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Abstract: 

Asthma has played an important role in statistics, particularly in terms of 

environmental factors in most developed countries in the world over the past fifty 

years. This research examines some significant aspects of correlation and fitting the 

best models for selecting and evaluates the different kinds of hypothesis testing. It 

is concluded that the most efficient method to use the graphical chain modelling to 

depict the association structure between the background variables and how they are 

associated with the chid admission in Mexico city. There are two under sections, 

the first is Poisson distribution and Negative Binomial distribution are used in order 

to choose models that are both simple and fit the data well. Various environmental 

factors have been considered for the cause of asthma among children in Mexico and 

it can be seen that, amount of Rain and Tree pollen arise as major factors. 

According to the analysis, month of September recorded the highest number of 

child admission from asthma. 

Keywords: Environmental Factors, Asthma, Poisson distribution 

 

I.  INTRODUCTION 

Asthma is one of the respiratory diseases that causes 

the patient to be unable to breathe properly. The main 

cause of the disease has not been discovered, but the 

common belief is that the cause is a combination of 

genetic factors, environmental factors. Asthma is 

becoming increasingly common in the developed 

world and is now the most common chronic 

condition in the west. More than 5.2 million people 

in the UK are being treated for asthma and about 1.1 

million of these are children. Asthma a ects 

approximately one in 12 adults and one in eight 

children in the UK. This means there is a person with 

asthma in one in five households in the UK. It can a 

ect almost anyone, at any age, anywhere  although it 

tends to be worse in children and young adults 

(Agertoft  and  Pedersen ; 1994). Asthma occurs as a 

result of a combination of complex environmental 

and genetic reactions that are not fully understood, 

affecting asthma severity and response. Treatment 

The recent increase in asthma rates is thought to be 

due to changes in sequencing factors (genetic factors 

differ from those associated with the hypoxic ) And 

in the living environment. Pre-eclampsia is usually 

associated with genetic factors, but its onset after 12 

years is due to environmental factors. During the 

latter part of the last century there has been a steady 

increase in countries that depend on Western lifestyle 

as well as in developing countries, as current 

estimates indicate that 300 million people worldwide 

suffer from the Asthma. 

Objective of the study 

The main objective of the study is to understand the 

relationship between asthma among children and 

environmental factors. It has been suggested that 

asthma can be triggered and exacerbated by exposure 

to many environmental factors. The American 

Academy of Paediatrics has recently published a 

book about childhood environmental health 

problems, which states: "Avoiding environmental 

Study the Environmental Factors that affect 

Children for Asthma 
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allergens and irritants is one of the primary goals of 

good asthma management" . 

Environmental factors that increase the risk of 

developing asthma include: 

• Exposure to allergens. 

• Cold air, wind, rain and sudden changes in the 

weather can sometimes bring on an asthma attack. 

• Time of year when the pollen count is high. 

• Air pollution. 

 

Importance of the Study 

Reach the stage of disease (Asthma) stabilization. 

Reduce the number of acute asthma attacks and use 

as few bronchodilators as possible. 

The Children continues to practice his normal life 

without any obstacles. 

Problem of the study 

Asthma is caused by a combination of factors 

including genetic predisposition and its interaction 

with environmental factors. The difficulty of 

breathing as mentioned, accompanied by cough and 

asthma symptoms, especially when the person is 

exposed to any additional infections as a result of 

some diseases such as colds and flu, and these 

symptoms very much at night. 

What are the causes? 

Over the years, intensive researches have been 

carried out in order to understand the in uential 

factors cause for asthma and mainly it can be 

narrowed down to two main categories: (Holgate; 

1999). 

• Genetics and Asthma. 

• Environmental factors and Asthma. 

 

-1 Material and methods 

The study based on the records of child admissions to 

the Mexico City hospital (Busse; 1996).. Daily 

number of patients diagnosed as su ering from 

"asthma" were extracted by a trained health-care 

professional between the month July and October. In 

addition to that, several other environmental data has 

been collected between the period July and October. 

Variables in this study can be divided into three 

aspects: 

 

• Bio particles: Grass Pollen (Grass), Tree Pollen 

(Tree), Weed pollen (Weed),      Basidiomycete 

spores (Basidiom), Ascomycete spores (ASC), 

Deuteromycete spores (Deuterom); 

• Air pollutants: Max. Hourly Ozone (O3), Number 

of hours Ozone (O3hours), Max. Hourly nitrogen 

dioxide (NO2), Max.hourly sulphur dioxide (SO2); 

• Weather: Daily rainfall (Rain), Maximum daily 

temp. (MaxTemp), Minimum daily temp. 

(MinTemp), Daily average relative humidity (Rain). 

1.1 Missing Values 

The most common issue which arises in almost 

surveys is missing data. There are various reasons 

due to happening this, losing or corrupting samples is 

one possible cause, in addition to it, there might be 

some questions which partic ipants may not want to 

answer the questions. In fact, it is always essential to 

handle the nature of the distribution of data. Having 

too much missing data can a ect the results of any 

statistical analysis that are performed. Therefore, in 

order to prepare the data for further analysis, one 

solution that is regularly applied is imputation, that 

is, finding appropriate replacements for the missing 

data. However, many methods can be used to 

evaluate them. 

