

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5832

Published by: The Mattingley Publishing Co., Inc.

Survey of the Theory of Automata in Natural

Language Processing

Aaron Carl T. Fernandez[1], Dr. Madhavi Devaraj[2], Ariel Kelly D. Balan[3]

[1],[2],[3]Department of Computer Science, Mapua University, Manila, Philippines
[1]aaronfernadez1990@gmail.com, [2]mdevaraj@mapua.edu.ph, [3]akdbalan@mapua.edu.ph

Article Info

Volume 83

Page Number: 5832 - 5839

Publication Issue:

May - June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 17 May 2020

Abstract

 Words occur in sequence over time, and the words encountered constrain the meaning

of the words that follow, rendering it critical in texts written or spoken in English,

Spanish, etc. This makes finite-state machines effective at simulating the sequential

property of a language. Having said that, this does not rule off other types of automata

such as but not limited to, deterministic pushdown automaton and Turing machines, as

these were shown to be useful in both transformational and generative grammars. The

theory of automata has a rich literature in providing efficient and convenient tools for

several branches of computational linguistics. This paper highlighted the significant

works on that domain and presented some of the influential breakthroughs of the

automata theory in the analysis of both syntax and semantics of the natural language.

Keywords: Automata Theory; Natural Language Processing; Morphology;

Phonology; Lexicon; Regular Grammars

1. Introduction

Automata theory and natural language processing

were once tightly bounded disciplines [1]. Russian

mathematician Andrey Markov used finite-state

processes to predict sequences of vowels and

consonants in novels by Alexander Pushkin [2],

emanating a technique now known as the Markov

Chain. Claude Shannon continued this concept by

using Markov processes to predict letter sequences

of English words [3]. While most theorems about

finite state machines were Automata theory and

natural language processing were once tightly

bounded disciplines [1]. Russian mathematician

Andrey Markov used finite-state processes to

predict sequences of vowels and consonants in

novels by Alexander Pushkin [2], emanating a

technique now known as the Markov Chain. Claude

Shannon continued this concept by using Markov

processes to predict letter sequences of English

words [3]. While most theorems about finite state

machines were proven in the 1950’s, Noam

Chomsky disputed that such devices were too

simple to adequately interpret the natural language

[4]. To deal with this, Chomsky suggested the use

of context-free grammars and introduced the more

powerful trans-formational grammars for the task at

hand [5].

Having said that, the mainstream literature in

automata theory and natural language processing

eventually drifted apart. Automata theorists

preferred theory-driven generalizations [6], [7]

while linguists went the other way and abandoned

formalism [7]. Although, some natural language

processes still concentrated on context-free

grammars extensions for a time [8], [9].

Eventually, speech recognition researchers returned

to processing natural language grammar with finite-

state machines by using transition weights that

could be trained on machine-readable text datasets.

These had algorithms that were efficient enough for

practical computers back in the 1970’s and were

remarkably successful at determining correct from

incorrect speech transcriptions [10], [11]. The

interest in automata theory among computational

linguists was brought back in the 21st century [12]

– [14], specifically for problems like automatic

language translation, wherein the transformations

are sensitive to syntactic structure. It is without a

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5833

Published by: The Mattingley Publishing Co., Inc.

doubt that natural language processing is one of the

major fields of application of this ideology [15].

The goal of this paper is to discuss the applications

of automata theory in each level of natural language

processing by surveying some of the significant

literatures on the topic at hand. The history of

natural language processing had begun way back in

the 1950s, when the Georgetown experiment

successfully developed a fully automatic translation

of Russian sentences into English [1] but it wasn’t

until 2017 that Amazon’s Jeff Bezos asserted that

artificial intelligence, which strands include natural

language processing, is entering its golden age,

being able to solve problems that were just once

seen as science fiction. An example of this feat is

Amazon’s voice assistant Alexa, which is an echo

speaker that relies heavily on natural language

processing to enable machines to understand human

speech [16]. For this reason, the author of this paper

confined this review to literatures published from

1956 until 2017, and had been indexed by INSPEC,

Scopus, Web of Science (WoS), or DBLP.

