

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

170

Published by: The Mattingley Publishing Co., Inc.

Parametric Analysis of Resource Management in

HDFS
1
Mithun B N,

2
Viswanatha K V,

3
Manjunath T N,

4
Prabhuram

1
Research Scholar, CMR University, Asst. Prof, CHRIST (Deemed to be University),

Bengaluru, India. kanmith@gmail.com
2
Professor, CMR University School of Engineering and Technology, Bengaluru India, viswanathakv@yahoo.com

3
Professor and Dean, BMS Institute of Technology and Management, Bengaluru, India. manju.tn@gmail.com

4
Principal Test Lead Consultant, Numerify, Bengaluru India, prabhuram.sridharan@numerify.com

Article Info

Volume 83

Page Number: 170 - 179

Publication Issue:

May - June 2020

Article History

Article Received: 11August 2019

Revised: 18November 2019

Accepted: 23January 2020

Publication:07May2020

Abstract:

Data has become an integral part of human life in the modern world. As there is

increase in volume and different varieties of data available, big data domain has

become a powerful area. Big data uses more resources for the processing. This paper

focuses on resources utilized in big data environment to perform the operations. It uses

various resources like memory, files and network bandwidth. Hadoop framework

handles data distributed over cluster.Main concentrationof this paper is on the usage of

memory space or disk space. Experimentation is carried out through map reduce

programs on different versions of Hadoop by changing some of the parameter values in

the configuration files.

I. INTRODUCTION

Big data is a fast growing technology in today’s

world. Wherever data is generated, it has its

significance. Nowadays Data has become as

precious as money and data is generated in every

field and has great values. So big data is related to

every field in one or the other way. Because of this it

is widely used in many domains. On the other hand,

there are many issues and research ideas available in

the big data. This makes many researchers to work

on it and solve the problems. Main operations

related to big data are on storing data and accessing

data. Storage devices are becoming less expensive,

supporting to big data.

Data of any volume can be saved in memory with

less cost. But time is precious to obtain any result.

Size of data has direct impact on the processing

time. One can work with big data operations, with

the help of resource itself. Resources are part of the

operation. Resources might include files, disk space,

memory, network bandwidth and many others. As

specified earlier, storage is the biggest parameter in

big data, mainly concentrated on the memory

utilization. Hadoop is a framework used to work

with big data. It is an open source tool. It has

become popular in today’s world to work with big

data problems. It follows master-slave architecture.

The master and slave nodes in a Hadoop cluster

communicate by exchanging messages at regular

intervals. The messages are called as heart beat

messages. These messages are considered as a

potential scheduling opportunity for any application

to run. Map reduce programs are the core part of

Hadoop framework which are used to work with

required problem solving. To know the efficiency of

the map reduce programs, it should work on huge

amount of data usually in several Giga Bytes to

Terra Bytes.

mailto:kanmith@gmail.com
mailto:viswanathakv@yahoo.com
mailto:manju.tn@gmail.com
mailto:prabhuram.sridharan@numerify.com

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

171

Published by: The Mattingley Publishing Co., Inc.

This paper observes various parameters of Hadoop

Framework that are obtained after executing any

Mapreduce program.Experiments are carried out in

three different versions of Hadoop framework

installed in three different systems with same

configurations. Data set used for the execution also

remains same. Hadoop has set default values for its

parameters. Study has been made with the results

obtained when parameters are set to default values

and modified by the authors. This paper discusses on

the change in the values of results obtained for

various parameters of Hadoop andgives justification

for the same. It is also observed that there are many

changes made between the versions of Hadoop.

Apache software foundation releases release notes

for every version which gives complete information

about the changes made in the versionsunder various

categories made by Apache Software Foundation.

The changes made between the versions havean

impact on the variations in the resultant values,

which have been properly identified and justified

with the relevant justificationsin this paper.

Generally people understand that Mapreduce

programs as a framework. But it is a programming

model in Hadoop framework for the faster data

processing. To write a Mapreduce program, one

should have sound knowledge of either Java or

Python programming language. As Hadoop is

developed in the Java,it is advised to write

Mapreduce programs using Java. Mapreduce is a

type of programming model which is used to work

with large data sets for processing data and

generating results. These programs can handle

structured, semi-structured and unstructured data.It

is combination of map and reduce functions.

Programmer write a map function to process a

key/value pair which generates a set of intermediate

key/value pairs, and this output is given as an input

to reduce function. Reduce function merges all

intermediate values associated with the same

intermediate key. Mapper performs map operation

and reducer performs reduce operation. This is

discussed in detail in next section. These mapreduce

programs are parallelized in nature and mainly

designed for working with large data sets.

