

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4844

Published by: The Mattingley Publishing Co., Inc.

Comparison &Adoption of FOSS Serverless

Computing for Enterprise Openstack

Cloud Platform

Rajesh Rompicharla
1
, Bhaskar Reddy P.V

2

1
PG Student,

2
Professor,

1,2
School of C and IT, REVA University, Bangalore-India
1
rajesh.rom@gmail.com,

2
bhaskarreddy.pv@reva.edu.in

Article Info

Volume 83

Page Number: 4844-4850

Publication Issue:

May-June 2020

Article History

Article Received:19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 16 May 2020

Abstract

Cloud Computing paradigm accelerated the phase of

development & deployment of software applications over on-

demand api-enabled programmable infrastructure. However,

the decision factor of hosting the applications over On-

Premises or Public Cloud generally dependent on the features

of Cloud Service offerings like IaaS, PaaS, CaaS and SaaS

from the respective Cloud Platforms. Pubic Clouds are

always on top with their taxonomy of service offering list,

this worries enterprise IT departments about future platform

dependency and cost aspects, hence phenomenon of Open

Source Cloud Computing platforms like Openstack [25] are

encouraged by IT Enterprises to offer Cloud Services similar

to Public Clouds. Serverless Computing is an emerging cloud

service construct wherein software applications decompose

into multiple independent stateless functions, which are run

only when invoked or trigger by events and killed when

functions session expired. There are multiple FOSS

Serverless Computing frameworks available, comparison &

adoption of suitable framework for Openstack based On-

Premises Cloud platform with appropriate design and

implementation procedure is the objective of this paper.

Keywords: hosting the applications, Cloud Computing

paradigm

1. Introduction

The evolution of cloud computing simplified the

datacenter physical computing machines

management, which were in the “bare-metal” state.

The operation and maintenance of the datacenter and

time to offer the compute resources to the end-

customer improved with the adoption of Cloud

Computing and Virtualization. The main reasons of

the Cloud success are resources configured for API

accessibility, enablement of broad network access and

services made available on-demand through the portal

namely Infrastructure as a service (IaaS).The

deployment of Cloud IaaS in enterprise is called

Private Cloud, consuming resources through Internet

from external vendor is called Public Cloud, enabling

connectivity between Private & Public and offering an

option to choose services between them is called

Hybrid Cloud.

The transformation of software engineering from

Monolithic to Service Oriented and Microservices

Architectures fueled the need of different Cloud

Services apart from IaaS. The flexibility for developer

is consideration to offer new cloud service called

Platform as Service (PaaS). PaaS offers the readily

available software packaged Virtual Machines (VM)

that simplifies developer job to concentrate on

application development. Since Microservices

adoption gradually increased, the requirement of

mailto:bhaskarreddy.pv@reva.edu.in

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4845

Published by: The Mattingley Publishing Co., Inc.

server form-factor shift from VM to Container had

become essential. The new service offering Container

as a Service (CaaS) prevailed in competition to IaaS.

Container offers virtualization at the Operating system

level using abstractions like chroot, namespace and

cgroups, required application packaging offers by

container engine like Docker and orchestration for

containers delivered through Container Orchestrator

like Kubernetes [24]. Free and Open-Source (FOSS)

adoption helped enterprises to avoid vendor lock-in,

de-facto standard softwares like Openstack (IaaS),

Docker (Container Engine) and Kubernetes

(Container Orchestrator) emerged as main players and

gathered the trust of enterprise to adopt for their

production needs. Since Cloud and Software

engineering transformed at rapid speeds, developer

difficulty to accustom to multiple service

environments had also grown. Complexity that

developer feels to inculcate knowledge of multiple

layers of cloud services like IaaS, PaaS and CaaS to

leverage them for better software development

addressed with Serverless Architecture patterns,

Figure 1 provides the

Figure 1: Transformation of Enterprise

Infrastructure, Server Form-factor and Software

Architecture

overview of overall technology transformation that

influences Enterprise Cloud Computing.