2. LEXICONS:

Lexicons deal with the vocabulary of a person,

group, or language in linguistics. It processes all the

minimal grammatical elements of a language, which

represents the speaker’s knowledge of the

vocabulary. It is comparable to a dictionary but

without the definitions of the entries and instead,

carries only part of words such as suffixes [15].

Fig. 1 shows the actual word and its grammatical

information. The grammatical information can be

its infinitive, past participle, or present form. It can

also be its homonyms, adjective, noun or plural

derivatives. These are useful when automatically

processing a text since it allows automatic tagging

of the text using only a simple text comparison.

This naïve approach of representing a lexicon by

simply enumerating the entry in a file is very

expensive in terms of memory and computing usage

[15].

Fig. 1. A sample lexicon of the word “do”.

An intuitive solution to optimize this is to sort the

entries alphabetically to fasten the lookup but

Revuz in his PhD thesis [17], showed that the

efficient representation of lexicons is possible using

some Boolean finite-state automata. His work

proved that it is possible to attain a good

compromise between the automaton size and speed

of the access. Apart from the chosen representation

for the automaton, determining it can significantly

improve the access and minimizing it can reduce

the number of states considerably. This algorithm

becomes useful when the automata is handcrafted

[17]. The process of building the automaton in this

case is natural, and the determined and minimized

automaton performs well in terms of processing

time and memory consumption. Fig. 2 illustrates the

automaton constructed for the lexicon Fig. 1.

 Fig. 2. The automaton

equivalent of the lexicon in Fig. 1

Mohri in [15] reinforced this by replicating Revuz’s

thesis and by using lexicons in French, German and

English. The study proved that using the more

efficient finite-state machine implementation of

lexicon lookup can improve the memory

consumption by a factor of up to 18 [15].

3. MORPHOLOGY AND PHONOLOGY:

Morphology is the branch of linguistics that focuses

on the study of the internal structure of a word and

is considered as the smallest unit of syntax [18]. It

analyzes the word production rules that are common

to the speakers of a language. Phonology resembles

morphology in the sense that it also studies the

structure of a word, the difference is that it

concentrates only on the spoken aspect or the sound

patterns of the language. Both are based on the

neologism phenomenon, which follows a wide

range of rules such as the following:

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5834

Published by: The Mattingley Publishing Co., Inc.

Noun +” s” for the plural form (example: car,

cars)

 Verb + “s” for the present form (example:

swim, swims)

 Verb + “ed” for the past participle form

(example: park, parked)

 Verb + “er” to identify who (example:

gamble, gambler)

 Adjective + “ly” to qualify a way of doing

things (example: gentle, gently)

 Political figure + “ism” to refers to the

ideology of a political figure (Example: Bush, bush-

ism).

Some of the resulting words are not defined in most

dictionaries but their meanings can be understood

clearly as they are based on existing rules known

innately by human [15].

This framework of the morphological ruling is quite

similar to lexical semantics. Which means, its

building process can also be intuitive, and its

execution performance can be improved by the

determinize and minimize algorithms.

Geyken and Hanneforth in [18] used finite-state

automata to describe the morphological ruling for

the German language. Named as “TAGH”, the

project achieved a 99% recognition rate based on

80,000 stem lexicon that was compiled within 5

years of German newspaper corpora and literary

texts. It showed that the number of analyzable word

forms in-crease considerably by more than 1,000

different rules for both compositional and

derivational word formation.

Complete phonological rules could be easily

defined using a finite-state machine as exemplified

by the re-searches at the Xerox Alto Research

Center [19]. The authors were able to simplify the

evaluation of a grammar to the point of triviality

using finite-state transducers. Without regards to the

grammar complexity, the interpreter is said to be

resistant to changes and the compiler becomes

easier to implement [19].