 

1.1.1 How to deal with? 

With reference to Little & Rubin (1987) missing 

values are classified into three different classes of 

missingness regardless of their dependence structure. 

Missing completely at random (MCAR), missing at 

random (MAR), and missing not at random 

(MNAR), which are explained as following:  

  • The term MCAR refers to data where there is no 

relationship between variables, in  addition, it means 

both missing at random and observed at random ( 

The random collected data do es not depend on any 

other in the data set). In order for case deletion to be 

valid this condition is required. (Rubin, 1976). 
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• With regard to MAR, a more general assumption, 

missing at random, is the probability a variable is 

missing relates only on existing information. 

• The MNAR refers to Not Miss at Random, (or 

informatively missing, as it is often known) shows 

when the missingness mechanism depends on the 

real value of the missing data. This is the most hard 

condition to model for. 

We have defined missing data in detail and 

mentioned their types as well. In our data, several 

variables has missing values and ignoring them may 

lead to substantial biases in the analyses. The 

statistical package SPSS can be used to either 

showing the percentage and computing the 

replacements of missing data. First, let’s consider the 

Frequency analysis of missing values. We found that 

the highest percentage of missing value is for RH 

which has about 10.57%. Similarly, NO2 and SO2 

come after it in the second and third place with 

having 7.32% and 6.50% respectively, which means 

these missing values should be taken into account. 

However, for O3, we can ignore it and there may not 

be exist a big change in the consequence due to 

having only two missing values. In total there are 32 

missing values, it does in uence the result if they are 

not replaced. There are many methods to evaluate 

missing values, here we use EM algorithm. 

 

1.1.2 The EM algorithm 

The EM algorithm is based on a two step process to 

compute for estimating model parameters. It 

integrates missing data in the estimation process, thus 

bypassing the need to impute. The basic algorithm 

consists of two steps: expectation (E step) and 

maximization (M step). Initially the data is parti 

tioned into missing and non-missing, and then begin 

with starting values for the parameters. Firstly, using 

the parameters, calculate the predicted scores for the 

missing data (the expectation). Secondly, using the 

found scores for the missing data, maximize the 

likelihood function to attain new parameter estimates. 

Reiterate the process until convergence is occurring. 

Nevertheless, we are not doing it by theoretically, it 

can be computed by SPSS. 

 

2- Exploratory Data Analysis 

Exploratory data analysis is used initially to learn 

about data set. From histograms of all variables we 

found that most of them are positively skewed (e.g. 

Child, Deuterom, etc.), and histograms of MaxTemp, 

MinTemp and RHare negatively skewed. Only O3 

seems to have Normal distribution. From boxplots 

we can read o  the minimum lower quartile, median, 

upper quartile and maximum. We can also find 

outliers according to the boxplots of all variables, 

but we may need further modelling to explain for 

these outliers.By using QQ plot we can confirm 

whether a variable is normally distributed and it 

seems that only O3 is normally distributed variable. 

Let’s look at some summary statistics for Child by 

other variables. For Child and Month, Figure 2.1 

shows that September has the highest mean and 

median Child, while July has the lowest Child. With 

this graph we consider that there exist some kinds of 

relationships between Child and Month, so we 

should try to include Month as a covariate when 

predicting Child. Then we consider other potential 

covariate. From the scatterplots of other variables we 

found obvious negative relationships between Child 

and Tree, Tpollen, Rain. This means that if Tree or 

Rain increases, Child decreases. It could be that 

more trees and rainfall bring fresher air, and then 

less children will have asthma. We can calculate the 

correlations (cor(Child,Tree)) and (cor(Child,Rain)) 

as -0.298 and -0.217, respectively. Without further 

modelling we will not know whether they are 

significant relationship. 

Chi ld ~Mon t h , Child~Tree ’Aug ’  ’Jul’  ’ Oct’  

’Sep ’ and the figures below  show the relationships 

between some variables in this studies such as Child 

by Month, Child by Tree and Child by Tpollen 
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Fiqure 2.1 Relationship between child with grass,T pollen and tree 

3- Modeling 

The section above has explored the data and the 

present section fit the regression model and use the 

graphical chain modelling to depict the association 

structure between the background variables and how 

they are associated with the chid admission in 

Mexico city. There are two under sections, the first 
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is Poisson distribution and the second is Negative 

Binomial distribution are used in order to choose 

models that are both simple and fit the data well. 

