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Abstract: 

Flutter is one of the dynamic aeroelastic problems, it mainly occurs at lifting surfaces 

when the airplane cruises at high speeds. At relatively low speeds, the torsional 

stiffness of the wing is enough to counteract the twisting. However, the variation in 

flutter frequency causes the instabilities in aircraft motion. The numerical simulation of 

airfoil vibrations is done. To understand Differential Governing Equation for Dynamic 

Aeroelastic System. This paper focus on theuse of Modal Analysis Method to find the 

pitching, plunging motion of airfoil& to calculate the frequency, damping ratio when an 

Airfoil is subjected into Dynamic Aeroelastic instability. Modal analysis method is 

performed through MATLAB. In ANSYS we analyze the turbulence flow patterns due 

to pitching and plunging of Airfoil. 

Keywords:Building Information Model (BIM); Cost Estimation (5D); visualization 

model (3D);  Quantity Take-Offs (QTO), two dimensions (2D). 

 

1.INTRODUCTION 

eroelasticity phenomena involve the study of the 

interaction between aerodynamic forces and elastic 

forces are known as static aeroelasticity, also 

aerodynamic forces, inertia forces and elastic forces 

are known as dynamic aeroelasticity, finally 

aerodynamic forces, inertia forces, elastic forces and 

control laws are known as aero-servoelasticity. 

Fig: 1 Schematic of the field of Aeroelasticity 

 

The flexibility of the modern aircraft structures 

makes aeroelastic study an important aspect of 

aircraft design and stability verification 

procedures.The wing torsional divergence and the 

flutter are the two major aeroelastic phenomena 

considered in aircraft design. The divergence is a 

static instability which occurs when the static 

aerodynamic effects counteract the torsional 

stiffness of the structure. The flutter is a dynamic 

aeroelastic instability characterized by sustained 

oscillation of structure arising from interaction 

between elastic, inertial and aerodynamic forces 

acting on the body. 

1.1 DYNAMIC AEROELASTICITY 

A dynamic instability of a flight vehicle associated 

with the interaction of aerodynamic, elastic and 

inertial forces. Flutter problems is considered from 

the field of dynamic stability. Then, the modal 

representation is used to set up a lifting surface 

flutter analysis as a linear set of ordinary differential 

equations. These are transformed into an eigenvalue 

problem, and the stability characteristics are then 

discussed in terms of the eigenvalues. 

To complete the set of analytical tools needed for 
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flutter analysis, two very different unsteady 

aerodynamic theories are outlined, one suitable for 

use with classical flutter analysis and its derivatives, 

and the other suitable for eigenvalue-based flutter 

analysis. 

A. AEROELASTIC ANALYSIS OF A 

TYPICAL SECTION 

We demonstrate the flutter analysis of a linear 

aeroelastic system. To do this a simple model is 

needed. This configuration could represent the case 

of a rigid, two-dimensional wind-tunnel model that 

is elastically mounted in a wind-tunnel test section, 

or it could correspond to a typical airfoil section 

along a finite wing. In the latter case the discrete 

springs would reflect the wing structural bending 

and torsional stiffnesses, and the reference point 

would represent the elastic axis. 

 
 

Fig:2 Schematic showing geometry of the wing 

section with pitch and plunge spring restraints. 

 

In the above model, 

 P - reference point (i.e., where the plunge 

displacement h is measured) 

C - the center of mass 

Q - aerodynamic center (presumed to be the quarter-

chord in thin-airfoil theory) 

T - the three- quarter-chord (an important chordwise 

location in thin-airfoil theory). 

