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Abstract: 

Particle Swarm Optimization (PSO) has been established as an efficient computational 

intelligencetool since its introduction. Much of the improvement made on the particle 

swarm algorithm centered on the effect of a parameter called the inertia weight. In this 

study, the effect of the absence of inertia weight on the performance of PSO algorithm 

has been analyzed. A new term called the global particle has been introduced in the 

velocity update equation. This term has been able to compensate the absence of the 

inertia weightin order to maintain the convergence ability of the algorithm. Test results 

with standard objective functions demonstrate the necessity of having the inertia weight 

and justify the effort and research spent on developing many variants based on this 

important parameter. The results also show where the inertia weight term can be 

omitted to save computational cost. 
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I. INTRODUCTION 

ARTICLE swarm optimization (PSO) was introduced 

by James Kennedy and RusselEberhart in 1995 

[1][2] as a population-based search method based on 

the behavior of birds flocking and fish schooling. 

PSO and scores of other swarm-based algorithms 

such as Ant Colony Optimization, Bacterial 

Foraging and the more recent ones such as Bats 

Algorithm and Grasshopper Optimization, form a 

family of Swarm Intelligence optimization tools [3]. 

These nature-inspired or bio-inspired heuristics were 

developed based on the methods adopted by 

creatures in nature to survivethe hostile 

environment, find food sources, and avoid the threat 

of predators. 

PSOin particular is made up of a population of 

solutions called particles. These particles move in 

the search space of the objective function to find the 

optimum point, which in most cases are the minima 

of the functions.In this paper, the goal is to minimize 

the objective functions, without loss of generality. 

The main process in the PSO algorithm involves two 

equations: velocity update and position update as 

described by equations (2) and (3) respectively. 

If the ith particle in a d-dimensional search space 

be  

 

represented by 
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then, each particle can thus be governed by 
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and 

 

ididid vxx           (3) 

 

wherew is the inertia weight,vi is the velocity of 

particle i, xi is the position of particle i, c1 is the 

cognition factor, c2 is the social factor, r1 and r2 are 

uniformly distributed random numbers between 0 

and 1, pi is personal best (pbest), i.e. the best 

position of particle i so far, and pg is global best 

(gbest), i.e. the best position of the particle in the 

population so far.  

II. THE INERTIA WEIGHT 

The inertia weight has gained much attention due 
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to its effect on the both the exploration and 

exploitation phases of the search. Generally, a large 

inertia weight is applied at the beginning of the 

search. Once the minimum has been located and the 

particles start converging, small inertia weight is 

applied to exploit or fine tune the solution for high 

accuracy. Thus various schemes have been devised 

such as constricted inertia weight [4], time-

decreasing inertia weight [5], fuzzy-controlled 

inertia weight [6] and adaptive inertia weight [7]. 

Another good strategy for efficient convergence 

and achieving good balance between exploration 

and exploitation is by varying both the inertia 

weight and acceleration coefficients with [8]. In this 

case, all three parameters are linearly decreased 

from their initial values to predetermined final 

values as given by equations (4), (5), and (6). 
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In this study, both acceleration coefficientsor 

learning factors used are linearly decreasing from an 

initial value of 2 as given by equation (7). 
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III. INITIAL TEST RESULTS 

Table I shows the list objective test functions used 

in this study as well as the results. The test done 

employed 20 particles with the maximum number of 

iterations is set to 100. The convergence of particle 

is defined as the Spread parameter as described in 

[7]. Essentially, the Spread is the distance of the two 

farthest particles in opposite direction for each 

dimension. This is also taken as the termination 

criteria which is set at 1x10
-6

. The number of runs is 

50 times and the results are averaged. 

TABLE I 

No Name Dimension 
Success 

Rate 

F1 Sphere 30 0% 

F2 Rastrigin 30 0% 

F3 Griewank 30 0% 

F4 Ackley 30 0% 

F5 Schwefel 30 0% 

F6 Rosenbrock 2 20% 

F7 Michalewicz 2 0% 

F8 Easom 2 10% 

F9 Weierstrass 10 0% 

 

Initial test results obtained by simply removing the 

inertia weight term highlight the importance and 

significance of the parameter. Without the inertia 

weight, the algorithm failed to find the global 

minimum in almost all test functions. Furthermore, 

the particles also failed to find local minima in F2, 

F3, F4, F5, F7 and F9. On F1, even with a single 

minimum, the particles seems unable to converge. 

Success rates of 20% and 10% obtained in F6 and 

F8 respectively were probably due to the landscape 

of the test function. Nevertheless, the results were 

not encouraging. For better illustration, the profile of 

first five functions are shown in Figure 1. 

IV. GLOBAL PARTICLE 

To improve the convergence of the PSO algorithm 

without the inertia weight, a third term was added to 

the velocity update equation as follows 
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In equation (8), c3 is called the global factor and PG 

is called the globally best particle [9]. It is a virtual 

particle created to enable particles to escape from 

local minima and premature convergence. This is 

useful in the exploitation phase where the global 

best pgd hardly moves. Adding this term to the 

velocity replacing the inertia weight has resulted in a 

much better performance as shown in Table II. The 

results obtained in Table II employed the same 

parameter setting as in the initial test except with the 

presence of the globally best particle. 

Success rate of 100% was achieved in test 

function F1, F3, F4 and F9. This is a remarkable 

improvement from 0% success. The success rates in 

F2 and F8 of 86% and 80% respectively are also 

encouraging. However there seems to be a limitation 

to this method as the poor results were obtained in 
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F5, F6 and F7. A common factor among the test 

functions with good results is that the global 

minimum is located at the origin which is not the 

case in F5, F6 and F7. The exception is the function 

F8 which is quite easy since there is no local 

minima. 

The following observation can be drawn from the 

results.In this study, the inertia weight has been 

removed to save the computation cost of the PSO 

algorithm. The calculation of the inertia weight can 

be simple in the case of fixed or linearly decreasing 

values, but can be time consuming in the case of 

adaptive or fuzzy-based calculation. Thus, in its 

place another term was added where the parameter 

does not require much computation time. This 

method has produced good results in a certain type 

of test functions. Therefore, a useful knowledge of 

the problem can be valuable and enable us to 

simplify the algorithm without sacrificing its 

efficiency. 

V. CONCLUSION 

In this study, the inertia weight has been removed 

and replaced with another term. The results were 

mixed. They proved that successful convergence 

depends on the landscape of the test function or the 

nature of the problem. The test results not only 

illustrate the importance of the inertia weight but 

also enable us to omit the parameter and simplify the 

algorithm provided that valuable information of the 

problem is available. 
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TABLE II 

 

No Iterations Best Fitness 
Mean 

Fitness 
Spread Success Rate 

F1 55 3.954E-35 7.522E-12 5.620E-07 100 

F2 58 4.480E-08 1.421E-07 1.444E-06 86 

F3 58 1.325E-12 1.454E-12 5.998E-07 100 

F4 53 2.522E-15 6.916E-07 5.566E-07 100 

F5 75 3.938E-04 3.938E-04 5.077E-06 52 

F6 100 6.255E-05 8.238E-04 4.331E-03 52 

F7 100 -1.80 -1.38 5.739E-03 10 

F8 69 -1.00 -1.00 4.930E-05 80 

F9 51 2.732E-05 5.470E-04 4.904E-07 100 
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(a) Sphere, x = [-100,100] 

 

 
(b) Rastrigin, x = [-5.12, 5.12] 

 

 

 
(c) Griewank, x = [-100, 100] 

 

 

 

 
(d) Ackley,x = [-20, 20] 

 

 

 

 
(e)Schwefel, x = [0, 600] 

 