3.1 Model choice 

Choosing models are the most important part in 

obtaining the appropriate result to make implication 

for the future (Gaur; 2006). There are some 

assumptions that we may take into account to select 

the model which fits the data well, such as whether 

the response variable plays as counted observations, 

or by looking its distribution and its association with 

predictor variables and so on. Now, here the 

response variable is a binary variable (yes or no) 

which means that "Yes" stands for the child who has 

asthma and "No" has not. So, it would seem that the 

child admission variable is more likely to be 

approximately.(Mann; 2007) Poisson distribution 

due to it implies to count the children who are a 

ected by asthma. Due to the fact that the response 

variable is both positive and integer, then it is 

obvious a generalised linear model with having 

Poisson family is appropriate here. However, we 

cannot say that the response is exactly distributed as 

a Poisson distribution. As long as it has integer 

values, we can assume Child admission follows a 

Poisson:    

Child ∼    Poisson(µ)         
T

ii X)log(                   

Where Child is the child admission of asthma, X is a 

vector of possible exi planatory variables and      

is the corresponding parameter vector.  

 

Table 3.1: Correlation between Response Variable (Child) and the Exploratory Variables 

cor(Deuterom,Child)  0.1346457 

cor(ASC,Child)  -0.06412334 

cor(Basidiom,Child)  -0.1878432 

cor(Tree,Child)  -0.2977368 

cor(Weed,Child)  -0.2004219 

cor(Grass,Child)  0.1541982 

cor(Tpollen,Child)  -0.2771709 

cor(MaxTemp,Child)  0.03046704 

cor(MinTemp,Child)  0.04442969 

cor(RH,Child)  -0.03452375 

cor(Rain,Child)  -0.2166712 

cor(O3,Child)  -0.05699631 

cor(NO2,Child)  -0.03363497 

cor(SO2,Child)  -0.1392338 

cor(O3hours,Child)  -0.0278378 

 

3.2 Model Selection (Poisson Distribution) 

Now, let’s begin fitting models to the data set. It is 

important to take one of the strategy of testing 

models to achieve the best one although there cannot 

be the best one. Here, our aim is to decide which of a 

range of competing models fits the data best 

(Howell; 2010). For doing so we will be using the 

Likelihood Ratio Test. We build the model 

sequentially (forward selection) starting from the 

null model (intercept only) and moving to more 

complicated models considering the significance 

level 5%. By using R, we obtain Model 0:(Child)   

1.36990 with deviance 275.04 on 122 degrees of 
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freedom. As we can see that the residual deviance is 

much larger than the degrees of freedom. Thus, we 

need to add a term into our model to see whether 

wecan get a better one or not. Now, we add Month 

as an explanatory variable, the reason to addit at the 

first time is we have already checked the model with 

every single predictor variable and as shown on the 

table above, correlation between the response and 

predicted variables gives good indication for the 

selection of variables. We have to be very sensible 

with choosing model, and then we compared them 

with the null model’s residual deviance, and we took 

a difference between them. So, the following table 

contains all the mo dels with their di erence in 

residual deviance. Therefore, we found that Month 

should be added as the first one. It would seem that 

there are several independent variables which are 

significant and suggest to start with. We should, 

however, choose a model which has the largest di 

erence in deviance. This means Month is added 

firstly with 58.324 as a factor to the null model. 

 

Table 3.2: Different plausible log-linear model selected (family=poisson) 

Models Differences in df Differenc in deviance P-value 

Child ∼ 1 - - - 

Child  ∼ Month 3 3 58.324  1.34e-12 

Child ∼  Tree  1 30.235  3.828e-08 

Child  ∼ Tpollen  1 23.895  1.017e-06 

Child ∼  Rain  1 14.361  0.0001509 

Child ∼  Weed  1 11.429  0.000723 

Child ∼  Basidiom  1 10.36  0.001288 

Child ∼  Grass  1 6.0486  0.01392 

Child ∼  SO2  1 5.2249  0.02227 

Child  ∼ Deuterom  1 4.5704  0.03253 

Child  ∼ ASC  1 1.1287  0.2881 

Child ∼  O3  1 0.85978  0.3538 

Child ∼  MinTemp  1 0.52668  0.468 

Child ∼  RH  1 0.31324  0.5757 

Child  ∼ NO2  1 0.30482  0.5809 

Child ∼  MaxTemp  1 0.24676  0.6194 

Child ∼  O3hours  1 0.20429  0.6513 

 

 Models Difference in df, Difference in deviance  

and P-value 

Child ∼    1 

After adding Month we obtain Model 1: 

(Child) ∼  1.37820 -  0.62253  * ( Jul )  - 0.05859 *  

( Oct ) + 0.40799  * ( Sep )  

 

with deviance 216.71 on 119 degrees of freedom. 

