Aluthge Transformation on (α, β) normal operators

Y.J.Ganesh ${ }^{1}$, P.Jayaprakash ${ }^{2}$, P.Maheswari Naik ${ }^{\mathbf{3}}$
Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India.
${ }^{1}$ ganesh.joghee@srec.ac.in
${ }^{2}$ jayaprakash.pappannan@srec.ac.in
${ }^{3}$ maheswari.naik @srec.ac.in

Article Info

Volume 83
Page Number: 8959-8963
Publication Issue:
May - June 2020

Article History

Article Received: 19 November 2019
Revised: 27 January 2020
Accepted: 24 February 2020
Publication: 18 May 2020

Abstract:

In this article, we study polar decomposition and Aluthge transformation. We have derived and characterized the Aluthge transformation on a class of (α, β) Normal operators for $0 \leq \alpha \leq 1 \leq \beta$ and $\mathrm{x} \in \mathrm{H}$.
AMS Subject Classification: 47B20,47B33.

Keywords: Aluthge transformation,*-Aluthge transformation, (α, β) Normal operators.

1. Introduction

Theclasses of Hyponormal operators is generalized to the larger sets of p-hyponormal, log hyponormal, posinormal, etc., An operator D can be decomposed into $D=U|D|$ where U is partial isometry and $|D|$ is a square root of $\mathrm{D}^{*} \mathrm{D}$ with $\mathrm{N}(\mathrm{U})=\mathrm{N}(|D|)$. In this article, we have studied new propertiesas an extension of hyponormal operators. This we have done using generalized Aluthge transform on (α, β) - normal operator.

Moreover, we prove that if $D=U|D|$ is (α, β) - normal operator, the Aluthuge transform is $\tilde{D}=$ $|D|^{\frac{1}{2}} U|D|^{\frac{1}{2}}$ For an operator $D=U|D| \quad$ define \tilde{D} as follows:
$\tilde{D}_{l, m}=|D|^{l} U|D|^{m}$ for $\quad 1, \mathrm{~m}>0$ which is the generalized Aluthge transformation of D .

2. Preliminaries

Assume D as a bounded linear operator on a Hilbert space \mathscr{H}. Here, by anOperator, we mean a linear transformationbounded on a Hilbert space H.

Definition

The bounded linear operator D on the Hilbert space H is $\mathrm{a}(\alpha, \beta)$ - normal operator if $\alpha^{2}\left(\mathrm{D}^{*} \mathrm{D}\right) \leq\left(\mathrm{DD}^{*}\right) \leq \beta^{2}\left(\mathrm{D}^{*} \mathrm{D}\right), \quad 0 \leq \alpha \leq 1 \leq \beta$.

Proposition: (Douglas theorem)
For $\mathrm{A}, \mathrm{B} \in \mathrm{B}(\mathscr{H})$ the following statements are similar:
a) $\operatorname{ran}(A) \subseteq \operatorname{ran}(B)$
b) $\mathrm{AA}^{*} \leq \lambda^{2} \mathrm{BB}^{*}$ for some $\lambda>0$ and
c) There existsaD $\in \mathrm{B}(\mathcal{H})$ such that $\mathrm{A}=$ BD.

From the above results (a), (b) and (c) hold, then there is an unique operator D such that
(1) $\|D\|^{2}=\inf \left\{\mu: A A^{*} \leq \mu B B^{*}\right\}$
(2) $\mathrm{KerA}=\mathrm{kerD}$
(3) $r a n D \subseteq \overline{\operatorname{ran} B^{*}}$

Using the above result, if D is (α, β) Normal operators we have
(i) $\quad \operatorname{ran} D=\operatorname{ran}\left(D^{*}\right)$ equivalently $\operatorname{ker} D=\operatorname{ker}\left(D^{*}\right)$
(ii) There exists operators S_{1}, S_{2} such that

$$
D=D^{*} S_{1} \text { and } D=S_{2} D^{*}
$$

Furthermore S_{1}, S_{2} are unique operators satisfying
(iii) $\quad\left\|S_{1}\right\|^{2}=\inf \left\{\beta \geq 1: D D^{*} \leq \beta D^{*} D\right\} \quad$ and

$$
\left\|S_{2}\right\|^{2}=\sup \left\{\alpha>0: \alpha D^{*} D \leq D D^{*}\right\}
$$

$\operatorname{andker}(\mathrm{D})=\operatorname{ker}\left(S_{1}\right)=\operatorname{ker}\left(S_{2}\right)$.