After a decade, Berkley University had published

paper on new era of Cloud Computing [1] and

mentioned that Serverless computing gone be the

default computing paradigm in future, largely

replacing services that needs server-full knowledge

for application development. Serverless narrowed

down entire cloud service offerings to two services;

those are Function as a Service (FaaS) & Backend as

a Service (BaaS). Functions are independently

deployable software constructs that are subset of

Microservices. Backend services are re-suable

software service like database, S3 storage bucket,

authentication, analytics and e-mail service etc.

Serverless computing simplifies the cloud for

developers such that they have to concentrate on

developing business logic in terms of functions f(x),

integrate it to backend services and chose available

event triggers to run the code only on need basis over

Cloud Platform. Cloud provider takes care of rest and

assures required infrastructure availability for

applications functions to run efficiently, charges only

for the time that resources consumed to run stipulated

application code. In brief, Serverless computing is an

event-driven, stateless, code execution, utility-based

environment that enables developer to write code and

consume services, rest of the operations are offload to

Cloud provider.

Serverless Computing already proven its mettle

with Public Cloud offerings like AWS Lambda,

Microsoft Azure Functions and Google Cloud

Functions. Enterprise needs to adopt Serverless

Computing to leverage the benefits it offer, hence

comparison and adoption of FOSS Serverless

frameworks is essential with respect to Openstack

(FOSS de-facto Cloud Computing Platform).Since the

research in this direction is essential, the necessary

work performed and this paper is the extract of the

research work conducted. Below are the motivated

Research Questions (RQ) that covers the extent of the

Serverless domain covered as part of this research

paper:

 RQ1:Which FOSS based Serverless Computing

framework suits for Enterprise needs?

 RQ2: What are the economic viability and

technically feasibility of implementing selected (RQ1)

Serverless Computing framework on Enterprise

Openstack-Cloud?

 RQ3: What are the design and implementation

practices to follow to adopt Serverless Computing for

enterprise cloud platforms?

 RQ4: What are the performance and efficiency

measures to be taken care for Serverless Computing

workloads?

The further sections of this paper organized as

follows: Section-II provides the overview of literature

survey on RQ‟s and corresponding Research

Methodology steps (RMS1-4). Section-III addresses

RMS5 - Serverless Architecture design framework for

Enterprise Openstack Cloud Computing. The test

approach, evaluation and outcomes described in

Section IV addresses the RMS6-7. Finally, Section V

concludes the paper and outlines the future research

steps.

Design Science Research Methodology (DSRM)

is adapted for this research paper. The research effort

roughly divided into two parts. The first step is

theoretical literature research (steps RMS 1 – 4),

second part considered to be applying the knowledge

to design, demonstrate, and evaluate (steps RMS 5-7).

2. Literature Survery

An extensive literature review carried out on

Serverless Cloud Computing Frameworks and their

applicability with respect to efficiency and

performance for Enterprise Production expectations.

Total Twenty research papers identified that are

related to this paper RQ‟s; research work of those

papers provided the right direction of what worked

and what did not worked. Below are points that

influenced the research of this paper.

From the paper [1] Berkeley view on Serverless

computing, provided the glance of future Cloud

Computing revolution. However, issues that needs to

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4846

Published by: The Mattingley Publishing Co., Inc.

be taken care relate to ephemeral storage [17], which

must provide high IOPS & low latency, BaaS services

like databases demands higher Persisted Storage

performance.

 Figure 2: Design Science Research Methodology

(DSRM) adoption to this research paper

From the papers [2]& [3],the clarity to Serverless

fitment of FaaS& BaaS within current cloud offering

and separation between Business & Operational

Logicin Serverless clearly highlighted. The current

uses cases of FaaS are particularly Bursty & CPU

Intensive; hence, essential performance engineering

tests and proper evaluation is a clear necessity.