The rigid plunging and pitching of the model is 

restrained by light, linear springs with spring 

constants kh and kθ. It is convenient to formulate the 

equations of motion from Lagrange’s equations. To 

do this, one needs kinetic and potential energies as 

well as the generalized forces resulting from 

aerodynamic loading. The potential energy can be 

written as  

𝑃 =
1

2
𝐾ℎh2 +

1

2
𝐾𝜃θ

2 

To deduce the kinetic energy, one needs the velocity 

of the mass center C, which can be found as 

VC = VP + 𝜃  ĉ3 ̂× c [(1 + a) − (1 + e)] ĉ 1 

Where the inertial velocity of the reference point P 

is  

VP = - ḣ î
2
 

VC = - ḣ î2+ c 𝜃 (a−e) ĉ2 

𝐾 =
1

2
m CV

2
+

1

2
𝐼𝑐𝜃 

2 

Where IC is the moment of inertia about C. By 

virtue of the relationship between ĉ2 and the 

inertially fixed unit vectors î 1 and î 2, assuming θ to 

be small,  

K = 1

2
m ( ḣ + c

2 2 2x + 2c x ḣ  )+ 1

2

2

cI   

K = 1

2
m ( ḣ + 2c x

 ḣ)+ 1

2

2

pI   

pI = 
cI  + mc

2 2x  

The generalized forces associated with the degrees 

of freedom h and θ are easily derived from the work 

done by the aerodynamic lift through a virtual 

displacement of the point Q and by the aerodynamic 

pitching moment about Q through a virtual rotation 

of the model. 

The velocity of Q is  

VQ = − ḣ î2 + c (
1

2
+ a) ĉ2 

δPQ = − ḣ î2 + cδθ (
1

2
+ a) ĉ2 

The virtual displacement of the point Q can be 

obtained simply by replacing the dot over each 

unknown in VQ equation with a δ in front of it  

δPQ = −δ h î2 + cδθ ( 1

2
+ a) ĉ2 

δPQ is the virtual displacement at Q. The angular 

velocity of the wing is  ĉ3, so that the virtual 

rotation of the wing is simply δθĉ3. Therefore, the 

virtual work of the aerodynamic forces is  

W


 = L (−δ h + c δ θ ( 1

2
+ a)) +M(1/4) 

and the generalized forces become 

Qh = − L  

Qθ = M(1/4) + c ( 1

2
+ a)L 

It is clear that the generalized force associated with 

h is the negative of the lift, whereas the one 

associated with θ is the pitching moment about the 

reference point P.  

Lagrange’s equations are here specialized for the 

case in which the kinetic energy K depends only on 

𝑞 1 ,𝑞 2,..., and so 
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( )
i i

d K P

d qt q

 


 
 = Qi           (i = 1,2,...,n) 

Here n = 2, q1 = h, and q2 = θ and the equations of 

motion become  

m (ḧ + c x 𝜃 ) + Kh h =−L 

IP𝜃  + m c xθ ḧ + Kθθ = M(1/4)  + c( 1

2
+ a)L 

Consider, once again, the two-dimensional aerofoil 

with the flexural axis positioned a distance ec aft of 

the aerodynamic centre and ab aft of the mid chord, 

where 

4

4 2

c
ec ab

c ac
ec

 

 

 
Fig: 3 Two-dimensional airfoil. 

 

The lift and moment per unit span for an airfoil may 

be expressed, for a particular reduced frequency, as 

L = ρV2 (LZ Z + LŻ
sŻ

V
 + Lθsθ + L



2s

V

 ); 

M = ρV2 (MZ sZ + MŻ

2s Ż

V
+ Mθs

2θ +

3

M
s

V





) 

V will be taken as the true air speed and ρ is the 

density at a prescribed altitude. Taking the quasi-

steady assumption (k → 0, F → 1, G→ 0)for all of 

the aerodynamic derivatives, then the lift and 

pitching moment per unit span about the flexural 

axis become 

L = 
1

2
 ρV2 c a1 ( )

V

Ż
   

M = 
1

2
 ρV2 e c2 a1 ( )

V

Ż
   

The M


 unsteady aerodynamic derivative term will 

retain as it has been shown that this has an important 

effect on the unsteady aerodynamic behaviour. It 

adds a pitch damping term to the pitching moment 

Equation and the model then becomes 

M = 
1

2
 ρV2 c2 (e a1 ( )

V

Ż
   + M


4V

c
 

Where M is negative and will initially be assumed to 

be constant. This „simplified unsteady 

aerodynamic‟ model will now be used to develop a 

binary aeroelastic model. The simple 

unswept/untapered (i.e. rectangular) wing model 

shown in Figure (4). The rectangular wing of span s 

and chord c is rigid but has two rotational springs at 

the root to provide flap (k) and pitch (θ) degrees of 

freedom. Note that there is no stiffness coupling 

between the two motions. The springs are attached 

at a distance ec behind the aerodynamic centre (on 

the quarter chord), defining the position of the 

flexural axis. The wing is assumed to have a 

uniform mass distribution and thus the mass axis lies 

on the mid- chord. 