Transducers are also useful to translation systems to

represent their intermediate data as demonstrated by

[20]. Their experiments consist of speech-input

translations from Spanish to English and from

Italian to English from telephone conversations

between customers and front-desk of a hotel. The

authors built a lexical automaton derived into a

phonological representation as a pre-processing,

which boasts of only 7.6% translation word error

rate and 8.4% source-language speech decoding

word error rate.

Unitex is another example of a program that

embeds transducers representing word inflections.

Fig. 3 is a sample automaton representation of word

inflections in French, which can be combined with

other lexical automaton to generate some part of the

lexicon.

Fig. 3. Sample morphological inflection rule of

French adjectives.

4. PART OF SPEECH TAGGING:

Part of speech tagging is the association of

grammatical categories to words. It is usually

performed first in a natural language process since

most systems rely on its output to continue. Having

said that, it usually suffers from various

ambiguities, which is hardly resolved without the

context of each word. The reason for this is that

there is not just one correct tagging for a sentence,

with each of the tags lead to different analyses of

the sentence. An example would be the sentence “I

read his book”. The “I” in that sentence can either

be a noun or a pronoun, both the “read” and “book”

can be either be a noun or a verb, and the “his” can

be an adjective, a pro-noun, or a noun. The problem

arises when each word gives off a different meaning

to the sentence depending on how it is used. A

typical solution to this is to rely on the data

provided by the lexicon but this could still be

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5835

Published by: The Mattingley Publishing Co., Inc.

problematic since the ambiguities are never solved

and the system must handle these constantly.

Halteren, et al. in [21] used Hidden Markov Models

to aid this problem. The main feat of their work is

that it only required minimal resources and work

while achieving 97.55% accuracy using only

trigrams. Their work utilized three bench-mark

datasets namely, the LOB corpus, which had proved

to be a good testing ground for their task at hand,

Wall Street Journal tagged with the Penn Treebank

II tag set which is composed of roughly 1 million

words and finally, the Eindhoven corpus tagged

with the Wo-tan tag set, which is slightly smaller

than the former, containing only around 750

thousand words. Although their results are positive,

there are still a lot of research directions remain to

be explored in their work. One of which is that

better results can be obtained using the probability

distributions generated by the component systems

rather than just their best guesses. The other

criticism is that there seems to be a disagreement on

their paper be-tween a fixed set of component

classifiers. But this pro-vides motivation for further

extension of their work as there exist some

dimensions of disagreement that may fruitfully

searched to yield a larger ensemble of modular

components that are evolved for a more optimal

accuracy.

Shamsfard and Fadaee in [22] combined both

probabilistic features and rule-based taggers to tag

unknown Persian words. The distinction of this

work is that their algorithm deals with the internal

structure of the words and does not require any

built-in knowledge. It is also domain independent

since it uses morphological rules. To prove their

work, the authors employed 300,000 words to

calculate the morphological rules probabilities

which were scraped from “Hamshahri” newspaper

with a tag set containing 25 tags. Although this

eliminates the bottleneck of the lexicon acquisition

and the need to a preconstructed lexicon, the

tradeoff for this is that it makes the tagger’s work

more difficult. If some entries were entered in the

lexicon then there would be probably fewer

ambiguities in the tagging. It is also worth noting

that although this work was done in Persian, the

authors assured that it can also be applied to other

languages as well.

Overall, the results of these probabilistic methods

are good and comparable to the applications of the

linguistic ruling that are exhibited by a linguist after

months of analysis [21]. The amount is also

comparable in terms of work. The linguist usually

works on a dataset for months to write emphasis on

the phenomenon [21], [22]. On the other side, the

learning process can also be just as long on a real

dataset, which can take up to months depending on

the n-grams size considered [22]. N-grams are

succession of N words commonly used with

automatic systems to define the perspective of the

learning process. It usually takes week when using

bigrams and months when using trigrams [22].