Compared with Model 0: "(Child)∼   1.36990", we 

find that the change in deviance is very big and p   

value = 1.34e  - 12 < 0.05. This means that, the null 

hypothesis is rejected and we conclude that the more 

complex model that includes Month fits the data 

better than the null (intercept only) model. Having 

decided on the usefulness of Month, we will then 

add an additional explanatory variable. We decide 



 

May – June 2020 

ISSN: 0193-4120 Page No. 2904 – 2917 

 

 

2910 Published by: The Mattingley Publishing Co., Inc. 

toadd Tree, because it comes as the second most 

significant shown in the Table 3.2. Further, 

according to the exploratory analysis and Table 4.1 

there is a strong negative relationship between 

number of Child admission and Tree pollen. Hence 

repeat the process of fitting a binary log-linear 

model but adding Tree now. Then we can obtain 

Model 2: 

(Child) ∼  1.481150  - 0.511179  * ( Jul ) -  

0.066457*  ( Oct ) + 0.348016 *  ( Sep ) -0.014921  

* (Tree) with deviance 212.16 on 118 degrees of 

freedom. Compared with Model 1, although the 

deviance is quite small, it is still significant at 5% 

level. So we will keep Tree in the model. The further 

model should be fitted in order to improve the mo 

del, we then add Tpollen as an additional 

explanatory variable and we obtain Model 3: (Child) 

∼  1.489559  - 0.511442 *  ( Jul )  - 0.071038   *( 

Oct ) + 0.345907 *  ( Sep ) -0.014265 *  (Tree) -  

0.000701  * (Tpollen) with deviance 212.16 on 117 

degrees of freedom. Compared with Model 2, the 

change of deviance is quite small and the p value is 

greater than 0.05. Consequently, the Tpollen cannot 

a ect the variability of child admission when the 

factors of the Month and Tree are available. 

Therefore, it cannot be necessary to consider on the 

covariate Tpollen. In the next model Rain will be 

added as an additional independent variable due to 

coming as the third most significant in the Table 3.2. 

Then we obtain Model 4: (Child)  ∼ 1.543903   -

0.382769  * ( Jul )  - 0.024854 *  ( Oct ) + 0.347701  

* ( Sep )- 0.018256  * (Tree)   -0.019882 * (Rain) 

with deviance 205.85 on 117 degrees of freedom. 

Compared with Model 2, it is significant and we 

conclude that the addition of Rain improves the fit of 

the model significantly. 

It will not be necessary to add any more additional 

explanatory variables because with regard to the 

Table 3.1 and Table 3.2 after Rain except Weed 

although they are all significant but their p-value are 

not smaller than 0.05 compared to the others, So we 

do not consume our time. Hence, we will start 

adding their interaction between these variables that 

have improved our models. Firstly we consider the 

interaction between Month and Tree, then we obtain 

Model 5: 

(Child)  ∼ 1.268358 + 0.127037  * ( Jul ) + 

0.342099  * ( Oct ) + 0.493096  * ( Sep ) + 0.021149 

*  (Tree)  - 0.023145 *  (Rain)  - 0.057569 *  ( Jul  * 

T ree) - 0.052384 *  ( O ct * T ree) + 0.007428   * ( 

Sep  * Tree) with deviance 194.38 on 114 degrees of 

freedom. Compared with Model 4 we find it is 

significant at 5% level. That is, the interaction 

between Month and Tree and is significant in 

explaining the variability of accruing asthma of 

Child. Next we consider adding the interaction 

between Month and Rain. We obtain Model 6: 

(Child) ∼  1.2591792 + 0.0805258 * ( Jul ) + 

0.3184436   *( Oct ) + 0.5700490 *  ( Sep ) + 

0.0210671 *  (Tree) -  0.0179584 *  (Rain) - 

0.0562102  * ( Jul *  Tree)  - 0.0504026  * ( Oct *  T 

ree) + 0.0122800 *  ( Sep *  Tree) + 0.0008231 *  ( 

Jul *  Rain) 

+ 0.0005131 *  ( Oct *   Rain) -  0.0409650 *  ( Sep  

* Rain) with deviance 191.49 on 111 degrees of 

freedom. Compared with Model 5, p   value = 

0.4079 > 0.05, and we conclude that the interaction 

among Month and Rain is not significant. So, we 

will remove it for the next additional. 

Then we consider the interaction between Tree and 

Rain. We obtain Model 7: (C hild)  ∼ 1.226901 + 

0.137201 *  ( Jul ) + 0.294390 *  ( Oct ) + 0.500822  

* ( Sep ) + 0.029658 * (Tree)  - 0.007964   *(Rain)  - 

0.056741 *  ( Jul  * Tree) - 0.045911 *  ( Oct   * 

Tree) + 0.008590 *  ( Sep  * Tree)  - 0.004013  * 

(Tree  *  Rain) with deviance 189.95 on 113 degrees 

of freedom. Compared with Model 5, p   value = 

0.03536 < 0.05, so we accept the more complicated 

model with having two interaction terms. Finally we 

consider all interactions, and we obtain Model 8: 

(Child) ∼  1.124767 + 0.177594 *  ( J ul ) + 

0.443686  * ( Oct ) + 0.742303 *  ( Sep ) + 0.038021  

* (Tree) + 0.036443 *  (Rain)  - 0.061324 *  ( Jul *  
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Tree)  - 0.065586 *  ( Oct    * Tree)  -  0.022015 *  ( 