Proposition.[9]

Let $\mathrm{A} \geq \mathrm{B} \geq 0$. Then for all $\mathrm{r}>0$,
(1) $\left(D^{r / 2} C^{m} D^{r / 2}\right)^{1 / n} \geq\left(D^{r / 2} D^{m} D^{r / 2}\right)^{1 / n}$
(2) $\left(C^{r / 2} C^{m} C^{r / 2}\right)^{1 / n} \geq\left(C^{r / 2} D^{m} C^{r / 2}\right)^{1 / n}$
for $\mathrm{m} \geq 0, \mathrm{n} \geq 1$ with $(1+\mathrm{r}) \mathrm{n} \geq \mathrm{m}+\mathrm{r}$.
The above inequality is called Furuta Inequality.
Proposition: McCarthy. [7]
Let $\mathrm{B} \geq 0$. Then
(i) $\quad(B x, x)^{s} \leq\|x\|^{2(s-1)}\left(B^{s} x, x\right)$ if $\mathrm{s} \geq 1$.
(ii) $\quad(B x, x)^{s r} \geq\|x\|^{2(s-1)}\left(B^{s} x, x\right)$ if $0 \leq \mathrm{s} \leq 1$.

3. AluthgeTransformationon on (α, β) normal operators

Theorem 3.1: Let $D=U|D|$ be the polar decomposition of (α, β)-normaloperator then
$\tilde{D}_{l, m}=|D|^{l} U|D|^{m}$ is $\frac{\operatorname{mini}(l, m)}{l+m}-$
($\alpha^{\prime}, \beta^{\prime}$)-normaloperatorfor $l, m>0$
Proof: Let D be (α, β)-normaloperatorthen

$$
\begin{aligned}
& \alpha^{2}\left(\mathrm{D}^{*} \mathrm{D}\right) \leq\left(\mathrm{DD}^{*}\right) \leq \beta^{2}\left(\mathrm{D}^{*} \mathrm{D}\right), \\
& \alpha^{2}|D|^{2} \leq\left|D^{*}\right|^{2} \leq \beta^{2}|D|^{2}
\end{aligned}
$$

Assume

$$
\begin{aligned}
& A=\alpha^{2}|D|^{2}, B=\left|D^{*}\right|^{2} \text { and } C=\beta^{2}|D|^{2} \text {. Then } \\
& \qquad\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}=\left(|D|^{m} U^{*}|D|^{2 l} U|D|^{m}\right)^{\frac{\text { mini(ll,m) }}{l+m}}
\end{aligned}
$$

$$
=U^{*}\left(\left|D^{*}\right|^{m}|D|^{2 l}\left|D^{*}\right|^{m}\right)^{\frac{\min (l, l m)}{l+m}} U
$$

$$
=U^{*}\left(\beta^{-2 l} B^{m / 2} C^{l} B^{m / 2}\right)^{\frac{\min i(l, m)}{l+m}} U
$$

$$
\geq \beta^{-2 l \frac{\operatorname{minin}(l, m)}{l+m}} U^{*}\left(B^{m / 2} B^{l} B^{m / 2}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}} U
$$

$$
\geq \beta^{-2 l \frac{\min i(l, m)}{l+m}}|D|^{2 \operatorname{mini}(l, m)}
$$

$$
\left(\tilde{D}_{l, m} \tilde{D}_{l, m}\right)^{\frac{\operatorname{mini}(l, m)}{l+m}}=\left(|D|^{m} U^{*}|D|^{2 l} U|D|^{m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}
$$

