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Abstract: 
We establish the view of anti-fuzzy ideals(AFI) in Boolean Near Rings(BNR) N and 

also obtain their properties  in this paper. We prove every fuzzy set is an AFI of N 

(BNR)  iff compliment of fuzzy set is FI of N and also prove that every homomorphic 

pre-image of an AFI is an AFI. 
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I.  INTRODUCTION 

This concept  BNR  was earlier  studied  by   

S.Ligh  & etl [7] and many other researchers. 

Zadeh [8] proposed the fuzzy subset of a 

nonempty set. Ziu proposed Fuzzy ideals (FI’s) 

of rings, and was considered by many authors.  

The theory of FI and its properties are useful to 

many areas like Semi rings, Semi groups (Etc.), 

the idea of anti fuzzy subgroups was recognized 

by R. Bidwas and etl,[10]  considered the 

concept of AFI’s in near rings. We establish the 

concept of AFI in BNR’s and study related 

properties of AFI’s in this paper. 

      We now define the preliminaries of AFI in 

BNR. 

.PRELIMINARIES 
Definition 2.1:  A right near-ring (RNR)  N    

equipped with two dyadic operations  ‘+’ and  

‘.’such that 

(i) (N, +) is a group  

(ii) (l.m).n = l.(m.n) for all l, m, n N  

(iii) (m+l).n= m.n + l.n for all l, m, n  N 

(right distributive law) 

             Using the left distributive law  

            (iii)l.(m+n) = l.m+l.n  in the place of (iii) 

would yield left near-rings. 

Remark:  N is  not necessarily abelian . 

Definition 2.2:   A  NR ‘N’ is said to be a BNR if n2 

= n for each n  N.   

Definition 2.3: Let  I be  a Normal subgroup of a NR 

 (N, +, .)  I is said to be a right ideal if   i.n  I for all 

i  I, n   N.  I is said to be a left ideal if n.(m+a) – 

n.m   I  for each a I, n, m  N.  I is said to be an 

ideal if I is a left and a right ideal.   

     Note that the clause for left ideal I can also be 

written as n.(a+m) – n.m  I for all  n, m   N, i  I. 

Example 2.1 :  (i) Every BR is a BNR. 

(ii)Each constant NR N: xy = x for all  x,y  N is a 

BNR.  

(iii)Let N={0,1,2,3,4,5} be the additive group of 

integers modulo 6.  N is a BNR with the 

multiplication given in the following table 
 

                           

                                     TABLE 1 

 

.           0          1          2         3       4       5 

0          0          0          0         0       0       0 

1           3          1         1         3       1        1 

2           0          2          2        0        2       2 

3           3          3          3        3        3       3 

4           0          4           4       0        4       4 

5           3          5           5       3        5       5 

 

       Now clearly,   N is a Non-zero-symmetric BNR 

and {0,2,4} , {0,3} are ideals. 
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Definition 2.2: If    is a fuzzy set on N, then   is 

called a FI of N  if   satisfies the following 

conditions : 

i.  (p-q)  min {(p), (q)}, p, qN 

ii. (ua)  (a), u, a  N. 

iii.  ((u+a) +uv) (a),  u, a, v  N. 

 

II.  MAIN RESULTS 

Definition 3.1: A fuzzy set  in a BNR   N is called 

an anti fuzzy left ideal (AFLI) of M, if 

i. (p-q) max{(p),(q) }, for every p, q N 

ii. (u.a)  (a) , for every u, a N. 

iii. ((u + a) + u.v) (a), for each u, a, v N. 

N is a zero-symmetric BNR. 

Example 3.1: 

 

TABLE 2 

Multiplication table 

         

 

 

 

 

 

 

 

 

TABLE 3 

Addition table  

 
+ 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 1 2 1 0 

 

Clearly  it is a BNR. Let    be an AFI defined on N 

by    (x) - 0.65 for all x  M.   

Then    is an AFI of M.  

Theorem 3.1: Consider N is a BNR &    is an AFI 

(resp. right) of N. At that moment the set N 

={xN/ (p) = (0)} is a left (resp. right) ideal of 

N.  

Proof:   Suppose A be an AFLI.  

i) Suppose qp,  N  implies (p) =  (0) & 

(q) = (0) follows that (p-q)max{(p), 

(q)} which n   lies that     (p-q)max{ 

(0), (0)}=   (0). Hence p-qN  

ii)  Now  u, vN, a  N  

((u +a)v+uv)(a)=(0)  ((u 

+a)v+uv)=(0) [resp.  (ua)   (a) = (0)

(ua)= (0)] 

ie. (u +a) v + uv   N  [resp. ua  N  ] 

Theorem 3.2: Suppose }/i{ψi   is a family of 

AFI’s of a BNR ‘N’ then so is Ii  i 

Proof:    Consider {Ai/i  } a relative of AFI’s of N 

& let p, qN.  

Then, ( Ii  i) (p – q) = Sup {Ai (p – q) / i  }   

≤   Sup {max {(i (p), i (q) / i  }  

 = max {Sup { i(p)/ i  }, Sup {  i(q)/ i  }  

=  max {( Ii  i) (p), {( Ii  i) (q)} 

 Consider u, aN.  