From the papers [4], [5], Fonk-apps.io [6], provide the

clear commonality among multiple FOSS Serverless

Computing frameworks and their comparison on

different aspects. The commonality is the FaaS

offering and Kubernetes usage as Resource Manager

among all the frameworks; differentiation is

programming languages offered, Autoscaling

performance & metric, Message queue integration and

throughput & latency.

Defining FaaS platform & Comparison

The generic Serverless FaaS platforms uses two data

stores for the functions those are Metadata and

Function stores [18]. As name suggests for the quick

retrieval of important information stores with

Metadata Store and actual code stores in Function

store. The reason to have two stores is two different

access patterns, one for quick retrieval of information

and other to run and deploy actual function.

Figure 3: Anatomy of the runtime of a FaaS platform

Events triggers execution request receive by Router;

the component that decides which function goes for

execution cycle, also responsible for forwarding

function request to the deployer. The Deployer

components accepts deployment request from Router,

and assess the demand for function from the metadata

function store and decide how function to be deployed

through the Resource Manager (Kubernetes).

Resource Manager is typically a base layer below

FaaS platform: manages the deployment of cloud

resources, such as containers, network and storage.

The Function Instance is the outcome product that

accepts and receive the requests from the Router and

serves basic needs of application access for the users.

The Deployment manager is the key difference

between two different models; those are Events as

Function Serverless Model and Container as a

Function Serverless Model. The required container

engine properties define the necessity of control &

flexibility that models are expected to offer; it

Figure 6: Knative Architecture and Components

depends on the objective of the FaaS systems to serve

the defined purpose. If objective is very specific and

does not change frequently then Events as Function

model is the best choice, otherwise for the required

dynamic objectives Container as Function model

could exploit Deployment Manager that is Kubernetes

feature sets.

The differentiation among the popular projects

based on GitHub star popularity & key features

conducted by fonk-apps.io [6], results published as

depicted in the Figure 4.

Figure 4: FaaS on Kubernetes Landscape findings

from fonk-apps.io

RMS1: From the overall comparison, Kubeless

(Event as Function model) and Knative (Container as

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4847

Published by: The Mattingley Publishing Co., Inc.

Function model) suits for Enterprise needs.

RMS2:Since Kubernetes acts as common deployment

manager across the FOSS-Serverless computing

frameworks, also has native deployment integration

with the Openstack Cloud Platform (IaaS) which is

viably available as de-facto FOSS Cloud for

Enterprises. Qinling [26] the native Openstack FaaS

project is yet to move to its matured state.

Serverless Platform Design & Implementation

requirements

Knative and Kubeless architecture and design base

line requirements available from papers [4] and [7],

since Kubernetes is the common factor the required

abstraction and multi-tenancy are the configurable

items for containers.

Knative [23] is a platform for building, deploying

and running modern Serverless on Kubernetes. It

offers required Middleware for building and running

code on container-based applications, this helps

developers to focus solely on writing code. Knative

has native integration to run over multiple cloud

providers. Knative itself has three building blocks,

Building provide a cloud native build system for

container orchestration works with Kubernetes;

Eventing manage events with universal subscriptions;

Serving is request-driven model that offers functions

to run and scales up and down to zero, works with

Istio and it models that Function is always executed

and available through Istio‟ s Ingress Gateway.

Kubeless[22] leverages Custom Resorce

Definition (CRD) feature of Kubernetes API and

creates custom resoruce path for Function Objects.

CRD can be namespaced and cluster-scoped, this

enables Kubeless functions to be treated as normal

Kubernetes constructs in the background, this enables

Kubeless controller accessible through Kubernetes-

API.

Figure 6: Kubeless Architecture and

Components(https://kubeless.io/)

Kubeless Deployment manager calls the Kubernetes

Container Orchestrator to invoke function runtimes.

Deployment manager installs function dependencies

using an Init-container, config-map feature used to

inject configuration on run-time function. The

required function triggers can be configured as

Kubernetes Services and ingress traffic mapping for

the function runtime can be influenced using

Kubernetes Ingress-Controller.