Having said all of these, probabilistic system carries

one major step back. The lack of readability in the

systems produced hinders a more fruitful analysis.

This is the main reason why most of the linguistic

community prefer working on rules.

6. SYNTAX:

Syntax is the study of the rules that guide the

correctness of a sentence in a language. Noam

Chomsky implied a strong statement on his 1956

paper [4] “A properly formulated grammar should

determine unambiguously the set of grammatical

sentences”. This denotes that not only syntax should

allow to decide if a sentence is grammatically

correct, but it should also allow to define clearly if a

sentence is semantically incorrect. However, this

has not fully been attained yet as of this writing

because of the irregularities which exists in the

natural language [15]. There are several approaches

that have been developed, most of which rely on

lexicon. These are Lexical-Functional Grammars

[23], Lexicalized Tree Adjoining Grammars [24],

and Head-driven Phrase Structure Grammars [25].

These employ formalisms that associate grammar to

the words, for instance, a verb learns whether it is

transitive, etc. This paper will focus only on

transformational and generative grammars since

these are the most appropriate for automata

application [4].

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5836

Published by: The Mattingley Publishing Co., Inc.

A. REGULAR GRAMMARS:

Regular grammars are defined by {Σ,V,P,S} where

Σ is the alphabet of the language, V is a set of

variables or non-terminals, P is a set of production

or rewriting rules, and S is a symbol that represents

the first rule to apply [26]. Fig. 4 presents an

automaton for a regular grammar.

The rule for regular grammars is defined as follows,

let α be a string of Σ^*, and let X, Y, and Z be a

triplet of non-terminals. Any rules of P can be

formed as follows [26]:

 X→Y Z

 X→αY

 X→Y

 X→α

These have a small power of expression because of

its restrictiveness. Thus, it can be utilized to handle

small artificial languages or some restricted part of

a natural language. It is also worth noting that these

are totally equivalent to finite-state automata which

makes it easy to use [26].

Fig. 4. A regular grammar and its corresponding

automaton.

B. CONTEXT FREE GRAMMAR:

Context free grammars are like regular grammars,

the only difference is that it does not have any

restrictions on the length of the rules. These were

first described by No-am Chomsky in [5]. What was

interesting is that he developed this grammar to

prove that it was insufficient for natural language

processing. However, it became novel on the years

that followed since it was the only implementable

system that provided acceptable results. The

expressiveness of these grammars remains

acceptable if these are not used to describe the

language with its whole complexity [5]. Fig. 5

presents a simple context free grammar that can

perceive basic sentences like “the man loves the

music, a firefighter risked his life, cat meows, or

boy loves girls”.

 Fig. 5. A simple context free

grammar and its corresponding automaton.

It is important to remember that context free

grammars are not equivalent to finite-state automata

[4]. Even though Fig. 6 insinuates that it may be

represented by one, context free grammars are more

synonymous to pushdown automata, but that will

not be discussed on this paper as it does not hold

any relevance. The reason for this is that context

free grammars can generate languages like an bn

which are not regular. An alternative is recursive

transition network [27], which rely on the use of

automata network and are equivalent to pushdown

automata. This allows one automaton for each rule

and evaluate this whenever a rule is reached on the

transition. When the accepting state has been

reached in the sub-automaton, it can go back to the

previous automaton and resume treatment. This

enables the automata in Fig. 5 to be translated into

Fig. 6.

 Fig. 6. Automata translation of Fig. 5.

To test this concept, an experimental parsing system

was implemented in BBN LISP on the SDS 940

time-sharing systems at Harvard University and at

Bolt by Beranek & Newman, Inx [27] and used for

several of experiments in grammar development

and parsing strategies for natural language analysis.

The main criticism of this work though, is that the

report of its results was not included in the paper as

it was still in preparation as mentioned by the

authors [27].

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5837

Published by: The Mattingley Publishing Co., Inc.