 
Fig: 4 Binary aeroelastic model. 

 

The displacement z (downwards+ve) of a general point on the 

wing is 

Z(x, y,t) = y h(t)+(x −xf) θ(t) 

  = φhh + φθ θ 

Whereh and θ are generalized coordinates and φh 

and φθ are simple assumed shapes. They are actually 

normal mode shapes (i.e. pure flap and pitch) if there 

is no inertia coupling about the flexural axis. The 

equations of motion can be found using Lagrange’s 

equations. The kinetic energy now exists due to the 

dynamic motion and is 

𝑇 =   
1

2
 𝑑𝑚

2Ż

∙

𝑤𝑖𝑛𝑔

 

𝑇 =  
𝑚

2
  (

𝑐

0

𝑠

0
yḣ + ( x - xf)  ) 2 dx dy 

Where m is the mass per unit area of the wing. The 

potential (or strain) energy is due solely to the 

springs at the root, such that 

U =
1

2
Kh h

2+2
1Kθ θ 2, 

Whereas for a general bending and torsional 

vibration of a flexible wing it would take the form 

U =
1

2
 𝐸𝐼

2
2

2
( )
d z

dy
dy + 

1

2
 𝐺𝐽 2( )

d

dy

 dy 
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( )
dT dT

t dhd 
 = 𝑚  (

𝑐

0

𝑠

0
 y2 ḧ + y(x - xf)𝜃  ) dx dy 

= m (

3

3

s c
ḧ + 

2 2

( )
2 2

f

s c
x c 𝜃  ) 

( )
dT dT

dt d
 = 𝑚  [

𝑐

0

𝑠

0
  y( x - xf)ḧ + ( x - xf)

2𝜃  ] dx dy 

= m (
2 2

( )
2 2

f

s c
x c ḧ + 

3
2 2( )

3
f fx

c
s xc c  𝜃  )          and

U

h




 

= Khh,   

U






 = Kθ θ, 

Applying Lagrange’s equations for both generalized 

coordinates gives leading to the equations of motion 

for the wing, without any aerodynamic forces acting, 

as 
3

3

ms c 2 2

( )
2 2

f

ms c
x c

2 2

( )
2 2

f

ms c
x c

3
2 2( )

3
f fm x

c
c xs c 

{
ḧ 
𝜃 

}+ 

hK 0

0 K

{
ℎ 
𝜃

}={
0 
0

} 

Applying strip theory, together with the simplified 

unsteady aerodynamics representation, leads to 

expressions for lift and pitching moment (about the 

flexural axis) for each elemental strip dy of 

dL = 
1

2
 ρV2c dyaW ( 

yh

V


+θ ) 

dM = 
1

2
 ρV2c2dy( eaW (

yh

V


+θ ) + 

4

c
M

V





) 

Where yḣ is the effective heave velocity (+ve 

downwards) and M𝜃 ˂0). Thus, the full aeroelastic 

equations of motion become and it may be seen that 

the mass and stiffness matrices are symmetric while 

the aerodynamic matrices are Non symmetric. Thus 

the two DOF are coupled and it is this coupling that 

can give rise to flutter. 

3

3

ms c 2 2

( )
2 2

f

ms c
x c

2 2

( )
2 2

f

ms c
x c

3
2 2( )

3
f fm x

c
c xs c 

{
ḧ 
𝜃 

}+ 

ρV

3

6

Wcs a
0

2 2

4

Wec s a 3

8
M

sc





{ℎ
 

𝜃 
} +ρV2 

0

2

4

Wcs a

0

2

2

Wea sc
  + 

hK 0

0 K

{
ℎ 
𝜃

}={
0 
0

} 

I. MODAL ANALYSIS METHOD 

The matrix form of equation of vibration for a force 

response of multiple degree of freedom system can 

be calculated by use of modal analysis, the equation 

of motion takes the form  

M ẍ + C ẋ + K x = F(t) 

M = Mass Matrix, C = Damping Matrix, K = 

Stiffness Matrix. 