RMS3: From the above the required design and

implementation requirements are Kubernetes

Container Orchestrator for Containers and IaaS to run

Kubernetes virtual machines also called as Master &

Worker Nodes.

Serverless Performance considerations

Serverless performance challenges are key

considerable items to design the environments in

production environments for the expected results.

Several items come under scope of performance

implications with respect to Serverless important

items [8] are provisioning overhead, co-located

Functions performance isolation, database and storage

triggers. Concurrency aspects impacts for Serverless

are throughput for number of connections [4], CPU

Intensive workload, Disk Intensive Workload,

Network Intensive workload [9].

RMS4: Performance factors highlighted above needs

a consideration while designing Kubernetes and

Openstack for Serverless computing frameworks.

3. Serverless Architecture & Design Over

Openstack

Serverless architecture & design over the enterprise

Openstack Cloud Computing platform depicted below

as Figure 7. The high-level components involved are

Events, Workflows, FaaS and BaaS.Cloud platform

enables Function run times run as FaaS offering and

Backend services run as BaaS offering. FaaS & BaaS

leverages Kubernetes Container orchestration and run

Docker containers. Kubernetes using native

integration leverages Openstack Computing platform.

Two variants of FaaS, Kubeless for Events as

Function Serverless Model and Knative for Container

as a Function Serverless Model available for users.

Based on the customer comfort one of the model can

be selected. Customer do not want to manage

underlying infrastructure can select Kubeless and

others who want to explore multiple options from the

underlying infrastructure can select Knative.

RMS5: Kubernetes and Openstack integrate tightly

together using their native support to offer the

infrastructure enablement for FaaS & BaaS

workloads. The required Multi-Tenancy and Compute

Resource quotas allocations configured based on the

Application owner request. Storage requirement

varies between FaaS and BaaS, ephemeral storage for

FaaS and Persistent storage for BaaS are the

requirements. Since FaaS and BaaS workloads can be

CPU & I/O intensive,

https://kubeless.io/

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4848

Published by: The Mattingley Publishing Co., Inc.

Figure7: Enterprise Serverless Computing

Architecture & Design over Openstack Cloud

Platform

compute optimizations and dedicated network

bandwidth are required.

4. Openstack & Kubernetes Test Infrastructure

For Serverless Computing Platforms

Openstack Cloud Computing platform offers the IaaS

services from the Compute Servers, the platform

needs other Servers namely Controller Servers,

Storage Servers for the fulfillment of the overall

requirement. As depicted below in Fig 8, Tenant

projects can be created to host Knative & Kubeless

and name them as FaaS (Fig 8 depicts only Kubeless),

this project does not required Persistent storage,

ephemeral storage suffice the requirements of FaaS.

Hosting BaaS needs a separate Tenant Project along

with Persistent Storage Volumes.

From the above requirements of FaaS & BaaS,

the required storage and network readiness

configurations needed at Openstack level. Tenant‟s

creation with three virtual machines per tenant are

required for Kubernetes installation.

Kubernetes installation needs one Master Virtual

Machine to manage the environment and two Worker

Nodes to run the containers with high availability.

Kubernetes uses Flannel over Openstack Neutron

Network for Layer 2 Network connectivity and Calico

for the Network Security policies. Kubernetes uses

native storage plugin to integrate with Openstack

cinder for Storage requirement needs. Kubernetes

Ingress-controller integration requirement supported

using Openstack native load balancer Octavia.

RMS 6-Test Setup:

Hardware: Intel i7 8-Hyper-thread cores & 16 GB

RAM

Openstack: Canonical Charmed Openstack, Stein

Operating System: Ubuntu 16.04.1 LTS

Kubernetes: v1.16.1, Docker v18.09.2

Knative: v0.8, Kubeless v1.0.4

Python „Hello-world‟ function

Python „HTTP‟ function

Workload Generator: wrk

RMS7:FaaS and BaaS workloads are CPU &

Memory Intensive; Openstack Compute

Optimizations likeCPU Pinning & Huge Pages [21]

enabled for evaluation with Kubeless Function

workloads to check the impact on performance.