$$
\begin{aligned}
& =U^{*}\left(\left|D^{*}\right|^{m}|D|^{2 l}\left|D^{*}\right|^{m}\right)^{\frac{\min (l, m)}{l+m}} U \\
& =U^{*}\left(\alpha^{-2 l} B^{m / 2} A^{l} B^{m / 2}\right)^{\frac{\min (l, m)}{l+m}} U
\end{aligned}
$$

$$
\leq \alpha^{-2 l \frac{\operatorname{minin}(l, m)}{l+m}} U^{*}\left(B^{m / 2} B^{l} v^{m / 2}\right)^{\frac{\min (l, m)}{l+m}} U
$$

$$
\leq \alpha^{-2 l \frac{\operatorname{minin}(l, m)}{l+m}}|D|^{2 \operatorname{minin}(l, m)}
$$

Thus we have,

$$
\begin{equation*}
|D|^{2 \min (l, m)} \geq \alpha^{2 l}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m)}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|D|^{2 \operatorname{minin}(l, m)} \leq \beta^{2 l}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\min (l, m)}{l+m}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \left(\tilde{D}_{l, m} \tilde{D}_{l, m}^{*}\right)^{\frac{\text { mini(ll,m)}}{l+m}}=\left(|D|^{l} U|D|^{2 m} U^{*}|D|^{l}\right)^{\frac{\text { mini(ll, ll }}{l+m}} \\
& =\left(\left(\frac{C}{\beta^{2}}\right)^{l / 2}\left|D^{*}\right|^{2 m}\left(\frac{C}{\beta^{2}}\right)^{l / 2}\right)^{\frac{\min (l, m)}{l+m}}
\end{aligned}
$$

$$
=\left(\left(\frac{C}{\beta^{2}}\right)^{l / 2} B^{m}\left(\frac{C}{\beta^{2}}\right)^{l / 2}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}
$$

$$
\leq\left(\beta^{2}\right)^{\operatorname{minin}(l, m)}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\min (l, m)}{l+m}}
$$

$$
\left(\tilde{D}_{l, m} \tilde{D}_{l, m}^{*}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}=\left(|D|^{l} U|D|^{2 m} U^{*}|D|^{l}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}
$$

$$
\begin{gathered}
=\left(\left(\frac{A}{\alpha^{2}}\right)^{l / 2}\left|D^{*}\right|^{2 m}\left(\frac{A}{\alpha^{2}}\right)^{l / 2}\right)^{\frac{\frac{\min (l l, m)}{l+m}}{l(2)}} \\
\geq \alpha^{-2 l \frac{\min (l, m)}{l+m}} A^{\operatorname{mini}(l, m)}
\end{gathered}
$$

$$
\geq\left(\alpha^{2}\right)^{\operatorname{minin}(l, m)}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}}
$$

So we have

$$
\begin{equation*}
\left(\tilde{D}_{l, m} \tilde{D}_{l, m}^{*}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}} \leq\left(\beta^{2}\right)^{\operatorname{minin}(l, m)}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\tilde{D}_{l, m} \tilde{D}_{l, m}^{*}\right)^{\frac{\min (l, m)}{l+m}} \geq\left(\alpha^{2}\right)^{\operatorname{minin}(l, m)}\left(\tilde{D}_{l, m}^{*} \tilde{D}_{l, m}\right)^{\frac{\operatorname{minin}(l, m)}{l+m}} \tag{4}
\end{equation*}
$$

From (1), (2), (3) and (4),we have the result.
Since $\frac{l+m}{\operatorname{mini}(l, m)} \geq 1$,

$$
\tilde{D}_{l, m} \text { is } \frac{\operatorname{mini}(l, m)}{l+m}-\left(\alpha^{\prime}, \beta^{\prime}\right)-\text { normaloperator }
$$

Theorem 3.2: Assume $D=U|D|$ be the polar decomposition of (α, β)-normaloperator then $\tilde{D}_{l, m}$ is $\left(\alpha^{\prime}, \beta^{\prime}\right)-$ normal operator for $l, m>0$

Proof:

Using Lowner-Heinz inequality, we get

$$
\alpha^{2 l}|D|^{2 l} \leq\left|D^{*}\right|^{2 l} \leq \beta^{2 l}|D|^{2 l}
$$

If $0<l, m \leq 1$, we have

$$
\begin{aligned}
& \widetilde{D}_{l, m}^{*} \widetilde{D}_{l, m}=|D|^{m} U^{*}|D|^{2 l} U|D|^{m} \\
& \geq \frac{|D|^{m} U^{*}|D|^{2 l} U|D|^{m}}{\beta^{2 l}} \\
& \geq \beta^{-2 l}|D|^{m} U^{*}|D|^{2 l} U|D|^{m} \\
& \geq \beta^{-2 l}|D|^{2(l+m)}
\end{aligned}
$$

$\widetilde{D}_{l, m}^{*} \tilde{D}_{l, m} \geq \beta^{-2 l}|D|^{2(l+m)}$

Similarly, we get

$$
\begin{equation*}
\widetilde{D}_{l, m}^{*} \tilde{D}_{l, m} \leq \alpha^{-2 l}|D|^{2(l+m)} \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& \tilde{D}_{l, m} \widetilde{D}_{l, m}^{*}=|D|^{l} U|D|^{2 m} U^{*}|D|^{l} \\
& =|D|^{l}\left|D^{*}\right|^{2 m}|D|^{l}
\end{aligned}
$$

Since $\left|D^{*}\right| \geq|D| \alpha,\left|D^{*}\right| \leq \beta|D|$.

$$
\begin{equation*}
\tilde{D}_{l, m} \tilde{D}_{l, m}^{*} \leq \beta^{2 m}|D|^{2(l+m)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{D}_{l, m} \tilde{D}_{l, m}^{*} \geq \alpha^{2 m}|D|^{2(l+m)} \tag{8}
\end{equation*}
$$

From (5), (6), (7) and (8), we have the result.
Therefore $\tilde{D}_{l, m}$ is $\left(\alpha^{\prime}, \beta^{\prime}\right)-$ normal operator.

Corollary 3.3: If $D=U|D|$ is
(α, β)-normaloperator, then \tilde{D} is also (α, β)-normaloperator.

Theorem 3.4: Let $D=U|D|$ be (α, β)-normaloperator, then
$\beta^{-(n-1)}\left(D^{*} D\right) \leq\left(D^{n^{*}} D^{n}\right)^{\frac{1}{n}} \leq \alpha^{-(n-1)}\left(D^{*} D\right)$
holds \forall positive integer n.
Proof: Let $A_{n}=\left(D^{n^{*}} D^{n}\right)^{\frac{1}{n}}=\left|D^{n}\right|^{\frac{2}{n}}$ and
$B_{n}=\left(D^{n} D^{n *}\right)^{\frac{1}{n}}=\left|D^{n *}\right|^{\frac{2}{n}}$
By induction,
$\beta^{-(n-1)}\left(D^{*} D\right) \leq\left(D^{n *} D^{n}\right)^{\frac{1}{n}} \leq \alpha^{-(n-1)}\left(D^{*} D\right)$ holds for $n=k$.

Since $A_{k}=\left(D^{* k} D^{k}\right)^{\frac{1}{k}} \geq \beta^{-(k-1)}\left(D^{*} D\right) \geq \beta^{-(k+1)} B_{1}$.
$A_{k}=\left(D^{* k} D^{k}\right)^{\frac{1}{k}} \leq \alpha^{-(k-1)}\left(D^{*} D\right) \leq \alpha^{-(k+1)} B_{1}$
It follows that,

$$
\begin{aligned}
\left(D^{(k+1)^{*}} D^{(k+1)}\right)^{\frac{1}{k+1}} & =U^{*}\left(\left|D^{*}\right| D^{k^{*}} D^{k}\left|D^{*}\right|\right)^{\frac{1}{k^{k+1}}} U \\
& =U^{*}\left(B_{1}^{\frac{1}{2}} A_{k}^{k} B_{1}^{\frac{1}{2}}\right)^{\frac{1}{k+1}} U \\
& \geq \beta^{-k}\left(D^{*} D\right)
\end{aligned}
$$