Sep  * Tree) - 0.033707 *  ( Jul  * Rain) -  0.052441*  

( Oct *  Rain) -  0.114978 *   ( Sep  * Rain)  -  

0.007916  * (Tree *  Rain) + 0.002509 *  ( Jul  * T 

ree  * Rain) + 0.007455 *  ( Oct *  Tree *  Rain) + 

0.015217 *  ( Sep  * T ree  *  Rain) with deviance 

183.06 on 107 degrees of freedom. Compared with 

Model 7, p   value = 0.3307 > 0.05. Therefore, we 

ended up with the model with having two interaction 

terms between Month and Tree as well as Tree and 

Rain and we take this model as our chosen model. It 

can be stated that these variables lead to o ccur 

asthma on Child. The final mo del is Model 7: Child  

∼ Month + T ree + Rain + Month *  T ree + T ree  * 

Rain 

3.3 Model Checking (Poisson Distribution) 

As soon as a model is selected, there needs to check 

its residual plots by using the standardised residuals. 

The graph displays that there cannot be seen an exact 

relationship between residuals and the fitted values. 

In case of Poisson mo del the raw residuals have a 

variance proportional to the mean. Nevertheless, this 

plot illustrates that it does not re ect such properties. 

As shown in Figure 3.2, the standard residual is not 

likely to have a normal distribution. It does not only 

have a bell-shaped distribution, but also its variance 

is relatively too large. The sample variance of that is 

1.554. Thus, for these two reasons and including the 

overdispersion, we can conclude that this mo del still 

does not fit the data well. There are various 

explanation for this, it is possible to say that there 

may be other explanatory variable(s) which we have 

not measured into the mo del in addition to Month, 

Tree and Rain. Similarly, changing the link function 

can be another possible reason which should be 

taking into account. Moreover, transforming one or 

more covariate variables play an essential role, such 

as taking logs, power and so on.  

 

Figure 3.1: Residual plot of Model 7                    Figure 3.2: Q Q plot of Model 7 

3.4 Negative Binomial Distribution 

We have completed the task of fitting a Poisson 

model to the child admission data. We have been 

successful in choosing the best model, analyzing the 

residuals and using the model for prediction. The 

only problem we have encountered is over-

dispersion. One possible explanation is that we do 

not have the in uential explanatory variables such as 

genic conditions of the child and family background 

etc to fit the model accurately. Orales, the model is 

incorrect. For count data, the Poisson distribution is 

a good starting point but there are alternatives, such 
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as the negative binomial distribution (Spiegel; 1992). 

It is more complicated to fit the negative binomial 

distribution because it has an additional parameter. 

We can either specify   or we can estimate   using 

maximum likelihood. we wish to estimate   as well 

then we use a slightly diverent function. In the 

previous poisson model , we have identified the 

important explanatory variables which are Month, 

Tree and Rain as shown in Table1. We shall now 

repeat the mo del selection procedure using the 

negative binomial distribution. Lets start with the 

null model. Null model Model 9: (Child)  ∼ 

1.36990and twice log-likelihood is -582.833 on 122 

degrees of freedom. In addition to the usual GLM 

output, R has estimated ˆ= 3.183. It has also stated 

the log-likelihood which we shall need for 

comparing models. Now we shall try adding Month. 

Model 10: (Child) ∼  1.37820 -  0.62253 *  ( Jul ) -  

0.05859 *  ( Oct ) + 0.40799  * ( Sep ) and twice 

log-likelihood is -552.494 on 119 degrees of 

freedom. We compare Model 9 and Model 10 using 

twice the difference in the log-likelihood, and we 

obtain p   value < 0.05. So we should keep Month in 

the model. Then lets add Tree into the model. Model 

11: (Child)  ∼ 1.506873 -  0.510300  * ( Jul ) -  

0.076088 *  ( Oct ) + 0.332850   *( Sep ) - 0.017654 

*  (Tree) and twice log-likelihood is -548.3317 on 

118 degrees of freedom. After compare the twice 

log-likelihood of Model 10 and Model 11 we find 

that p value = 0.04133351 < 0.05. Therefore, Model 

11 should be accepted. Then we add Rain into the 

model. Model 12: (Child)  ∼ 1.572649 - 0.381160  * 

( Jul )   - 0.035897 *  ( Oct ) + 0.326558 *  ( Sep ) -  

0.021254  * (Tree)  - 0.019650 *   (Rain) and twice 

log-likelihood is -544.3666 on 117 degrees of 

freedom. After compare the twice log-likelihood of 

Model 11 and Model 12 we find that p value = 

0.04645403 <0.05, the increase of the log-likelihood 

is significant with 1 degrees of freedom and hence 

Model 12 should be accepted. Model 13: (Child) ∼  

1.282943 + 0.121769  * ( J ul ) + 0.347593 * ( Oct ) 

+ 0.472424 *  ( Sep ) + 0.019140 *  (Tree)  - 

0.022832 *  (Rain)   - 0.056215 *  ( Jul *  T ree)  - 

0.053416  * ( Oct *  Tree) + 0.009852 *  ( Sep *  

Tree) with twice log-likelihood -536.8628 on 114 

degrees of freedom. Compared with Model 12 using 

twice the dierence in the log-likelihoo d we found 

that p   value = 0.0574601 > 0.05. It can be seen that, 

with contrast to the poisson mo del, adding 

interacion term between Month and Tree do es not 

produce a significant result under negative binomial 

family. This is an unexpected outcome. Hence we 

will go back to Model 12. Lets consider the 

interaction between Month and Rain. Model 14: 