VI. INDEXING:

It is common to handle an enormous dataset of texts

when working with natural languages. To work

efficiently, it is imperative to have a fast access to

the information required. To illustrate this, imagine

the World Wide Web, which has billions of texts,

but search engines can browse through it in only a

few milliseconds to generate the queried

information.

This can be achieved in natural language processing

through a technique called indexing. The basic idea

be-hind this is to create a database of text

containing all the word occurrences and then

instead of combing through the raw text data, the

search is performed through the index assigned,

which would be quicker.

Crochemore in [28] devised an algorithm using a

finite-state transducer that allows a representation in

a linear space of the text’s index. The sum of the

label weights during the recognition provides the

first occurrence of a word in this algorithm, which

then requires a specific path to retrieve all the other

references. The author considered both the

transducer and the automata to distinguish whether

they deal with the suffixes or factors of the string.

The size of the minimal automation is not the same

in both cases in general. This is also to prevent the

consideration of a marker at the end of a word.

This algorithm has been improved in [15], which

stores the list of the current recognized word on

each node. These word occurrences are then

retrieved in linear time while maintaining the

linearity of the storage space as well. Fig. 7

illustrates the automaton of the string “aabba”. The

length of the word must be subtract-ed to the list

associated to that node to get the start of the current

word.

Fig.7. Indexing of the string “aabba” using an

automaton.

VII. TRANSLATIONS:

Translation is the most complicated task in natural

language processing as it suffers from the

confluence of all the problems in linguistics [29].

To enumerate a few, one of these is the problem of

lexical ambiguity in semantics. The word “bank” is

a noun which has two distinct meanings: it may

refer to a financial institution and it may also refer

to the edge of a river. This is more complicated in

translation because it combines the ambiguities of

the two meanings at once.

This also poses a problem if part-of-speech tagging

is to be applied in the translation process. The word

“bank” can be either a verb or a noun, with each

lead to different translation. Part of this problem

stems from a syntactic point of view. It would be

impossible to pro-duce the correct translation if a

certain word has been perceived with the wrong

category. Furthermore, even with the correct

category, some of the syntactic structures are not

well formalized yet. As an example, connecting a

relative clause to its correct reference can become

difficult when there are multiple relative clauses

that are intertwined.

Problem in alignments also exists in the translation

process. Most word and its translations vary in

length tremendously. Take the word “potato” as an

example, this word is translated to French as

“pomme de terre”. This brings up the problem of

compound words and its detection. Although this

can be solved using a lexicon, but some

composition should be detected automatically

because these are part of a regular construction, for

instance, the use of "machine à + verb” in French.

This can be solved by using two lexicons, one in

each language or by using hidden Markov models.

Alshawi, et al in [29] proposed an algorithm based

on a probabilistic transducer, which builds up a

translation in three steps. First, it learns the

alignment by using a bilingual dataset, after which,

it creates the transducer using the same dataset and

finally, the created transducer generates the

translated version of the input. This has been

developed by the authors to create an English to

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5838

Published by: The Mattingley Publishing Co., Inc.

Spanish translation model for a speech translation

application, which achieved an accuracy of over

75% via string-distance comparison to three

reference translations [29]. The training and test

data for this experiment were taken from

transcribed utterances from the Air Travel

Information System (ATIS) corpus with a translated

utterance in Spanish. An utterance is synonymous

to a single sentence but can be more than one

sometimes in a sequence [29].

This alignment algorithm has also been used in

[30], the difference is that the authors based their

experiment on N-grams translation models and

variable n-gram stochastic automaton proposed in

[31]. It uses a stochastic finite-state machine

translation trained automatically from pairs of

source and target utterances. This was developed

for English-Japanese and Japanese-English

translation. The main idea of this is to obtain the

lexical translations through alignments algorithms

and then to generate a variable n-gram stochastic

automaton that will be transformed into a stochastic

transducer which can reorder the output according

to the language specifications. The data for their

experiments were obtained from the customer side

of an operator-customer conversation of a

customer-care application. Each of the customer’s

utterance transcriptions were manually translated

into Japanese. A total of 15,457 English-Japanese

sentence pairs was split into 12,204 and 3,253

training and test sentence pairs, respectively. The

main objective of their experiment is to measure the

performance of their translation system in the

context of an application. The number of sentences

correctly translated on the number of expected

sentence is 43.7, 62.5, and 65.5 on unigram, bi-

gram, and trigram phrases respectively while the

precision rate is 80.3, 86.3 and 85.5, respectively.

