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Abstract 

In this article, a loading process of the micro/Nano-indentation test is 

simulated based on physical plasticity. The total energy of process is obtained 

by evaluating different terms such as dislocations density energy, energy 

caused by contact of indenter to the material and other terms of classic 

mechanic’s. The physical domain of region beneath the indenter is mapped to 

a unit cubic domain as a computational domain by using a homographic 

mapping formulation. For the first time by using the principle of minimum 

energy differential equations of the micro-indentation process is evaluated for 

a FCC crystal. Three main coupled differential equations, twelve necessary 

robin boundary conditions and eight physical boundary conditions are solved 

by using a generalized differential quadrature method based on the Gauss-

Chebyshev-Lobato polynomials. It is seen that the applied method is more 

efficient and gets closer results to experiments. Finally, material behavior to 

different conical angles of indenter for the FCC crystal is compared. 

Keywords: Micro/Nano indentation, Homographic mapping, Minimum energy, 

FCC crystal. 

 

 

I. INTRODUCTION 

Indentation test is used for 

determining materials characteristics at 

different depths, involving a striking size 

effect. It was seen that by decreasing 

indentation depth, measured hardness 

increases. Unlike the common believe 

between researchers, the hardness is not a 

characteristic of the small size [1]. Taylor 

represented that crystal defect has a great 

role in plastic deformations mechanisms by 

presenting an analytical model [2]. This size 

effect is because of dislocations nucleation, 

where resolved shear stress on slip planes of 

crystals reaching a critical threshold. These 

types of dislocations are called the 

geometrically necessary dislocations (GND), 

which are necessary to form crystal due to 

the certain loading. Many researchers did 

investigations to present better models and 

simulations for dislocations interactions and 

dislocations movements by developing some 

fundamental concepts such as dislocations 

density, dislocations generation, and 

classification of dislocation types [3]–[6] 

and [7]. The crystal plasticity theories 

explain crystalline material behavior to 

applied load by utilizing dislocations density 

concepts. 

Berdichevsky analyzed the problem with an 

energy-based view. [8]–[14]. Berdichevsky 

proposed a saturated density function which 

could be evaluated by using geometrically 
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necessary and statistically stored dislocation 

densities. He derived energy function that is 

caused by dislocations densities by using the 

saturated density function[8]. Moreover, 

during past few years, a new approach has 

been proposed based on continuum 

dislocation dynamics [15]–[18]. The 

approach could predict both dislocation 

densities and curvature and direction of 

dislocation lines. The high computational 

cost in problems like indentation has been 

one of the reasons to not to use this method. 

Baitsch et al. analyzed two- dimensional 

plane-strain problem of wedge indentation 

for a single crystal having only one active 

slip system on each side of the wedge by 

using finite element method to discretize 

governing equation and applying a Newton-

Raphson procedure to obtain minimizer 

numerically [19]. 

The material proposed in this paper is based 

on continuum dislocation theory developed 

in following references [12]–[14] and [20]–

[22]. In the present article, the micro-

indentation of a wedge indenter into an FCC 

single crystal is analyzed. The governing 

equations of the process are evaluated by 

utilizing minimum energy principle. Three 

coupled differential equations besides twelve 

necessary boundary conditions and seven 

physical boundary conditions are discretized 

by using generalized differential quadrature 

method. Load-displacement loading curve 

and three field variables (transverse 

displacement field, longitudinal 

displacement field, and plastic distortion 

field) on nodal points of the physical domain 

are evaluated. It is seen that proposed 

method has more accurate results than 

previous models.  

 

II. PRIMARY KINEMATICS 

According to Fig. 1 consider a rigid 

wedge indenter that gets into a single crystal. 

Size of the single crystal is considered 

significant enough to be sure the plane strain 

state having two component of 

displacements . According to 

the wedge shape of the indenter and the axial 

symmetry conditions, a half section of 

material beneath the indenter is analyzed. It 

is assumed that just one slip system is active 

where  expresses the slip 

direction and  denotes the 

normal vector to slip plane. The plastic 

distortion field is defined as . 

According to physics of problem and 

assumptions made about material properties, 

all tensors and field variables are considered 

two-dimensional. Regarding the longitudinal 

displacement of the indenter is  h, which is 

the control parameter of the problem as 

input. Loading process would be captured by 

evaluating displacement fields , 

and the plastic distortion  for steps of 

loading. 