Below are the test outcomes

Figure 9: Kubeless Throughput Report in Requests

per Second

Tests proved that Openstack optimization

significantly improved the functions Throughput &

Latency performance.

Figure 10: Kubeless Latency in Milliseconds

5. Conclusion

This research work performed a preliminary

investigation to compare & adopt FOSS Serverless

frameworks over Enterprise Openstack Cloud

Computing Platform. As part of the research, the key

objectives achieved with the selection of FOSS

Serverless frameworks Knative & Kubeless,

Designing & Architecting Serverless frameworks over

Openstack Cloud Computing Platform, also verified

and confirmed the performance improvement with

Openstack Optimizations for Kubeless Function.

Serverless Computing Governance & Compliance

topics includes in future research.

References

[1] Eric Jonas, Johann Schleier-Smith, Vikram

Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar,

Joao Carreira, Karl Krauth, Neeraja

Yadwadkar, Joseph E. Gonzalez, Raluca Ada

Popa, Ion Stoica, David A. Patterson "Cloud

Programming Simplified: A Berkeley View

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4849

Published by: The Mattingley Publishing Co., Inc.

on Serverless Computing",

arXiv:1902.03383 [cs.OS], 9 Feb 2019.

[2] Erwin van Eyk & Alexandru Iosup, “The

SPEC cloud group's research vision on FaaS

and Serverless architectures” WoSC '17:

Proceedings of the 2nd-International

Workshop on Serverless Computing,

December 2017, Pages 1-4.

[3] Geoffrey C. Fox, Vatche Ishakian, Vinod

Muthusamy, Aleksander Slominski "Status

of Serverless Computing and Function-as-a-

Service (FaaS) in Industry and Research",

arXiv: 1708.08028 27, Aug 2017.

[4] Junfeng Li, Sameer G. Kulkarni, K. K.

Ramakrishnan, Dan Li “Understanding Open

Source Serverless Platforms: Design

Considerations and Performance”, arXiv:

1911.07449, 13 Dec 2019.

[5] Sunil Kumar Mohanty, Gopika Premsankar

"An Evaluation of Open Source Serverless

Computing Frameworks", 2018 IEEE

International Conference on Cloud

Computing Technology and Science

(CloudCom), December 2018, ISSN: 2330-

2186.

[6] Pete Johnson "examining-the-faas-on-k8s-

market", November 2, 2018

 https://blogs.cisco.com/cloud/examining-

the-faas-on-k8s-market

 Nima Kaviani, Dmitriy Kalinin, Michael

Maximilien "Towards Serverless as

Commodity: a case of Knative" WOSC '19:

Proceedings of the 5
th

International Workshop

on Serverless Computing,December 2019,

Pages 13–18.

[7] Hyungro Lee, Kumar Satyam, Geoffrey Fox

"Evaluation of Production Serverless

Computing Environments" 2018 IEEE 11th

International Conference on Cloud

Computing (CLOUD), July 2018, ISSN:

2159-6190.

[8] Wes Lloyd, Shruti Ramesh, Swetha

Chinthalapati, Lan-Ly, and Shrideep

Pallickara "Serverless Computing, An

Investigation of Factors Influencing

Microservice Performance" 2018 IEEE

International Conference on Cloud

Engineering (IC2E), April 2018, ISBN: 978-

1-5386-5008-0.

[9] Jashwant Raj Gunasekaran, Prashanth

Thinakaran, Mahmut Taylan Kandemir,

Bhuvan Urgaonkar, George Kesidis,Chita

Das "Spock: Exploiting Serverless Functions

for SLO and Cost Aware Resource

Procurement in Public Cloud" 2019 IEEE

12th International Conference on Cloud

Computing (CLOUD), July 2019, ISSN:

2159-6190.