Mapreduce programs are executed with the help of

Job Tracker and Task Tracker available in the

Hadoop framework. Job Tracker which is available

in master node is a central component which

schedules tasks to run on any task tracker and also

coordinates the execution of the job. It is a daemon

service which would take care of submitting and

tracking the mapreduce tasks. Task Tracker is

available in every data node which runs tasks

assigned to them and sends the report of job status to

Job Tracker at regular intervals. [1][2] [3] [4] [5].

In the process of execution, program takes care of

handling input data, scheduling of the programs

execution by partitioning the input data across the

cluster of machines, handling all the processors

present in various machines and handling machine

failures if any. As all these operations are taken care

by Mapreduce programs internally, programmers

one who write programs or user one who uses these

systems will not feel about these operations

explicitly. They won’t experience parallel execution,

partitioning and scheduling of data on various

machines for processing and merging the results in

the specified format. The result of the program is

displayed as a whole. Only this is observed by the

users. There is no fixed size for the data set to work

for Mapreduce programs, But to experience the

features of Mapreduce programs, one has to work

with large set of data. In this paper, Mapreduce

programs are worked on huge data set of 70-80 GB.

Authors have worked on data set provided by

Wikimedia dump, which is an open source data set

available for the research purpose, released by

Wikimedia Foundation. There are several parameters

set to work Hadoop Framework. The paper focuses

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

172

Published by: The Mattingley Publishing Co., Inc.

on the results obtained under two different

categories. First category of results are obtained with

default values of the Hadoop parameters and the

second category of results obtained after changing

those default values. The changes are made by

considering many aspects which is explained in the

later sections.

II. Literature Survey

Most of the research carried out in the big data

domain is on the processing of domain specific data,

usage of data on different applications and with data

analytics for other similar usage. Study on the

Hadoop architecture is a less focused area. Some of

the papers reflect the same work as used by the

authors. These research papers are understood and

analysed by the authors in detail. Some of the papers

are discussed below:

Jeffrey Dean and Sanjay Ghemawat [6] have

observed the working of Mapreduce programs of big

data on large data set available from the google.

They have made extensive research on the same and

explained about the implementation made by them

in large cluster of commodity PCs connected

together with switched Ethernet. They have also

discussed issues related to fault tolerance, locality,

task granularity and side effects during the execution

of map reduce programs. They also suggested some

of the improvements in the partitioning function and

combiner function. They have made use of dual

processor with 2-4GB of memory per machine on

Linux environment. Experiments are carried out in

three scenarios. The first scenariois under normal

execution. The second scenario is the execution of

the sort program with backup tasks disabled. The

third scenario is an execution of the sort program

after killing 200 processes intentionally.

MateiZaharia et al [7] have focused on

implementation of Mapreduce programs in large

scale data intensive applications on commodity

clusters. Spark is the cluster computing working

sets. They have identified that Mapreduce programs

are iterative jobs which must reload the data from

disk every time and it uses ad-hoc exploratory

queries on large datasets. It proposes a new cluster

computing framework called as spark. It improves

the scalability and fault tolerance properties of

Mapreduce programs. Spark is achieved by using a

new abstraction called Resilient Distributed Datasets

(RDDs). Experimentation is done on 29 GB dataset.

It was observed that earlier iterations of spark would

take more time for execution but the later one takes

6 seconds, which is very less time compared to that

of Hadoop that takes around 127 seconds

consistently. Time is reduced because spark reuses

the cached data for the later iterations.

Mohammad Asif Khan et al [1] give highly available

Hadoop HDFS architecture for name node. They

have observed that Single Point of Failure (SPOF) is

the major problem in the Hadoop architecture. It can

be overcome by using name node replication and

two phase name node commit protocol. This would

increase the availability of the name node and

reduces waiting time and increases the throughput.

Saurabh Gupta and Manish Pandey [3] have

observed the time consumption of mappers and

reducers. Always reducer operation starts after the

completion of the mapper tasks. This results in

larger time consumption for the execution of any

tasks on Hadoop using Mapreduce program. They

have proposed a new Mapreduce model which has

overlapping mapper and reducer and hierarchical

reduction method. This would reduce the working

time of mappers and reducers.