 

Figure 1: (a) Physical domain of material 

beneath the indenter. (b) Computational 

domain after applying homographic 

mapping 
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For a plane- strain state, the in-plane 

components of the symmetric strain tensor 

can be evaluated by the following relations: 

 

(1)  
 

 

The in-plane components of the symmetric 

plastic strain tensor would be evaluated as: 

 

(2)  
 

 

According to two above equations the elastic 

strain can be obtained by relation  

as: 

 

(3)  
 

 

Regarding Nye-Bilby-Kroner's dislocation 

density tensor: , that  is vector 

product  ([23] and [24]), for plane strain 

plastic distortion, just two nonzero 

components remain as: 

 (4)  

 

Two above equations are net Burger's vector 

components of all excess dislocations that 

dislocation lines cut the unit area 

perpendicular to the z-axis. It is seen that 

just edge dislocations exist beneath the 

indenter because the net Burger’s vector of 

excess dislocations is parallel to the slip 

direction . The sign of  

represents that the excess dislocation being 

negative or positive. To know how many 

excess dislocations are generated per unit 

area that is called geometrically necessary 

dislocations density the length of net 

Burger’s vector should be divided by the 

magnitude of Burger’s vector, . 

 
(5)  

III. TOTAL ENERGY FUNCTIONAL 

Most metals usually got small strain tensor 

. Thus, free energy per unit volume of the 

single crystal with continuously distributed 

dislocations can be evaluated in following 

form [8], [9] 

 

 (6)  

where  and  are Lame constants,  is the 

saturated dislocation density and  is the 

material constant. The first two terms 

represent elastic strain share of total energy, 

and the last term corresponds to the 

dislocation network share. The term 

  shows that energy network for 

small dislocation densities is the sum of non-

interacting dislocations energy. The 

logarithmic term represents that increase in 

energy generated by dislocations for small 

values of dislocation densities is linear, and 

it gets infinity when dislocation density gets 

closer to the saturated dislocation density. 

This point provides an energetic barrier 

against over-saturation. From the above 

equations the energy density per unit volume 
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of the crystal can be evaluated by the 

following equation: 

 

(7)  

If due to axisymmetric of the domain,  is 

the half plane of the occupied physical 

domain of deformed crystal beneath the 

indenter, the elastic energy and dislocations 

generation energy functional per unit depth 

can be formulated as: 

 

(8)  

Variation of contact energy can be evaluated 

as [25]: 

 
(9)  

where , is Lagrange Multiplier which 

represents normal contact force over the 

contact surface. The parameters , , and 

 are normal gap function, tangential gap 

function, and surface element, 

respectively.By assuming ,  and  as 

deformation of first body(material beneath 

the indenter), the second body(indenter) and 

a normal vector to the contact surface, the 

normal gap function are obtained by the 

following equation: 

 (10)  

For a wedge indenter with a cone angle of  

the normal vector would be evaluated as: 

 
(11)  

  By assuming penetration of rigid indenter 

variation of contact energy functional would 

be obtained as: 

 
(12)  

The total energy functional would be 

obtained from the above equation: 

 (13)  

IV. MAPPING AND EQUATIONS  

By using a Homographic mapping, any 

quadrilateral shape can be mapped into 

another quadrilateral, as shown in Fig.1. The 

mapping can be done by using two 

following relations: 

 (14)  

 

where  and  are homographic 

mapping constants. By solving following 

system of equations, mapping constants can 

be evaluated.  

 

 (15)  

where , , , and  for  are 

quadrilateral corners of physical domain and 

computational domain. 

To avoid appearing too much zero arrays in 

the above matrix, before using homographic 

mapping the domain is translated one 
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micrometer along x-direction and y-

direction. By implementing translation and 

homographic mapping and rewriting total 

energy functional and applying variation 

operator, the governing equations and the 

fundamental equation will be evaluated as 

below. Due to axisymmetric of physical 

domain over y-direction horizontal 

displacement and plastic distortion fields are 

zero. It is assumed that stick occurs over 

contact region (  edge), by implementing 

this assumption the horizontal displacement 

and plastic distortion variables would be 

zero over this boundary too. It is assumed 

that no vertical displacement occurs over  

edge. 

V. PHYSICAL BOUNDARY 

CONDITIONS 

Derived equation caused by : 

  

(16)  

Derived equation caused by : 

  

(17)  

Derived equation caused by : 

  

(18)  

In above equations,  for  

and  are differential equation terms 

coefficients which vary all over the 

computational domain. Derived equation 

caused by  contact energy over  

boundary: 

  (19)  

The parameters  and  are coefficients of 

terms caused by contact energy which vary 

along contact Boundary.  

 By using Euler-Lagrange equation twelve 

necessary boundary conditions would be 

evaluated over four boundaries of domain, 

caused by three independent field variables. 

By enforcing physical boundary conditions 

only four essential boundary condition 

equations remain which are as following 

equations: 

 (20)  

 (21)  

 (22)  

 
(23)  

 for  ,  

 are Robin boundary conditions terms 

coefficients and constants which are 

dependent to the point that analysis is done.  