(Child)   ∼1.560644 -  0.439498 *  ( Jul ) -  

0.046377  * ( Oct ) + 0.429011 *  ( Sep ) -0.019761  

* (Tree) -  0.019117 *  (Rain) + 0.006564 *  ( Jul  * 

Rain) + 0.002673 *  ( Oct   *Rain)  - 0.039490  * ( 

Sep *  Rain) with twice log-likeliho od -542.4905 on 

114 degrees of freedom. Compared with Model 12 

using twice the di erence in the log-likelihood we 

found that p   v alue = 0.5985152 > 0.05. It can bee 

seen that adding interaction term between Month and 

Rain do es not make significant either. Hence we 

root back to Model 12. Lets add interaction between 

Tree and Rain to Mo del 12. Model 15: (Child)  ∼ 

1.515749  - 0.370363  * ( Jul ) - 0.040241 *  ( Oct ) 

+ 0.347589 *  ( Sep ) -  0.011021  * (Tree) -  

0.003638 *  (Rain)  -  0.004069 *  (Tree *  Rain) 

with twice log-likelihood -540.3500 on 116 degrees 

of freedom. Compared with Model 12 using twice 

the difference in the log-likelihood we found that p   

value = 0.0450525 < 0.05. Therefore, addition 

interaction between Tree and Rain became 

significant. Hence we accept more complicated 

model, Model 15. We have considered all the 

possible interaction between predictor variables that 

we found important and it is clear that Model 15 is 

less complicated and more realistic than poisson 

model, Model 7. 

3.5 Model Checking(Negative Binomial 

Distribution) 

We now need to check the residual plots using the 

standard residuals. However, variance of the new 

model (1.04451) is much smaller than the best 
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chosen model under poisson family. Additionally, 

overdisperson is reduced under new model hence 

overall best chosen model will be Model 15. 

 

 

Figure 3.3: Residual plot of Model 15        Figure 3.4: QQ plot of Model 15 

Conclusion 

As above, various environmental factors have been 

considered for the cause of asthma among children 

in Mexico and it can be seen that, amount of Rain 

and Tree pollen arise as major factors. According to 

the analysis, month of September recorded the 

highest number of child admission from asthma. 

This does not contradict with our finding as in 

September dry season is about to start in Mexico and 

Rainfall and Tree-pollen concentration drop. As we 

know, Asthma is common condition that a ects the 

air ways in the lungs. Possible explanation could be 

when the Rainfall and tree pollen drops, there is a 

lack of fresh air and children become vulnerable for 

asthma. On the other hand, several epidemiologic 

studies have investigated the statistical relationships 

between asthma and air pollution. However, in our 

studies, air pollution did not contribute significantly 

to child admission from asthma. It could be the fact 

that adults are more vulnerable to air pollution than 

children. Finally, above analysis have been carried 

out based on the environmental factors and we 

believe that there are other important factors such as 

genetic conditions and family backgrounds of the 

children need to be accounted along with 

environmental factors . According to a survey 

carried out by Asthma and Allergy Association in 

America, young people with asthma (those aged 15-

24 years) showed that more blacks than whites died 

of the disease from 1980 to 1993. Among children 

aged 0-4 years in 1993, blacks were six times more 

likely to die from asthma than whites. Among 

children aged 5-14, blacks were four times more 

likely than whites to die of the illness. Hence it 

shows that genetic condition may play an important 

role in this contest. However, cost of involving 

extracting those details from each individual could 

be higher and time consuming. Nevertheless, based 

on the resources we have been provided, it is 

apparent that Tree, Rain and child asthma are 

correlated each other. 

Recommendation  

Asthma plays an important role in controlling and 

co-existing with asthma if the following guidelines 

are followed: 

Prevention of internal and external allergies 
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The children must have a medical file in the hospital 

and the health center. 

Do not dispense medicines on your own or buy them 

from the pharmacy without consulting your doctor. 

Keep your health and fitness healthy and exercise. 

Quitting smoking, abstaining from smoking, and 

avoiding factors leading to an asthma attack. 