Mithun B N et al [8] have done the comparative

study on different versions of Hadoop framework on

most of the parameters and concluded that later

versions of Hadoop have some improvements in the

resource utilization as the issues in the earlier

versions of Hadoop are resolved. This impacts on

the better time usage and other operations involved

in the process.

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

173

Published by: The Mattingley Publishing Co., Inc.

III. Mapper And Reducers

To work with Hadoop framework, Mapreduce

programs are written and executed. These programs

are designed to handle huge amount of data.

Programs are written in Java, Python or similar

languages. These programs are the core part of

Hadoop framework which specify the essence of big

data in many aspects. Most of the big data analytics

programs are carried out by writing Mapreduce

programs. Mapreduce programs have two main

operations. It is made up of mapper and reducer.

Mapper and reducers are the integralparts of Hadoop

Mapreduce programming model,which performs

map and reduce operations.In addition, they will also

take care of distributing and parallelizing the tasks

across various data nodesin the cluster [8] [9]

[10].Figure 1 shows the flow of operations of

mapper phase and reducer phase

Figure 1: working process of mapper and reducer

Normally it isunderstood that the mapper performs

its operation first in the process of executing map

reduce programs. But, the first step is to split the

input data. Since logic for input split is written by

Hadoop and programmer writes code for mapper and

not for input split, mapping is considered as the later

operation. After input split, record reader takes input

from input split and break the problem to narrower

and sends it to mapper for mapping operation. So

ideally speaking, mapping operation is the third

operation in the process. The work of the mapper is

to process each input record received from the

record reader and to generate a <key, value> pair.

The process of generating <key, value> pair from

the input records can also be called as Tokenization.

Here each token is made up of <key, value> pair.

This <key, value> is different from the input given.

The output generated by the mapper is called as

intermediate output which is stored in the local disk.

This output is given as an input to the reducer for its

operation. Reducer performs reduce operation on

each <key,value> pair and produces the final output.

This output is saved in HDFS. Reducer performs

aggregation operation or sort operation on the

intermediate output produced by the mapper.In order

to reduce the data transfer between mapper and the

reducer, combiner is used. Combiner is also called as

semi-reducer or mini-reducer.It summarizes the

output received from mapper and pass it on to the

reducer in the same <key, value> collection pair

format as generated by the mapper. Usage of

combiner is not mandatory in the process. Since

combiner makes the operation of reducer easier and

reduces network congestion, it is used before

reducer.Usage of combiner results in the difference

between the count of the output generated by mapper

and the input given to the reducer. Combiner reduces

the time consumption by the reducer. Figure 2

depicts the workflow of Mapreduce without use of

combiner.Figure 3 depicts the workflow of

Mapreduce with the use of combiner. There also

exists a module called as record reader. It reads the

data from the blocks as input and produces the

corresponding <key, value> as output. It reads and

processes only one record at a time. During

shuffling stage, the transmission of data is done from

mapper to reducer. Similarly Record writer writes

every <key, value> generated by reducer as an

output and saves in the HDFS [2]. Number of

mappers depends on size of the input file. That is

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

174

Published by: The Mattingley Publishing Co., Inc.

number of mappers required can be calculated by

dividing total input size and input split size.

Sometimes, split size is also called as block size. For

example, if input data size is 5 TB and block size

(input split) is 256 MB then 20,480 mappers will be

created for the operation. Similarly if the block size

is 128 MB, then number of mappers created will be

40,960. Input splits usually depends on the block

size. But, it can be customized by changing the value

of the variable specified in the configuration file of

Hadoop. The variable is:

‘mapred.max.split.size’.Input splits can also be

changed in the Mapreduce program by writing the

instruction -‘final long DEFAULT_SPLIT_SIZE’.

For example, the assignment statement ‘final long

DEFAULT_SPLIT_SIZE = 128*1024*1024’, would

set default split size as 128MB. Changes can be

made for setting it to 64MB, 256MB and for other

values as required.

As known, Hadoop works on multiple systems in a

parallel processing mode.Mapper would work in

each data node parallel. Reducer takes the

intermediate output from all the data nodes and

combine them to develop a final output.

Figure 2: Mapper and Reducer without Combiner

Figure 3: Mapper and Reducer with Combiner

IV. Programming Model

At the outset, one can understand that Mapreduce

programs are made up of mappers and reducers.

Mappers and reducers perform map and reduce

functions respectively. This model is discussed in

detail in this section.

