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Abstract 
In the present paper a new method proposed for the solution of transportation problems, 

where supply and demand are fuzzy normal random variables with mean and variance 

are triangular fuzzy numbers. Finally one numerical example is given to display the 

proposed method 
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I.  Introduction 

 Transportation Problem (TP) is a type of 

mathematical Programming Problem (PP), where 

our aim is to minimize the transportation cost, 

transportation time, etc., when homogeneous 

products which are initially stored at different 

sources is transported to different destinations. 

Kantorovich (1960)had first introduced the 

transportation model. Greig (1980) has derived 

different methodologies for solving TP using the 

table methods when prices and quantities are crisp 

numbers.  

 

Bellman and Zadeh (1970)had first 

developed and solved fuzzy optimizaion problem 

applying fuzzy set theory. Bit et al. (1994) have 

expressed the multi-objective probabilistic TP. They 

have used chance constrained technique to handle 

randomness of the constraints.  

 

However, recently Kikuchi (2000), 

El-Wahed (2001) and Mahapatra et al. (2010) have 

obtained the solution of TP using fuzzy 

programming technique. Acharya et al. (2014a,b) 

have determined the solution of fuzzy PP problem 

using Fuzzy Random Variables (FRVs). Dutta et al. 

(2016) discussed the solution of stochastic TP using 

genetic algorithm. 

Maheswari and Ganesan (2018) discussed 

solution of fuzzy TP, where parameters are 

pentagonal fuzzy number. Ranarahu et al. (2017, 

2018, 2019) have developed a new technique for 

solution of different types of fuzzy PP problem, 

which are multi-objective. 

 

 

 

 

2 Fuzzy Stochastic Transportation Problem 

involving Fuzzy Normal Distribution 

 

2.1  Mathematical Model 

 

We present mathematical programming models of 

different Fuzzy Stochastic Transportation (FST) 

problems where fuzziness and randomness are 

considered in the constraints as following models. 

Model-I:   

Min𝑍 = ∑𝑛
𝑖=1 ∑𝑟

𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (1) 

Subject to 

�̃�(∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ �̃�𝑖) ⪰ �̃�𝑖 (2) 

 
∑𝑛

𝑖=1 𝑥𝑖𝑗 ≥ 𝑏𝑗 (3) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (4) 

where 𝑐𝑖𝑗 , 𝑏𝑗 ∈ 𝑅 , ∀𝑖, 𝑗 , ( 𝑖 = 1,2 ⋯ , 𝑛 , 𝑗 =

1,2 ⋯ , 𝑟 ), �̃�𝑖  are Fuzzy Numbers (FNs), �̃�𝑖  are 
independent Fuzzy Normal Random Variables 
(FNRVs), 𝑥𝑖𝑗 are the decision variables. 

Model-II:   

Min𝑍 = ∑𝑛
𝑖=1 ∑𝑟

𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (5) 

Subject to 
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∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ 𝑎𝑖  (6) 

 

�̃�(∑𝑛
𝑖=1 𝑥𝑖𝑗 ≥ �̃�𝑗) ⪰ �̃�𝑗 (7) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (8) 

where 𝑐𝑖𝑗 , 𝑎𝑖 ∈ 𝑅 , ∀𝑖, 𝑗 , ( 𝑖 = 1,2 ⋯ 𝑛 , 𝑗 =

1,2 ⋯ , 𝑟), �̃�𝑗 are FNs, �̃�𝑗 are FNRVs , 𝑥𝑖𝑗 are the 

decision variables. 
Model-III:   

Min𝑍 = ∑𝑛
𝑖=1 ∑𝑟

𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (9) 

 Subject to 

�̃�(∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ �̃�𝑖) ⪰ �̃�𝑖 (10) 

 

�̃�(∑𝑛
𝑖=1 𝑥𝑖𝑗 ≥ �̃�𝑗) ⪰ �̃�𝑗 (11) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (12) 

where 𝑐𝑖𝑗 ∈ 𝑅, ∀𝑖, 𝑗, (𝑖 = 1,2 ⋯ , 𝑛, 𝑗 = 1,2 ⋯ , 𝑟), 

�̃�𝑖  and �̃�𝑗  are FNs, �̃�𝑖  and �̃�𝑗  are independent 

FNRVs 𝑥𝑖𝑗 are the decision variables.  

 
 
 

 
2.2  Solution Methodology  

 

The solution methodology for the proposed model is 

discussed in the form of theorems. As fuzziness and 

randomness are considered in constraints, these 

transformed equivalent constraints are presented in 

Theorem 2.1, 2.2 and 2.3 as follows. For proof of 

thorems referAcharya et.al(2014 b) 

Theorem 2.1  If �̃�𝑖, 𝑖 = 1,2, . . . , 𝑛 are 
independent FNRVs then  

�̃�(∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ �̃�𝑖) ⪰ �̃�𝑖 (13) 

 is equivalent to  

∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ 𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

 (14) 

�̃�𝑎𝑖
 and �̃�𝑎𝑖

2  are mean and variance of �̃�𝑖, which 

follow Fuzzy Normal Distribution (FND).  