[10] Louis Racicot, Nicolas Cloutier, Julien Abt,

Fabio Petrillo "Quality Aspects of Serverless

Architecture: An Exploratory Study on

Maintainability" 14th International

Conference on Software Technologies,

January 2019, DOI:

10.5220/0007842000600070.

[11] Gojko Adzic, Robert Chatley "Serverless

computing: economic and architectural

impact" the 2017 11th Joint Meeting, August

2017, DOI: 10.1145/3106237.3117767

[12] Andreas Christoforou, Andreas S. Andreou

"An effective resource management

approach in a FaaS environment", Published

in ESSCA@UCC 2018, Corpus ID:

85444026

[13] Aleksi Pekkala " Migrating a web application

to serverless architecture”, Published in

ESSCA@UCC 2019, Corpus ID:

198329300.

[14] Ana Klimovic, Yawen Wang, Christos

Kozyrakis, Patrick Stuedi profile

imagePatrick Stuedi, Jonas Pfefferle profile

imageJonas Pfefferle, Animesh Trivedi

profile imageAnimesh Trivedi "

Understanding Ephemeral Storage for

Serverless Analytics",

 USENIX ATC '18: Proceedings of the 2018

USENIX Conference on Usenix Annual

Technical Conference, July 2018, Pages

789–794.

[15] Alfonso Perez, Sebastián Risco, Diana María

Naranjo Delgado, Miguel Caballer "On-

Premises Serverless Computing for Event-

Driven Data Processing Applications" 2019

IEEE 12th International Conference on

Cloud Computing (CLOUD), July 2019,

DOI: 10.1109/CLOUD.2019.00073.

[16] Paul Castro, Vatche Ishakian, Vinod

Muthusamy, Aleksander Slominsk "The Rise

of Serverless Computing" Communications

of the ACM, December 2019, Vol. 62 No.

12, Pages 44-54 10.1145/3368454.

[17] Erwin van Eyk "Four Techniques Serverless

Platforms Use to Balance Performance and

Cost"

https://www.infoq.com/articles/serverless-

performance-cost/

[18] Hai Duc Nguyen, Chaojie Zhang, Zhujun

Xiao, Andrew A. Chien "Real-time

Serverless: Enabling Application

Performance Guarantees" WOSC '19:

Proceedings of the 5
th

International Workshop

on Serverless Computing, December 2019,

Pages 1–6.

[19] Serverless Architecture Conference 2019,

April 8 – 10, 2019, The Hague, Netherlands

https://serverless-architecture.io/wp-

content/uploads/2019/02/SLA_Whitepaper_v

3.pdf

https://blogs.cisco.com/cloud/examining-the-faas-on-k8s-market
https://blogs.cisco.com/cloud/examining-the-faas-on-k8s-market
https://www.infoq.com/articles/serverless-performance-cost/
https://www.infoq.com/articles/serverless-performance-cost/
https://serverless-architecture.io/wp-content/uploads/2019/02/SLA_Whitepaper_v3.pdf
https://serverless-architecture.io/wp-content/uploads/2019/02/SLA_Whitepaper_v3.pdf
https://serverless-architecture.io/wp-content/uploads/2019/02/SLA_Whitepaper_v3.pdf

May-June 2020

ISSN: 0193-4120 Page No. 4844-4850

4850

Published by: The Mattingley Publishing Co., Inc.

[20] https://docs.openstack.org/nova/pike/admin/c

pu-topologies.html

[21] https://kubeless.io/

[22] https://knative.dev/

[23] https://kubernetes.io/docs/concepts/overview

/components/

[24] https://www.openstack.org/software/

[25] https://docs.openstack.org/qinling/latest/

https://docs.openstack.org/nova/pike/admin/cpu-topologies.html
https://docs.openstack.org/nova/pike/admin/cpu-topologies.html
https://kubeless.io/
https://knative.dev/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.openstack.org/software/
https://docs.openstack.org/qinling/latest/