Mapreduce follow <key, value> pair as a data

structure of the operation. Data types of keys and

values may be primitive numeric and alphabet data

types including raw bytes. But, most of the times

programmers define their own data types depending

on the program need anddesign. The signature of

mapper and reducer is as shown below:

map: (k1,v1)  [(k2,v2)]

reduce: (k2, [v2])  [(k3, v3)]

Any Mapreduce program usually contains three

main classes, namely Driver class, Map class and

Reduce class. These classes can be written in

different files or in a single file. Changes have to be

made accordingly. Java has rich set of packages

available that supports the working of MapReduce

programs. Programmer has to import those packages

in their program. Map class inherits the public

class,MapReduceBase and implements an interface

Mapper with input and output variables in key value

format used for the mapping operations. The Map

class statement is as shown below:

public class WordCountMap extends

MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable>

The public method map() needs to be overridden in

the implemented class. This method takes key value

pair and status of operation as parameters. The

signature of the map() method is as shown below:

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output,

Reporter rep) throws IOException

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

175

Published by: The Mattingley Publishing Co., Inc.

The complete code for map operation as per

programming logic is written in the map() method.

Similarly, Reduce class extends MapReduceBase

and implements Reducer interface. This

implemented class has to override public method

reduce(). This methodtakes key value pair as

parameters for reduce operation. At the end of the

reducing process, it converts the key value pair

output in the required format depending on the

program. The signature of method reduce() is as

shown below:

public void reduce(Text key, Iterator<IntWritable>

value, OutputCollector<Text, IntWritable> output,

Reporter rep) throws IOException

The methods map() and reduce() throws

IOException. Driver class is written to initiate the

process of map reducing. This carries some of the

background job required for the process. The

statement - JobConfconf = new

JobConf(WordCountDriver.class); creates the job

configuration event for the specific class. Input and

output path has to be set in this class for the object

‘conf’. Input and output paths are given as

parameters to the methods setInputPath() and

setOutputPath() respectively. This would read the

input from the path where the actual data set is

loaded. After setting input and output paths, map and

reduce classes are set to initiate the process. There is

also a need to specify the data types required for the

key and the value in <key, value> pair for the

processing. The instruction JobClient.runJob(conf);

is used to run the job on the given input data set. The

complete discussion is made on single node cluster.

Necessary changes are made to the code if the

Mapreduce programs need to work on multi node

cluster. Hadoop Framework takes care of job

scheduling and load sharing processes during

execution. Authors have written a simple Mapreduce

program (word count program) in java for the

experimentation purpose. It identifies and counts

each word in the given input data set.

V. Experimentation

In order to study and understand the various features

of Hadoop Framework, analysis is made on different

versions of Hadoop. This is carried out by installing

different versions of Hadoop in different systems. In

the first system Hadoop version 2.6.5 is installed and

Hadoop version 2.7.7 is installed in second system

and the Hadoop version 3.0.3 is installed in the third

system. A simple word count Mapreduce program is

written and executed on the data set with default

values of various Hadoop parameters. The same

program is executed by changing some of the

parameter values defined in the configuration files of

Hadoop framework.Both results are compared and

analysed. Data set is essential component to work

with big data. Huge size of data is required in order

to observe the working of the Mapreduce programs.

Since authors are concentrating on several

parameters of Hadoop architecture, there is no need

of specific data set. For the experimentation,

Wikimedia data set is used. Wikimedia provides

open data set (freely available on internet) for the

research purposes. These data sets size varies from

some Megabytes to several Gigabytes. Downloaded

data set has to be pre-processed before using it.

VI. Results And Performance Evaluation

During experimentation, split size and block size of

the HDFS are changed. Observations and analysis

are made for 64MB, 128MB and 256MB values. For

the results obtained from the experimentation, bar

graphs are drawn for various parameters and

analysed as shown from figure 4 to figure 16.Some

of the parameter values remains same and some of

the parameter values are different. This section

concentrates on specifying the reasons behind

change in those values. Bar graphs are plotted to

understand, compare and analyse the results. In the

bar graph, X-axis indicates the different Hadoop

version and the Y-axis indicates the values of

parameterssuch as Mega Bytes,Milli seconds or

number of operations depending on the parameters.

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

176

Published by: The Mattingley Publishing Co., Inc.

The bar graph in the figure 4 outlinesthe number of

megabytes read and the bar graph in figure 5

outlinesthe number of megabytes written under the

file systems category ofHadoop Framework.

Figure 4: Bar graph indicating number of bytes

bytesreadunder file systems category

Figure 5: Bar graph indicating number of written

under file systems category

The bar graphs in the figures 6, 7, 8 and 9 represents

the resultant parameters related to HDFS category.