 

Now using theorem (2.1), the deterministic 

equivalent of the FST problem (1)-(4) is expressed 

as:  

 

 
𝑭𝑺𝑻𝟏:                                           Min𝑍 =
∑𝑛

𝑖=1 ∑𝑟
𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (15) 

Subject to.  

∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ 𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

 (16) 

 
∑𝑛

𝑖=1 𝑥𝑖𝑗 ≥ 𝑏𝑗 (17) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (18) 

 

 ∑𝑛
𝑖=1 (𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

) ≥

∑𝑟
𝑗=1 𝑏𝑗(𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

 where �̃�𝑖, 𝑖 = 1,2 ⋯ , 𝑛 are FNs and 𝑐𝑖𝑗 , 𝑏𝑗 ∈ 𝑅, 

∀𝑖, 𝑗. �̃�𝑖  are FRVs distributed normally. �̃�𝑎𝑖
 and 

�̃�𝑎𝑖
2  are mean and variance of �̃�𝑖, which follow 

FND.  
 
 

Theorem 2.2  If �̃�𝑗, 𝑗 = 1,2, . . . , 𝑟 are 

independent FNRVs then  

�̃�(∑𝑛
𝑖=1 𝑥𝑖𝑗 ≥ �̃�𝑗) ⪰ �̃�𝑗 (19) 

 is equivalent to  

 
∑𝑛

𝑖=1 𝑥𝑖𝑗 ≥ (−𝑘𝛾𝑗
∗)𝜎𝑏𝑗

∗ + 𝜇𝑏𝑗

∗  (20) 

 

�̃�𝑏𝑗
 and �̃�𝑏𝑗

2  are mean and variance of �̃�𝑗, 

which follow FND. 
 
Now using theorem(2.2), the deterministic 

equivalent of the FST problem (5)-(8) is expressed 

as:  

𝑭𝑺𝑻𝟐:                                                  Min𝑍 =
∑𝑛

𝑖=1 ∑𝑟
𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (21) 

Subject to 

∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ 𝑎𝑖  (22) 

 
∑𝑛

𝑖=1 𝑥𝑖𝑗 ≥ (−𝑘𝛾𝑗
∗)𝜎𝑏𝑗

∗ + 𝜇𝑏𝑗

∗  (23) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (24) 

 

 ∑𝑛
𝑖=1 𝑎𝑖 ≥ ∑𝑟

𝑗=1 (−𝑘𝛾𝑗
∗)𝜎𝑏𝑗

∗ +

𝜇𝑏𝑗

∗ (𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (25) 

 where �̃�𝑗, 𝑗 = 1,2 ⋯ , 𝑟 are FNs and 𝑐𝑖𝑗 , 𝑎𝑖 ∈ 𝑅, 

∀𝑖, 𝑗. �̃�𝑗  are FRVs distributed normally. �̃�𝑏𝑗
 and 

�̃�𝑏𝑗

2  are mean and variance of �̃�𝑗, which follow 

FND.  

Theorem 2.3  If �̃�𝑖 and �̃�𝑗 are independent 

FNRVs then  

�̃�(∑𝑛
𝑗=1 𝑥𝑖𝑗 ≤ �̃�𝑖) ⪰ �̃�𝑖 (26) 
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�̃�(∑𝑚
𝑖=1 𝑥𝑖𝑗 ≥ �̃�𝑗) ⪰ �̃�𝑗 (27) 

 is equivalent to  

∑𝑟
𝑗=1 𝑥𝑖𝑗 ≤ 𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

 (28) 

 
∑𝑚

𝑖=1 𝑥𝑖𝑗 ≥ (−𝑘𝛾𝑗
∗)𝜎𝑏𝑗

∗ + 𝜇𝑏𝑗

∗  (29) 

 where �̃�𝑎𝑖
 and �̃�𝑎𝑖

2  are mean and variance of 

�̃�𝑖 , �̃�𝑏𝑗
 and �̃�𝑏𝑗

2  are mean and variance of �̃�𝑗 , 

which follow FND.  

 

Now using theorem(2.3), The deterministic 

equivalent of the (FST) problem (9)-(12) is 

expressed as:  

  
𝑭𝑺𝑻𝟑: Min𝑍 = ∑𝑛

𝑖=1 ∑𝑟
𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗 (30) 

Subject to 

∑𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

 (31) 

 
∑𝑚

𝑖=1 𝑥𝑖𝑗 ≥ (−𝑘𝛾𝑗
∗)𝜎𝑏𝑗

∗ + 𝜇𝑏𝑗

∗  (32) 

 

 𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (33) 

 