Similarly $\left(D^{(k+1)^{*}} D^{(k+1)}\right)^{\frac{1}{k+1}} \leq \alpha^{-k}\left(D^{*} D\right)$
Hence $\beta^{-(n-1)}\left(D^{*} D\right) \leq\left(D^{n *} D^{n}\right)^{\frac{1}{n}} \leq \alpha^{-(n-1)}\left(D^{*} D\right)$
Theorem 3.5: Let $D=U|D|$ be
(α, β)-normaloperator,then
$\beta^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}} \leq\left(D D^{*}\right) \leq \alpha^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}$ holds for any positive integer n.

Proof: Let $A_{n}=\left(D^{n *} D^{n}\right)^{\frac{1}{n}}=\left|D^{n}\right|^{\frac{2}{n}}$ and $B_{n}=\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}=\left|D^{n *}\right|^{\frac{2}{n}}$ for any positive integer n

May-June 2020

Assume that
$\beta^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}} \leq\left(D D^{*}\right) \leq \alpha^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}$ holds for $n=k$.

Then
$A_{1}=\left(D^{*} D\right) \geq \beta^{-2}\left(D D^{*}\right) \geq \beta^{-(k+1)}\left(D^{k} D^{k^{*}}\right)^{\frac{1}{k}} \geq \beta^{-(k+1)} B_{k}$

Similarly $A_{1} \leq \alpha^{-(k+1)} B_{k}$.
Hence we have

$$
\begin{aligned}
\left(D^{(k+1)} D^{(k+1)^{*}}\right)^{\frac{1}{k+1}} & =U\left(\left|D^{*}\right| D^{k} D^{k^{*}}|D|\right)^{\frac{1}{k+1}} U \\
& =U\left(A_{1}^{\frac{1}{2}} B_{k}^{k} A_{1}^{\frac{1}{2}}\right)^{\frac{1}{k+1}} U^{*} \\
& \leq \beta^{\frac{k}{k+1}(k+1)} U\left(A_{1}^{\frac{1}{2}} A_{1}^{k} A_{1}^{\frac{1}{2}}\right)^{\frac{1}{k+1}} U^{*}
\end{aligned}
$$

byFuruta inequality

$$
\leq \beta^{k}\left|D^{*}\right|^{2}
$$

Similarly $\left(D^{(k+1)} D^{(k+1)^{*}}\right)^{\frac{1}{k+1}} \geq \alpha^{k}\left|D^{*}\right|^{2}$
Therefore
$\beta^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}} \leq\left(D D^{*}\right) \leq \alpha^{-(n-1)}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}$ holds for all positive integer n

Corollary 3.6:If D is (α, β)-normaloperator
then D^{n} is $\frac{1}{n}-\left(\alpha^{n}, \beta^{n}\right)$-normaloperator.
Proof:Let D be (α, β) - normal operator, then by theorems 3.4 and 3.5, we have

$$
\left(D^{n^{*}} D^{n}\right)^{\frac{1}{n}} \geq \beta\left(D^{*} D\right) \geq \beta \beta^{-2}\left(D D^{*}\right) \geq \beta^{-2 n}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}
$$

and

$$
\left(D^{n^{*}} D^{n}\right)^{\frac{1}{n}} \leq \alpha^{-2 n}\left(D^{n} D^{n^{*}}\right)^{\frac{1}{n}}
$$

References:

1. Moslelian, M., On (α, β) - normal operators in Hilbert spaces. IM-AGE., 39, problem 39-4, 2007.
2. Carthy.,M,Israel J.Math.,5,249-271,1967.
3. Douglas, R.G., On majorization, factorization and range inclusion of operators on Hilbert space, Proc.Ame.Math Soc., 17,413-415,1966.
4. Furuta, T., Generalized Aluthge Transformation on hyponormal operators. Proc. Amer.Math.Soc., 124(10), 30713075,1996.

Hence D^{n} is $\frac{1}{n}-\left(\alpha^{n}, \beta^{n}\right)$-normaloperator.

