B. Avalanche Effect

Avalanche effect of AES is highest among all the

symmetric key encryption algorithms used here

under both One-bit change in Plaintext and One-bit

change in Key conditions [7, 8, 11]. AES >3DES

>Blowfish However, Asymmetric and Symmetric

Encryption algorithms are not compared in terms of

Avalanche Effect.

C. Insider Attack

HDFS files can be viewed by anyone who has

access to

Hadoop Cluster [6]. The scheme proposes that the

file should be encrypted before storing it in HDFS.

Even if the attacker has access to Hadoop Cluster,

the file cannot be viewed by them. The attacker will

only be able to see the encrypted file.

Fig. 5. Comparison of brute force attack

Fig. 6. Comparison of Avalanche Effect

VI. CONCLUSION

As the need for processing data at high speed with

proper data security mechanisms. The paper

discusses the model for encrypting data before

storing it in HDFS, with their performance and

security analysis to select one algorithm over other.

The Integrity of files have been maintained while

storing the files in HDFS using the scheme.

REFERENCES

1. Saraladevi, B., et al. ”Big Data and Hadoop-A

study in security perspective.” Procedia

computer science 50 (2015): 596-601

2. Sagiroglu, Seref, and Duygu Sinanc. ”Big data:

A review.” 2013 international conference on

collaboration technologies and systems (CTS).

IEEE, 2013.

3. Dev, Dipayan, and Ripon Patgiri. ”A survey of

different technologies and recent challenges of

big data.” Proceedings of 3rd International

Conference on Advanced Computing,

Networking and Informatics. Springer, New

Delhi, 2016.

4. Vidyavathi, B. M. ”Security Challenges in Big

Data.” International Journal of Advanced

Research in Computer Science 6.6 (2015).

5. Smith, Kevin T. ”Big data security: The

evolution of hadoops security model.” InfoQ.

2013.

6. White, Tom. Hadoop: The definitive guide. ”

O’Reilly Media, Inc.”, 2012.

May-June 2020

ISSN: 0193-4120 Page No. 3672 - 3680

10563 Published by: The Mattingley Publishing Co., Inc.

7. Das, Devaraj, et al. ”Adding security to apache

hadoop.” Hortonworks, IBM (2011): 26-36.

8. Sharma, Priya P., and Chandrakant P. Navdeti.

”Securing big data hadoop: a review of security

issues, threats and solution.” Int. J. Comput. Sci.

Inf. Technol 5.2 (2014): 2126-2131.

9. Ji, Changqing, et al. ”Big data processing in

cloud computing environments.” 2012 12th

international symposium on pervasive systems,

algorithms and networks. IEEE, 2012.

10. Song, Young-Sae. ”Storing Big Data-The Rise

of the Storage Cloud.” Advanced Micro

Devices, Inc. AMD (2012).

11. Russom, Philip. ”Managing big data.” TDWI

Best Practices Report, TDWI Research (2013):

1-40.

12. Shehzad, Danish, et al. ”A novel hybrid

encryption scheme to ensure Hadoop based

cloud data security.” International Journal of

Computer Science and Information Security

(IJCSIS) 14.4 (2016).

13. Wilcox-O’Hearn, Zooko, and Brian Warner.

”Tahoe: the least-authority filesystem.”

Proceedings of the 4th ACM international

workshop on Storage security and survivability.

2008.