 ∑𝑛
𝑖=1 𝑘𝛽𝑖

∗𝜎𝑎𝑖∗
+ 𝜇𝑎𝑖∗

≥ ∑𝑟
𝑗=1 (−𝑘𝛾𝑗

∗)𝜎𝑏𝑗

∗ +

𝜇𝑏𝑗

∗ (𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (34) 

 where �̃�𝑖  and �̃�𝑗  are FNs. �̃�𝑖  are FRVs 

distributed normally. �̃�𝑎𝑖
 and �̃�𝑎𝑖

2  are mean and 

variance of �̃�𝑖 , which follow FND. �̃�𝑗  are FRVs 

distributed normally. �̃�𝑏𝑗
 and �̃�𝑏𝑗

2  are mean and 

variance of �̃�𝑗, which follow FND. 𝑐𝑖𝑗 ∈ 𝑅, ∀𝑖, 𝑗 

 

 
2.3  Numerical Example 
 
𝐌𝐢𝐧𝒁 = 𝟖𝒙𝟏𝟏 + 𝟕𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟐𝟏 + 𝟏𝟎𝒙𝟐𝟐 + 𝒙𝟐𝟑

+ 𝟕𝒙𝟑𝟏 + 𝟏𝟓𝒙𝟑𝟐 + 𝟐𝒙𝟑𝟑 
 
                             Subject to  
 

�̃�(∑3
𝑗=1 𝑥1𝑗 ≤ �̃�1) ⪰ �̃�1 (35) 

 

�̃�(∑2
𝑗=1 𝑥2𝑗 ≤ �̃�2) ⪰ �̃�2 (36) 

 

�̃�(∑3
𝑗=1 𝑥3𝑗 ≤ �̃�3) ⪰ �̃�3 (37) 

 

�̃�(∑3
𝑖=1 𝑥𝑖1 ≥ �̃�1) ⪰ �̃�1 (38) 

 

�̃�(∑3
𝑖=1 𝑥𝑖2 ≥ �̃�2) ⪰ �̃�2 (39) 

 

�̃�(∑3
𝑖=1 𝑥𝑖3 ≥ �̃�3) ⪰ �̃�3 (40) 

 where �̃�𝑖  and �̃�𝑗  are FNs. �̃�𝑖  and �̃�𝑗  are 

normally distributed FRVs with mean �̃�𝑎𝑖
 and �̃�𝑏𝑗

, 

variance �̃�𝑎𝑖
2  and �̃�𝑏𝑗

2  as triangular FNs. 

𝛽1 = 0.6̃ = 〈0.5/0.6/0.7〉 , 𝛽2 = 0.2̃ =

〈0.1/0.2/0.3〉, 𝛽3 = 0.5̃ = 〈0.4/0.5/0.6〉, 

�̃�1 = 0.7̃ = 〈0.6/0.7/0.8〉 , �̃�2 = 0.8̃ =

〈0.7/0.8/0.9〉, �̃�3 = 0.4̃ = 〈0.3/0.4/0.5〉, 
�̃�𝑎1

= 〈2/3/4〉, �̃�𝑎2
= 〈6/7/8〉, �̃�𝑎3

= 〈4/5/6〉, 

�̃�𝑏1
= 〈5/6/7〉, �̃�𝑏2

= 〈3/4/5〉, �̃�𝑏3
= 〈1/2/3〉, 

�̃�𝑎1
2 = 〈2/4/6〉, �̃�𝑎2

2 = 〈2/5/8〉, �̃�𝑎3
2 = 〈3/5/7〉, 

�̃�𝑏1

2 = 〈1/3/5〉, �̃�𝑏2

2 = 〈4/6/8〉, �̃�𝑏3

2 = 〈5/7/9〉 

 
Solution: 

Using theorem(2.3) and 𝛼-cuts of the given FNs and 

for 𝛼 = 0.7 , the deterministic equivalent of the 

given model becomes  

Min𝑍 = 8𝑥11 + 7𝑥12 + 𝑥13 + 𝑥21 +
10𝑥22 + 𝑥23 + 7𝑥31 + 15𝑥32 + 2𝑥33 (41) 

 

                            Subject to  
 

∑3
𝑗=1 𝑥1𝑗 ≤ 2.087822248 (42) 

 

∑3
𝑗=1 𝑥2𝑗 ≤ 7.590932096 (43) 

 

∑3
𝑗=1 𝑥3𝑗 ≤ 4.542678673 (44) 

 

∑3
𝑖=1 𝑥𝑖1 ≥ 7.463085723 (45) 

 

∑3
𝑖=1 𝑥𝑖2 ≥ 6.750870376 (46) 

∑3
𝑖=1 𝑥𝑖3 ≥ 1.814801484 (47) 

 

 𝑥𝑖𝑗 ≥ 0, (48) 

 An optimal solution is obtained for 𝛼=0.7 as 
follows: 

(𝑥11, 𝑥12, 𝑥13, 𝑥21, 𝑥22, 𝑥23, 𝑥31, 𝑥32, 𝑥33)
= (0,2.087822, 0, 2.935361, 4.655571, 0,  
4.527725, 0.7476918𝐸 − 02, 1.814801) 

and 𝑍 = 99.54166 

3  Conclusion 

The objective of our paper is to develop the solution 

of (FST) problem. The parameters supply and 

demand are independent normal FRV. A numerical 

example is discussed to explain the methodology.  
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