Figures 6 and 7 show bar graphs which indicate the

number of megabytes read and written with respect

to HDFS. Total number of megabytes read and

written are the same. Data read and written in HDFS

purely depends on the size of the input data set used

for the execution,because of this, there is no impact

of change in parameter valuesof block size in all

three versions of Hadoop.

Figure 6: Bar graph indicating number of bytes

read under HDFS

Figure 7: Bar graph indicating number of bytes

written under HDFS

Figures 8 and 9 show bar graphs that depicts the

total number of read and write operations performed

during execution of the Mapreduce program. They

fall under the HDFS category. There is a change in

the number of operations performed between the

versions of Hadoop,but no change within the same

version irrespective of the block size. There are

more read operations performed in the earlier

version of Hadoop and more write operations in the

later version of the Hadoop. This is because, Hadoop

version 2.6.5 uses POSIX_STYLE of file system [8]

and this is not seen in the version 2.7.7 and version

3.0.3.

Figures 10, 11, 12, 13, and 14 show bar graphs

which show the results of various parameters under

Mapreduce category. Bar graph in the figure 10

13437.9

13437.95

13438

13438.05

13438.1

13438.15

13438.2

2.6.5 2.7.7 3.0.3

No of bytes read (in MB)

64MB 128 MB 256 MB

22195
22196
22197
22198
22199
22200
22201
22202
22203

2.6.5 2.7.7 3.0.3

No of bytes written (in MB)

64MB 128 MB 256 MB

0

10000

20000

30000

40000

2.6.5 2.7.7 3.0.3

HDFS: No of bytes read (in MB)

64MB 128 MB 256 MB

0

100

200

300

400

500

600

2.6.5 2.7.7 3.0.3

HDFS: No of bytes written (in MB)

64MB 128 MB 256 MB

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

177

Published by: The Mattingley Publishing Co., Inc.

representing the input splits in different versions

with change in split size. Input splits are logical

division of data which pertain to a single mapper

job. Each input split can span across various

physical blocks. As the data is spread across various

nodes in the distributed environment, input splits

helps to identify the data belonging to a single

mapper. Usually input splits and number of mappers

are same. Since there is a change in the input splits

during the experimentation, there are changes

accordingly in the bar graph. Less split size will

yield more splits. This is reflected in the bar graph.

Figure 8: Bar graph indicating number of read

operations under HDFS

Figure 9: Bar graph indicating number of write

operations under HDFS category

The bar graph in the figure 11 depicts the results of

combined input records and the bar graph in the

figure 12 depicts the results of combined output

records of the Mapreduce category. These are related

to combiner operations. As discussed in the section

3, combiner performs its operations by taking the

output generated by the mapper. This results in

reduction in the input records compared to that of

output records generated by the mapper. Similarly

combiner output records results less compared to the

combiner input records. This is the input for the

reducer and is impact on the result of reduce records.

Combined input and output records may also vary as

combiner operation is overlapped between mapping

and reducing. The values of combiner input and

output records change depending on the Hadoop

versions. But change in parameter values has no

much impact on the operations of the combiner.

Figure 10: Bar graph indicating input split bytes

under Mapreduce category

Figure 11: Bar graph indicating combined input

records under Mapreduce category

510
515
520
525
530
535
540
545
550

2.6.5 2.7.7 3.0.3

HDFS: No of read operations

64MB 128 MB 256 MB

0

10

20

30

40

50

2.6.5 2.7.7 3.0.3

HDFS: No of write operations

64MB 128 MB 256 MB

0

1000

2000

3000

4000

5000

6000

2.6.5 2.7.7 3.0.3

MR: Input split bytes

64MB 128 MB 256 MB

70

72

74

76

78

2.6.5 2.7.7 3.0.3

MR: Combined output records

64MB 128 MB 256 MB

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

178

Published by: The Mattingley Publishing Co., Inc.

Figure 12: Bar graph indicating combined output

records under Mapreduce category

A Spilled Record is the total number of records that

were spilled to disk during execution of the job.

Spilling happens only when buffer reaches some

threshold value, during map and reduce phases

[11].The bar graph in the figure 13 represents the

resultant values of spilled records under Mapreduce

category in all three versions of Hadoop with change

in the split size and block size. Since spilling and

split size are not dependent on each other, there is no

change in count of spilled records with the

changesmade to the values of parameters.Shuffling

is the process of transferring data from mapper to

reducer. Shuffled map values are generated during

the process of data transfer. The bar graph in the

figure 14 depicts the values of shuffled maps.

