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Abstract 

This paper is about the analysis of distribution of temperature in viscous incompressible 

fluid flow which is caused by the sheet stretched with uniform heat flux. This is a new 

kind of technique called differential homotopy perturbation method is developed for 

various solutions for the distribution of temperature and velocity. The obtained series 

solution for nonlinear equation is occurred by temperature field over a scattering medium 

and the final result is compared by exact solution so that the accuracy is by the study of 

distributed perturbation technique. 
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I. INTRODUCTION 

The study of heat to a fluid streaming in divert has 

applications in innovative fields, heat exchanger, reactor 

cooling and so on. Every one of these examinations are confined 

to hydrodynamic stream and warmth move issues, as of late 

these issues have turned out to be progressively essential to 

industry. Because of its wide scope of uses, the extending sheet 

issues have been considered by various specialists. Most 

arrangements accessible depend on numerical strategies, for 

example, kellor box technique, Runge-Kutta strategy and 

limited component technique. [1] Examined fragmented gamma 

capacity to ponder the conduct of temperature dissemination 

over an extending sheet. [2] Tackled the higher dimensional 

introductory limit esteem issues by variation Homotopy bother 

strategy. In [3] utilized variation homotopy annoyance 

technique for Fishers conditions. There are not many agents 

who have attempted to consider the progression of fluid over an 

extending sheet and their conduct under various conditions. He 

[4-9] presented the homotopy bother technique, which is created 

by joining the standard homotopy and irritation strategy. In 

these strategies the arrangement is given in a vast arrangement 

as a rule uniting to an exact arrangement. Because of various 

mechanical procedures the limit layer idea for stream of an 

incompressible fluid over an extending sheet is very famous 

among the scientists as of late. An expansive scope of 

investigative and numerical techniques has been utilized in the 

examination of these logical models. A viable technique is 

required to break down the scientific model which gives 

arrangements complying with physical reality. The greater part 

of the intrigue meant to the warmth move in Engineering 

applications is the investigation of the warm reaction of the 

course divider and fluid temperature and uniform warmth 

transition (Neumann issue). Wazwaz [10] examined the 

disintegration strategy for explaining higher dimensional 

introductory limit esteem issues of variable coefficients. He 

[11-17] read homotopy annoyance procedures for some sort of 

nonlinear issues. NureSyuhada Ismail et al [18] researched the 

impact of surface pressure angle and warmth move in a parallel 

stream with steady surface warmth transition by utilizing 

steadiness investigation. Shivaraman et al [19] investigated 

Marangoni consequences for constrained convection of 

intensity law fluids in dainty film over a precarious flat 

extending surface with warmth source. Bachok et al [20] talked 

about the limit layer stream and warmth move of a nano fluid 

over an exponentially contracting sheet. 

The point of this paper is to research the speed and 

temperature dispersion in the progression of a gooey 

incompressible fluid brought about by extending sheet and 

contrasting and the definite arrangements. 
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II. DIFFERENTIAL HOMOTOPY PERTURBATION METHOD 

(DHPM) 

Now we express those fundamental thought of the changed 

differential iteration method, we look upon the given 

differential equation. 

)(xgNuLu         (1) 

The L may be a linear operator; N is a nonlinear operator, and 

g(x) the forcing term. As stated by differential technique can 

make a improvement as takes after: 

 un+1(x) = un(x) +  𝜆 𝜉 (𝐿
𝑥

ʌ
un(𝜉) + Nun(𝜉))𝑑(𝜉)      (2) 

The λ may be a Lagrange multiplier, which can be identifier 

ideally by differential iteration strategy. The subscripts n 

indicate that nth rough calculation; f˜ will be viewed as 

constrained differentiation. That is, δf˜n = 0. Now, will apply 

the homotopy perturbation strategy. 
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Here the differential homotopy perturbation method (DHPM) 

gives the solution by paring differential iteration method and 

domains polynomials has a comparative study of powers 

(P)which give a solution  for various orders. 

 

3. Mathematical formulation of the Problem 

compare the instance of a level sheet issuing from a thin 

opening at x = 0, y = 0, and in this manner being extended, as in 

a polymer preparing application. The stream brought about by 

the extending of this sheet is thought to be laminar. Expecting 

limit layer approximations, the conditions of progression, force 

and warmth move in the standard documentation are  
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Here u and v are the speed segments in the x and y bearings 

separately, σ is the Prandtl number and ν is the kinematic 

thickness subject to the limited conditions  
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Define a stream function 
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Which are consistent with equations (1) and (2) 

4. Problem solution is given by  

Substituting equations 4, 5, 6 in 1 and 2 so to get equation 7 

and 8 
2' ( ) ''( ) '''( )f f f    ……………. (7) 

''( ) ( ) '( ) 0g f g      ………. (8) 

Boundary conditions for the subject is given by 

(0) 0, '(0) 1, '( ) 0f f f     ……….. (9) 

'(0) 1, ( ) 0g g     ………. (10) 

From this part we are solving equations (7), (8) with 

boundary conditions given in equation (9) and (10) by He’s 

variational iterative method.  The initial guess for f &g is given   

below 
2
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Where f ′′(0) = α1 <0 and g′(0) = α2 <0. To solve (7), (8), (9) 

(10), with the help of Variational iterative method, we create a 

correctional functional which is given by 
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“Making the correction functional stationary, the Lagrange 

multipliers can easily be identified” 
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“Applying the variational homotopy perturbation method 

(VHPM)”, we get 
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Comparing the coefficient of like powers of p, we get 
2
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The series solution is given by 
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III. RESULT AND DISCUSSION 

Table 1: the examination comes about to speed of the 

DHPM with the accurate result as shown. 

 
Exact solution VHPM   

η f(η) η f(η) 

0.1 0.0952 0.1 0.0997 

0.2 0.1813 0.2 0.1993 

0.3 0.2592 0.3 0.3000 

0.4 0.3297 0.4 0.4026 

0.5 0.3935 0.5 0.5081 

0.6 0.4512 0.6 0.6175 

 
From the table 1 it can be seen that present solution method 

DHPM results are better than the exact solution results. 

Subsequently by watching the outcomes about gotten by DHPM 

Also correct result technique we discovered that those 

arrangement result gotten by DHPM converges speedier over 

the correct result in the mulled over the event.  

 

Table 2: the correlation comes about to high temperature flux of 

the DHPM for the correct result. 

 

Exact solution VHPM   

η g(η) η g(η) 

0.1 -0.0952 0.1 -0.9952 

0.2 -0.9815 0.2 -0.9814 

0.3 -0.9600 0.3 -0.9601 

0.4 -0.9321 0.4 -0.9330 

0.5 -0.8990 0.5 -0.9023 

0.6 -0.8617 0.6 -0.8711 

IV. CONCLUSION 

From this above discussion, we arrive at the conclusions that the 

differential homotopy perturbation technique which is effectively 

useful for series solution of border equation for 2 dimensional flows 

over scattering sheet with uniform heat flux, so the result obtained is 

perfect solution for comparing velocity and temperature distribution. It 

can be concluded that the present solution is approximately very near to 

exact solution and is perfect by differential homotopy perturbation 

method (DHPM) 
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