F (t) = Force Matrix;  

Steps to Solve Modal Analysis: 

1. Calculate 𝑀 −
1

2. 

2. Calculate K᷃  =  𝑀 −
1

2 K  𝑀 −
1

2  , the mass 

normalised stiffness matrix. 

3. Calculate C᷃  =  𝑀 −
1

2 C  𝑀 −
1

2  , the mass 

normalised damping matrix. 

4. Calculate the symmetric Eigen value 

Problem for K᷃ to get wi
2
 and vi.  

5. Normalize vi and form the magtrix P = [v1   

v2]. 

6.  Calculate S =  𝑀 −
1

2 P and S
-1

 = P
T 𝑀 −

1

2. 

7. Calculate P
T 

C᷃ P and P
T 

K᷃ P. 

8. Find out the values of ξ1 and ξ2 (for 0 < ξ < 

1). 

9. Now find the Decoupled model equation. (r 

(t)). 

10. x =  𝑀 −
1

2 P r (t). ; here x = {
ℎ(𝑡) 
𝜃(𝑡)

} 

11. Now write the equation of h (t) and θ (t).   

12. Now plot the graph for h(t) and θ(t) Vs Time 

where, 

Time (sec) along x- axis and h (t) in meters 

and θ(t) in radians along y axis. 
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ẍ = {
ḧ 
𝜃 

}  ;      ẋ = {ℎ
 

𝜃 
}     ;     x = {

ℎ 
𝜃

} 

BOUNDARY CONDITIONS: 
  

Semi-span(s) 8m  
Chord (c) 2m  
Flexural axis (xf) 0.48c  
Mass axis (xc) 0.5c  
Mass per unit area 100 kg/m2  
Flap stiffness (Kh) Ih(5×2𝜋)2Nm/rad 

 
Pitch stiffness (Kθ) 

Lift curve slope (aw) 

Nondimensional pitch damping 
derivative (Mθ) 

Air density (ρ) 

Iθ(10×2𝜋)2Nm/rad 

2𝜋 
-1.2 

 

1.225 kg/m3 

 

The modal analysis method is done through MATLAB using 

the boundary conditions. 

A. Calculated Damped frequency: 

hw =  
hK

hI
w =  

K

I

 

 

hw  = 5 Hz.                      w  = 10Hz. 

 
Fig: 5 Time (sec) Vs Pitching Graph (radian) 

 
Fig: 6Time (sec) Vs Plunging Displacement (meter) 

 
Fig: 7 Air Speed (m/s) Vs Frequency (Hz) and  

Damping Ratio(%). 

II. CONCLUSION 

Thus, the full aeroelastic equations of motion is 

solved with the help of modal analysis method 

through MATLAB obtaining the graph with pitching 

angle  0.8 radians and plunging displacement  0.08 

meter with a frequency of 10Hz and 5Hz Frequency 

and damping trends for the modified system with the 

unsteady aerodynamics term included. 
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Nomenclature 

L - Lift (N)  

M - Pitching moment (N-m)  

ρ - Density (Kg/m3)  

V - Airspeed (m/s) 

s- Semi-Span (m) 

h- Linear displacement (m) 

θ - Angular displacement (m) 

c - Chord (m)  

aw - Lift curve slope 

Mθ- Unsteady Aerodamping derivative 

m - mass/Unit Area (Kg/m2) 

MZ,LZ      -   Non-dimensional numbers 

Kh- Flap Stiffness (Nm/rad)  

Kθ- Pitch Stiffness (Nm/rad) 

ξ- Damping Ratio 

hw  - Flap frequency (Hz) 

w  - Pitch frequency (Hz) 

xf             - Flexural axis (m) 

xc             - Mass axis (m) 

 