Take a seasonal flu vaccine to reduce the risk of flu. 
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Appendix A 

R Codes 

A.1 Exploratory data analysis 

### Histograms ### 

hist(Child,breaks=12) 

hist(Deuterom,breaks=10) 

hist(ASC,breaks=14) 

hist(Basidiom) 

hist(Tree,breaks=12) 

hist(Weed) 

hist(Grass) 

hist(Tpollen,breaks=14) 

hist(MaxTemp) 

hist(MinTemp) 

hist(RH,breaks=14) 

hist(Rain,breaks=14) 

hist(O3) 

hist(NO2) 

hist(SO2) 

hist(O3hours) 

### Boxplots ### 

boxplot(Child,horizontal=T,main="Child") 

boxplot(Deuterom,horizontal=T,main="Deuterom") 

boxplot(ASC,horizontal=T,main="ASC") 

http://books.google.co.uk/books?hl=en&lr=&id=5WFohzuwzP0C&oi=fnd&pg=PR9&dq=statistical+method+for+pschology&ots=oRFhI4PlcQ&sig=ts4z_RgXNplCYK8cNJ0TLw2V1NY#v=onepage&q&f=false
http://books.google.co.uk/books?hl=en&lr=&id=5WFohzuwzP0C&oi=fnd&pg=PR9&dq=statistical+method+for+pschology&ots=oRFhI4PlcQ&sig=ts4z_RgXNplCYK8cNJ0TLw2V1NY#v=onepage&q&f=false
http://books.google.co.uk/books?hl=en&lr=&id=5WFohzuwzP0C&oi=fnd&pg=PR9&dq=statistical+method+for+pschology&ots=oRFhI4PlcQ&sig=ts4z_RgXNplCYK8cNJ0TLw2V1NY#v=onepage&q&f=false
http://books.google.co.uk/books?hl=en&lr=&id=5WFohzuwzP0C&oi=fnd&pg=PR9&dq=statistical+method+for+pschology&ots=oRFhI4PlcQ&sig=ts4z_RgXNplCYK8cNJ0TLw2V1NY#v=onepage&q&f=false
http://books.google.co.uk/books?hl=en&lr=&id=5WFohzuwzP0C&oi=fnd&pg=PR9&dq=statistical+method+for+pschology&ots=oRFhI4PlcQ&sig=ts4z_RgXNplCYK8cNJ0TLw2V1NY#v=onepage&q&f=false
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boxplot(Basidiom,horizontal=T,main="Basidiom") 

boxplot(Tree,horizontal=T,main="Tree") 

boxplot(Weed,horizontal=T,main="Weed") 

boxplot(Grass,horizontal=T,main="Grass") 

boxplot(Tpollen,horizontal=T,main="Tpollen") 

boxplot(MaxTemp,horizontal=T,main="MaxTemp") 

boxplot(MinTemp,horizontal=T,main="MinTemp") 

boxplot(RH,horizontal=T,main="RH") 

boxplot(Rain,horizontal=T,main="Rain") 

boxplot(O3,horizontal=T,main="O3") 

boxplot(NO2,horizontal=T,main="NO2") 

boxplot(SO2,horizontal=T,main="SO2") 

boxplot(O3hours,horizontal=T,main="O3hours") 

### QQ plots ### 

sqqnorm(scale(Child,T,T),main="Child") abline(0,1) 

qqnorm(scale(Deuterom,T,T),main="Deuterom") 

abline(0,1) 

qqnorm(scale(ASC,T,T),main="ASC") abline(0,1) 

qqnorm(scale(Basidiom,T,T),main="Basidiom") 

abline(0,1) 

qqnorm(scale(Tree,T,T),main="Tree") abline(0,1) 

qqnorm(scale(Weed,T,T),main="Weed") abline(0,1) 

qqnorm(scale(Grass,T,T),main="Grass") abline(0,1) 

qqnorm(scale(Tpollen,T,T),main="Tpollen") 

abline(0,1) 

qqnorm(scale(MaxTemp,T,T),main="MaxTemp") 

abline(0,1) 

qqnorm(scale(MinTemp,T,T),main="MinTemp") 

abline(0,1) 

qqnorm(scale(RH,T,T),main="RH") abline(0,1) 

qqnorm(scale(Rain,T,T),main="Rain") abline(0,1) 

qqnorm(scale(O3,T,T),main="O3") abline(0,1) 

qqnorm(scale(NO2,T,T),main="NO2") abline(0,1) 

qqnorm(scale(SO2,T,T),main="SO2") abline(0,1) 

qqnorm(scale(O3hours,T,T),main="O3hours") 

abline(0,1) 

### Scatter plots ### 

plot(Child~Month,main="Child~Month") 

plot(Child~Deuterom,main="Child~Deuterom") 

plot(Child~ASC,main="Child~ASC") 

plot(Child~Basidiom,main="Child~Basidiom") 

plot(Child~Tree,main="Child~Tree") 

plot(Child~Weed,main="Child~Weed") 

plot(Child~Grass,main="Child~Grass") 

plot(Child~Tpollen,main="Child~Tpollen") 

plot(Child~MaxTemp,main="Child~MaxTemp") 

plot(Child~MinTemp,main="Child~MinTemp") 

plot(Child~RH,main="Child~RH") 

plot(Child~Rain,main="Child~Rain") 

plot(Child~O3,main="Child~O3") 

plot(Child~NO2,main="Child~NO2") 

plot(Child~SO2,main="Child~SO2") 

plot(Child~O3hours,main="Child~O3hours") 

A.2 Generate models 

### Poisson distribution ### 

lm0<-glm(Child~1,family=poisson) #Null model, 

Model 0. 

summary(lm0) #Find deviance and degrees of 

freedom for Model 0. 

lm1<-glm(Child~Month,family=poisson) #Generate 

Model 1. 
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summary(lm1) #Find deviance and degrees of 

freedom for Model 1. 

anova(lm0,lm1,test="Chisq") #Compare Model 0 

and Model 1. 