Overall, the authors were successful at developing

an architecture for speech translation in a limited

domain based on the simple machinery of stochastic

finite-state transducers. They have implemented a

stochastic finite-state models for English to

Japanese and Japanese to English translation, which

have been trained automatically from source-target

utterance pairs and evaluated in the context of a

call-type classification task [30].

7. CONCLUSION

Natural language processing is a discipline which

encompasses both computer science and linguistics.

As automata theory is a significant component of

theoretical computer science, it is only instinctive

that it holds some use in processing natural

language data. This paper bolstered that claim and

exhibited how the automata theory can be applied in

some of the stages in natural language processing. It

discussed how it can efficiently represent both

morphological and phonological rules, how useful

regular and context free grammars are in confirming

the correctness of a sentence in a language, how

much memory and time it can save on indexation,

and how it can solve the alignment problem during

translation. There is a vast literature available on

this topic, but the author of this paper chose only to

highlight the important milestones in this field. A

potential extension of this work is to explore its

other facets, which have not been tackled on this

paper, such as but not limited to automated speech

recognition and information extraction. This is

imperative to garner more appreciation and interest

in the topic of the automata, as well as to epitomize

its importance.

8. References

[1] Theoretical Computer Science Handbook of

Weighted Automata, pp. 571–596, 2009.

[2] A. A. Markov, “An Example of Statistical

Investigation of the Text Eugene Onegin

Concerning the Connection of Samples in

Chains,” Science in Context, vol. 19, no. 04, p.

591, 2006.

[3] C. E. Shannon, “A mathematical theory of

communication,” ACM SIGMOBILE Mobile

Computing and Communications Re-view, vol. 5,

no. 1, p. 3, Jan. 2001.

[4] N. Chomsky, “Three models for the description of

language,” IEEE Transactions on Information

Theory, vol. 2, no. 3, pp. 113–124, 1956.

[5] R. B. Lees and N. Chomsky, “Syntactic

Structures,” Language, vol. 33, no. 3, p. 375,

1957.

[6] S. Eilenberg, Automata, languages and machines.

New York: Academic Press, 1974.

[7] F. Gécseg and M. Steinby, “Tree Languages,”

Handbook of For-mal Languages, pp. 1–68, 1997.

May – June 2020

ISSN: 0193-4120 Page No. 5832-5839

5839

Published by: The Mattingley Publishing Co., Inc.

[8] M. Dalrymple, Lexical functional grammar.

Leiden, The Netherlands: Brill, 2014.

[9] I. A. Sag and T. Wasow, “Syntactic Theory: A

Formal Introduction,” Computational Linguistics,

vol. 26, no. 2, pp. 295–295, 2000.

[10] F. Jelinek, “Continuous Speech Recognition for

Text Applications,” Telecommunications

Elektronische Textkommunikation / Electronic

Text Communication, pp. 262–274, 1978.

[11] F. Jelinek, L. Bahl, and R. Mercer, “Design of a

linguistic statistical decoder for the recognition of

continuous speech,” IEEE Transactions on

Information Theory, vol. 21, no. 3, pp. 250–256,

1975.

[12] K. Knight and J. Graehl, “An Overview of

Probabilistic Tree Transducers for Natural

Language Processing,” Computational Linguistics

and Intelligent Text Processing Lecture Notes in

Computer Science, pp. 1–24, 2005.