VI. GENERALIZED DIFFERENTIAL 

QUADRATURE METHOD  

Generalized differential quadrature is a 

mathematical method to discretized 

differential equations and computational 

domain. The  and  are directions, where 

the computational domain is discretized to 

 and  part. A Chebyshev-Gauss-Lobato 

function is used to distribute points over the 

domain as following formulas: 
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(24)  

 

The n-th order of derivative of  with 

respect to  and the m-th order  derivative of 

 with respect to  can be discretized at 

 ,  as [26]: 

 

(25)  

 and 

, 

  ,  ,  
(26)  

where  and  are weighting 

coefficients. Non-diagonal arrays of 

weighting coefficients can be evaluated 

along  and  direction respectively, as: 

 
(27)  

 

Moreover, the diagonal arrays of weighting 

coefficients along  and  directions can be 

evaluated, respectively as: 

 

(28)  

 

(29)  

where  and  are the nodes coordinate in 

the computational domain. To evaluate the 

higher order derivatives of the diagonal and 

non-diagonal arrays; the following equation 

can be used: 

 
(30)  

 

(31)  

 
(32)  

 

(33)  

where  is the order of derivatives. 

Discretization must be applied to the three 

governing equations and twelve necessary 

boundary conditions which are in 

differential form by using the Chebyshev-

Gauss-Lobato point distribution over 

computational domain.  

Unknown field variables such as horizontal 

and vertical displacement fields, plastic 

distortion field and the Lagrange multiplier, 

can be evaluated. Twelve steps loading of 

wedge indenter into a Ni single crystal is 

simulated. The Ni single crystal mechanical 

and crystallographic properties are presented 

in Table.1. Comparisons are made with the 

prior experimental and simulation researches 

with same indenter and material. The field 

variables are evaluated in the computational 

domain over a grid that is meshed by 

Chebyshev-Gauss-Lobato polynomials. To 

plot the contours of the field; the values of 

the field variables are mapped from 

computational domain to physical domain. 

The indenter is considered to remain rigid 

during the loading process.  
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Table.1 Mechanical and crystallographic 

properties of Ni single crystal 

Properties Symbol Value Unit 

Lame’ constant 

[27] 
   

Shear modulus    

Poisson 

coefficient [27] 
   

Net Burgers 

vector [28] 
   

Material 

constant [19] 
   

Saturated 

dislocations 

density [19] 

   

As seen in Fig.2, the loading curve of the 

micro-indentation process of the rigid 

indenter into Ni single crystal for the present 

model is compared with experimental values 

[29] and previous model [19]. The vertical 

axis is indentation force over indentation 

depth values, and the horizontal axis is 

presenting indentation depth of indenter, as 

seen.  

 

Figure 2 The comparison of the present 

model with the experimental values and 

the previous model 

 

The reason of deviation of present 

results from experimental results is going to 

be discussed. One of the error sources is 

ignoring energy dissipation. Movements of 

dislocations and heat generation cause the 

energy dissipations due to slip occurrence. 

Previous researches have represented that in 

low strain rates, where loading process is 

semi-static the energy dissipation is 

ignorable [30]. In Fig.3, The indentation 

angles during micro indentation simulation 

in the present model is compared. 

 

Figure 3 The comparison of the 

indentation angles during micro 

indentation simulation in the present 

model 

In Fig.4, the plastic and elastic 

energies of Ni single crystalline material 

under micro indentation process for a 

90degree conical indenter are plotted 

according to the indentation depth. It is seen 

that in 4th step of loading a sudden increase 

in plastic energy occurs, where elastic 

energy increases with a highest slope. It is 

seen that by penetrating indenter into 

material, elastic energy increases in all steps 

of loading, while plastic energy decreases 
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after 4th step. Elastic energy of indentation 

process is just related to displacement fields 

and increases by increasing indentation 

depth. On the other hand, plastic energy 

variation is caused by dislocation generation 

and annihilation which means, dislocation 

pile-ups and sink-ins. It is comprehended 

that in 4th step a dislocation plie-up occurs 

where plastic energy increases, where a 

dislocation sink-in occurs in 5th step of 

loading. 

 

Figure  4 Plastic energy (red circles) and 

elastic energy (blue stars) according to 

indentation loading steps 

CONCLUSION 

By changing the angle of the 

indentation for the same loading, we 

obtained a different depth in the underlying 

material. By decreasing the angles of the 

deformation cone, an increase in the gradient 

of the displacement force was seen, 

indicating an increase in the elastic behavior 

of the material against sharper debris. The 

strengths of this research are to consider the 

effective parameters and not to ignore the 

effects that have a great impact on the 

solving method. it is seen that peak of plastic 

distortion field, dislocation density, plastic 

energy and strain are close to contact area. 

By taking a closer look at vertical and 

horizontal displacement fields and 

comparing with plastic distortion field it is 

seen that displacement fields are behaving 

like each other where it differs from plastic 

distortion field. 
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