Then, ( Ii i)(ua) = Sup {i (ua) / i  }    

≤ Sup {i (a) / i  }      =  ( Ii  i)(a). 

Now, let u, a, vN.    

      Then,  ( Ii i) ((u+a)v + ua)   = Sup {i 

((u+a)v + ua) / i } ≤ sup{ i (a) / i } 

  = ( Ii i) (a). 

Theorem 3.3:  Suppose Ii i of AFLI (resp. 

right)’s of a BNR  ‘N’ is an AFLI (resp. right) of N. 

Proof:  Suppose N is a BNR and suppose 

{i / Ii } be the family of AFLI (resp. right) of N 

and agree to a1, a2   N. followed by, we have 

i) ( i  I i) (a1- a2) = Iiinf {i(a1- a2)}  

≤ Iiinf {max{i (a1), i (a2)}} 

                  = max{ Iiinf i(a1), Iiinf i (a2)}  

                 =  max ( Ii i)( a1), ( Ii i)( a2)] 

ii) Let u, aN. followed by, ( Ii i) (ua)  

              = { Iiinf  i (ua)}  ≤ Iiinf {i (a)} 

                = ( Ii i)(a) 

Let u, a,vN. Then, ( Ii i )((u +a)v + uv) = {

Iiinf i((u + a)v + uv)} ≤ Iiinf {i (a)}= ( Ii

i)(a) 

Theorem 3.4:  Suppose N is a BNR. Follows that a 

fuzzy set    is an AFI of N iff c   is a FI of N. 

Proof:  Consider   l, m  N and    is an AFI of N 

then we have,  

. 0 1 2 3 

0 0 0 0 0 

1 0 0 1 1 

2 0 0 2 2 

3 0 1 2 3 
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i) c(l - m)  = 1 - (l– m)  1- max{(l), 

(m)} = min { 1-  (l), 1 -  (m)} = 

min{c(l),c(m)} 

ii) Suppose    u, a N.  Then ,  c (ua) =  1 - 

 (ua)    1 -  (a) =   c(a)  

iii) Let   u, a, v  N.  Then,  c ((u+ a)v +uv) 

= 1 -  ((u+ a)v +uv)   1 - (a) =  c (a) 

Hence   c   is a FI of N.  Similarly the converse 

follows.  

Theorem 3.5:  A BNR homomorphic pre-image of 

an AFI is an AFI.  

Proof:  Suppose N & S are BNR’s. Consider,   f:  N 

→ S is a BNR homomorphism    is an AFI of S and   

  be the pre image of   under f. consider p, q 

a,u,v N.   follows that,  

i)  (p –q ) =  (f(p – q)) =   (f(p) – f(q))  ≤ max 

{(f(p)),  (f (q))}  = max { (p),  (q)}  

ii)   (ua)=  (f(ua)) =  (f(ua))=  (f(u) f(a) 

                     (f(ua)) = (a). 

iii)  ((u+a)v+ uv ) )= (f(u+a)v+ uv)  

            =   ((f(u+a)v+ uv)  

Hence   is an AFI of N. 

Theorem 3.6: Suppose    is an AFLI (resp. right) of 

a BNR . ‘N’ &   + is a fuzzy set in N given by 

+(p) = (p) + 1 - (1) for all p  N. follows that 

+ is an AFLI (resp. right) of N. 

Proof:  Suppose  is an AFLI of a BNR ‘N’, for all   

p, q, u, a, v  N. Then, 

i)+(p– q) =  (p – q) + 1-(1) 

  ≤ max {(p) , (q) } + 1 -  (1)}  

= max {(p) + 1-(1) ,(q) + 1 - (1)}   

= max { +(p) ,   +(q) } 

ii)  +(ua) =  (ua) + 1 - (1)   

     ≤  (a) + 1 - (1) =   +(a) 

iii)+((u+ a)+uv) =  ((u + a)v+ uv) + 1 - (1)   

        ≤   (a) + 1 -   (1) =   +(a) 

Hence + is an AFLI of a BNR   N. 

Theorem 3.7:  Suppose N is a BNR.  a fuzzy set   

is normal- AFLI (resp. right) of BNR N       

 + =  

Proof:  Adequate is directly follows.      

T.P: The Necessary Part   Suppose   is normal-

AFLI (res. right) of N.  

Then       +(x) =   (x) + 1 -   (1) =   (x) + 1 – 1 

= (x) for all  x  N.  Hence, + = . 

Theorem 3.8: suppose  is an AFLI (res. right) of a 

BNR N follows that (+)+ = 
+

.  

Proof:  For any xR, we have (+)+ (x) =  +(x) + 

1-(1) = (x) + 1- (1) =  + (x) 

Hence (+)+ = 
+

. 

Theorem 3.9 : Suppose A be an AFLI (resp. right) of 

a BNR  N & ф: [0,  (0)]→ [0, 1] be an rising 

function. Consider  ф a fuzzy set in N  defined by 

ф(t) = ф( (t)),  for all tN. follows that  ф is an 

AFLI (resp. right) of N. 

 

III.  CONCLUSION 

The main theme of this paper is the study of Anti 

fuzzy ideals in  BNR.    
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