#Models with one explanatory variable. 

glm(Child~Deuterom,family=poisson) 

glm(Child~ASC,family=poisson) 

glm(Child~Basidiom,family=poisson) 

glm(Child~Tree,family=poisson) 

glm(Child~Weed,family=poisson) 

glm(Child~Grass,family=poisson) 

glm(Child~MaxTemp,family=poisson) 

glm(Child~MinTemp,family=poisson) 

glm(Child~RH,family=poisson) 

glm(Child~Rain,family=poisson) 

glm(Child~O3,family=poisson) 

glm(Child~NO2,family=poisson) 

glm(Child~SO2,family=poisson) 

glm(Child~O3hours,family=poisson) 

glm(Child~Tpollen,family=poisson) 

lm2<-glm(Child~Month+Tree,family=poisson) 

#Generate Model 2. 

summary(lm2) #Find deviance and degrees of 

freedom for 

Model 2. 

anova(lm1,lm2,test="Chisq") #Compare Model 1 

and Model 2. 

lm3<-

glm(Child~Month+Tree+Tpollen,family=poisson) 

#Generate Model 3. 

summary(lm3) 

anova(lm2,lm3,test="Chisq") #Compare Model 2 

and Model 3. 

lm4<-

glm(Child~Month+Tree+Rain,family=poisson) 

#Generate Model 4. 

summary(lm4) 

anova(lm2,lm4,test="Chisq") #Compare Model 2 

and Model 4. 

lm5<-

glm(Child~Month+Tree+Rain+Month*Tree,family=

poisson) 

#Generate Model 5. 

summary(lm5) 

anova(lm4,lm5,test="Chisq") #Compare Model 4 

and Model 5. 

lm6<-

glm(Child~Month+Tree+Rain+Month*Tree+Month

*Rain,family=poisson) 

#Generate Model 6. 

summary(lm6) 

anova(lm5,lm6,test="Chisq") #Compare Model 5 

and Model 6. 

lm7<-

glm(Child~Month+Tree+Rain+Month*Tree+Tree*R

ain,family=poisson) 

#Generate Model 7. 

summary(lm7) 

anova(lm5,lm7,test="Chisq") #Compare Model 6 

and Model 7. 

lm8<-glm(Child~Month*Tree*Rain,family=poisson) 

#Generate Model 8. 

summary(lm8) 

anova(lm7,lm8,test="Chisq") #Compare Model 7 

and Model 8. 

### Negative binomial distribution ### 
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library(MASS) 

nb1<-glm.nb(Child~1) #Null model, Model 9. 

summary(nb1) #Find deviance and degrees of 

freedom for Model 9. 

nb2<-glm.nb(Child~Month) #Generate Model 10. 

summary(nb2) 

anova(nb1,nb2,test="Chisq") #Compare Model 9 

and Model 10. 

nb3<-glm.nb(Child~Month+Tree) #Generate Model 

11. 

summary(nb3) 

anova(nb2,nb3,test="Chisq") #Compare Model 10 

and Model 11. 

nb4<-glm.nb(Child~Month+Tree+Rain) #Generate 

Model 12. 

summary(nb4) 

anova(nb3,nb4,test="Chisq") #Compare Model 11 

and Model 12. 

nb5<-

glm.nb(Child~Month+Tree+Rain+Month*Tree) 

#Generate Model 13. 

summary(nb5) 

anova(nb4,nb5,test="Chisq") #Compare Model 12 

and Model 13. 

nb6<-

glm.nb(Child~Month+Tree+Rain+Month*Rain) 

#Generate Model 14. 

summary(nb6) 

anova(nb4,nb6,test="Chisq") #Compare Model 12 

and Model 14. 

nb7<-glm.nb(Child~Month+Tree+Rain+Tree*Rain) 

#Generate Model 15. 

summary(nb7) 

anova(nb4,nb7,test="Chisq") #Compare Model 12 

and Model 15. 

A.3 Check Models 

### Poisson distribution ### 

fitted.values<-lm8$fitted.values #Find fitted values 

of Model 8. 

standard.residuals<-(Child-

fitted.values)/sqrt(fitted.values) 

#Calculate standard residuals. 

plot(fitted.values,standard.residuals) 

qqnorm(standard.residuals) abline(0,1) 

### Negative binomial distribution ### 

fv<-nb7$fitted.values #Find fitted values of Model 

15. 

theta<-nb7$theta #Get estimated theta of Model 15. 

standard.residuals<-(Child-fv)/sqrt(fv+(fv^2)/theta) 

#Calculate standard residuals. 

plot(fv,standard.residuals,xlab="Fitted residuals", 

ylab="Standard residuals") 

qqnorm(standard.residuals) abline(0,1) 

 

 

 

 

 