[13] S. M. Shieber, “Synchronous grammars and

transducers,” Proceedings of the 10th International

Conference on Parsing Technologies - IWPT 07,

2007.

[14] J. Graehl, K. Knight, and J. May, “Training Tree

Transducers,” Computational Linguistics, vol. 34,

no. 3, pp. 391–427, 2008.

[15] M. Mohri, “On some applications of finite-state

automata theory to natural language processing,”

Natural Language Engineering, vol. 2, no. 1, pp.

61–80, 1996.

[16] A. Kharpal, “A.I. is in a 'golden age' and solving

problems that were once sci-fi, Amazon CEO Jeff

Bezos says,” CNBC, 08-May-2017. [Online].

Available:

https://www.cnbc.com/2017/05/08/amazon-jeff-

bezos-artificial-intelligence-ai-golden-age.html.

[Accessed: 24-Sep-2018].

[17] D. Revuz, “Dictionnaires et lexiques: méthodes et

algorithmes,” Ph.D. thesis, Institut Blaise Pascal,

Paris, France, 1991.

[18] A. Geyken and T. Hanneforth, “TAGH: A

Complete Morphology for German Based on

Weighted Finite State Automata,” Lecture Notes

in Computer Science Finite-State Methods and

Natural Language Processing, pp. 55–66, 2006.

[19] R. M. Kaplan and M. Kay, “Regular models of

phonological rule systems,” Computational

Linguistics - Special issue on computational

phonology, vol. 20, no. 3, pp. 331–378, Sep. 1994.

[20] F. Casacuberta, E. Vidal, and J. M. Vilar,

“Architectures for speech-to-speech translation

using finite-state models,” Proceedings of the

ACL-02 workshop on Speech-to-speech

translation: algorithms and systems -, 2002.

[21] H. V. Halteren, J. Zavrel, and W. Daelemans,

“Improving Accuracy in Word Class Tagging

through the Combination of Ma-chine Learning

Systems,” Computational Linguistics, vol. 27, no.

2, pp. 199–229, 2001.

[22] M. Shamsfard and H. Fadaee, “A Hybrid

Morphology-Based POS Tagger for

Persian,”Proceedings of the Sixth International

Language Resources and Evaluation (LREC’08),

pp. 3453–3460, 2008.

[23] J. Bresnan, A. Asudeh, I. Toivonen, and S.

Wechsler, Lexical-functional syntax. Chichester,

West Sussex: Wiley-Blackwell, 2016.

[24] A. Sarkar and A. Joshi, “Coordination in Tree

Adjoining Gram-mars,” Proceedings of the 16th

conference on Computational linguistics -, 1996.

[25] C. Pollard and I. A. Sag, Information-based syntax

and semantics. Vol. 1: fundamentals. Stanford:

CSLI, 1987.

[26] Martı́n-Vide Carlos, V. Mitrana, and Păun

Gheorghe, Grammars and automata for string

processing: from mathematics and computer

science to biology, and back. London: Taylor &

Fran-cis, 2003.

[27] W. A. Woods, “Transition network grammars for

natural language analysis,” Communications of

the ACM, vol. 13, no. 10, pp. 591–606, Jan. 1970.

[28] M. Crochemore, “Transducers and repetitions,”

Theoretical Computer Science, vol. 45, pp. 63–86,

1986.

[29] H. Alshawi, S. Bangalore, and S. Douglas,

“Automatic acquisition of hierarchical

transduction models for machine translation,”

Proceedings of the 36th annual meeting on

Association for Computational Linguistics -, 1998.

[30] S. Bangalore and G. Riccardi, “Stochastic finite-

state models for spoken language machine

translation,” ANLP-NAACL 2000 Workshop:

Embedded Machine Translation Systems on -

EmbedMT 00, 2000.

[31] G. Riccardi, R. Pieraccini, and E. Bocchieri,

“Stochastic automata for language modeling,”

Computer Speech & Language, vol. 10, no. 4, pp.

265–293, 1996.