Shuffling happens between mapper and reducer and

has no impact of changes in the parameter values.

Figure 15 has the bar graph which shows the

Garbage Collection (GC) elapsed time during the

execution of the Mapreduce program. As this

activity is dependent on the architecture of the

Hadoop, there is a change in the time consumption

with respect to the parameter values. There is a

variation in the time usage depending on the block

size. Earlier version of the Hadoop has less time

consumption. In the later version, garbage collection

is consuming more time, varying with the block size.

While performing the execution of the Mapreduce

program, heap memory plays an important role. The

bar graph in the figure 16 shows the total heap usage

during the execution in megabytes. Changes in split

size values and block size affect the memory usage.

Allocation and utilization of heap memory resulted

in different values as there is change in the

parameters.

Figure 13: Bar graph indicating spilled records

under Mapreduce category

Figure 14: Bar graph indicating shuffled maps

under Mapreduce category

Figure 15: Bar graph indicating elapsed time in

millisecond

328

328.2

328.4

328.6

2.6.5 2.7.7 2.6.5

MR: Combined input records

64MB 128 MB 256 MB

0

50

100

150

2.6.5 2.7.7 2.6.5

MR: Spilled records

64MB 128 MB 256 MB

0

10

20

30

40

50

2.6.5 2.7.7 3.0.3

MR: Shuffled maps

64MB 128 MB 256 MB

0

5000

10000

15000

20000

25000

2.6.5 2.7.7 3.0.3

GC Elapsed time (in ms)

64MB 128 MB 256 MB

May – June 2020
ISSN: 0193-4120 Page No. 170 - 179

179

Published by: The Mattingley Publishing Co., Inc.

Figure 16: Bar graph indicating heap usage

VII. CONCLUSION

Mapreduce programs are the central part of the

Hadoop framework. The Study was made on the

different versions of the framework by changing the

parameter values in the configuration files and in the

Mapreduce program. It can be concluded that

changes in split size and block size have not directly

affected the parameters under HDFS category and

have an impact on the parameters under Mapreduce

category. Newer versions of the Hadoop are more

efficient with many updates. But, execution time

with garbage collection is still more and need to

address the issue in order to reduce the time

consumption for faster results.

REFERENCES

1. Mohammad Asif Khan, Zulfiqar A Memon,

Sajid Khan, Highly Available Hadoop

Namenode Architecture, International

Conference on Advanced Computer Science

Applications and Techniques, 2012.

2. Saurabh Gupta, Manish Pandey, Performance

improvement in MapReduce via overlapping

of Mapper and Reducer, International Journal

of Computer Science and Information

Security, 14(7), July 2016

3. MadhaviVaidhya, Shriniwas Deshpande,

Critical study of Hadoop Implementation and

Performance issues,

4. Uma Patel, Rakesh Patel, Nimita Patel, Study

of Apache Hadoop, International Journal of

Engineering Sciences and Research

Technology, 3(12), December 2014

5. YogineeSurendraPethe, Inception of Big

Data with Hadoop and Map Reduce,

IJSART, 3(3), March 2017

6. Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified data processing on

large clusters, Communications of ACM,

51(1) January 2008, pages 107-113

7. MateiZaharia, Mosharaf Chowdhury,

Michael J Franklin, Scott Shenker, Ion

Stoica, Spark: Cluster Computing with

working sets, Hotcloud, 10(10), June 2010

8. Mithun B N, Viswanatha K V, Manjunath T

N, A Performance Analysis of different

Hadoop Versions on a Commodity

Hardware, International Journal of

Management, Technology and Engineering,

9(5), May 2019, Pages 590-598.

9. LatikaKakkar, Gaurav Mehta, A Review:

Hadoop Storage and Clustering Algorithms,

IOSR Journal of Computer Engineering,

18(1), January – February 2016, pages 23-29

10. VedulaVenkateswara Rao, VKSK Sai

Vadapalli, Big Data Analysis – Hadoop

Performance Analysis, International Journal

of Computer Science and Information

Security, 14(9), September 2016

11. https://data-flair.training/forums/topic/

explain-the-process-of-spilling-in-

mapreduce/

2950

3000

3050

3100

3150

3200

3250

3300

2.6.5 2.7.7 3.0.3

Heap Usage

64MB 128 MB 256 MB

https://data-flair.training/forums/topic/

