Fekete-Szegö inequality for a subclass involving the generalized \mathcal{K}-Mittag-Leffler functions

K. Dhanalakshmi ${ }^{1}$, D.Kavitha ${ }^{2}$
${ }^{1}$ Assistant Professor, PG \& Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous) Villupuram, Tamilnadu, India
${ }^{2}$ Associate Professor, Department of Mathematics, Audisakara College of Engineering and Technology Gudur, Andra Pradesh, India

Article Info

Volume 83
Page Number: 13795-13797
Publication Issue:
March - April 2020

Article History

Article Received: 24 July 2019
Revised: 12 September 2019
Accepted: 15 February 2020
Publication: 20 April 2020

Abstract

In fractional calculus, the Mittag-Leffler function plas a vital role and its not been superfluous up to now. Nowadays, application of Mittag-Leffler have been enlightening the theory of univalent functions. The aim of this paperis to derive the initial co-efficient estimation and the Fekete-Szegö inequality for the subclass of analytic function.

Mathematics Subject Classification: 30C45,30C50.

Keywords; Analytic functions, Subordination, Mittag-Leffler function, Fekete-Szegö Inequality.

I. INTRODUCTION

The classical Mittag-Leffler function is denoted by $E_{\alpha}(z)[7,8]$ and is defined as

$$
E_{\alpha}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+1)} \quad \alpha \in \mathbb{C}, \quad \mathfrak{R}(\alpha)>0 .
$$

The class of functions $f(z)$ which are analytic in the open unit disc \mathbb{U} is denoted by \mathcal{A} and is of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad z \in \mathbb{U} \tag{1.1}
\end{equation*}
$$

which are normalized by $f(0)=0$ and $f^{\prime}(0)=$ 1.The class of analytic and normalized univalent functions in \mathbb{U} is denoted by \mathcal{S}.

For an two functions f and g which are analytic in \mathbb{U}, the function f is subordinate to g in \mathbb{U} and is denoted by $\mathrm{f}(\mathrm{z}) \prec \mathrm{g}(\mathrm{z})$ if there exists a schwarz function ω, which are analytic in \mathbb{U} with $\omega(0)=0$ and $\mid \omega(z)<$ $1 \mid$ such that $f(z)=g(\omega(z)),(z \in \mathbb{U})$.

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Let $\phi(z)$ be analytic, and let the Maclaurin series of $\phi(z)$ be given by
$\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$.
where all coefficients are real and $B_{1}>0$.
Lemma 1 [9] $P(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part in \mathbb{U} then for any complex number μ we have,

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|1-2 \mu|\} .
$$

then $\left|p_{k}\right| \leq 1, k \in N$ where P is the class of functions analytic in \mathbb{U} for which $p(0)=1$ and $\operatorname{Re}(p(z))>0,(z \in \mathbb{U})$.

Recently Hameed Ur Rehman et al., [3] normalized the most generalized Mittag-Leffler function and defined the following,

$$
\begin{gather*}
L_{k, \sigma, \beta, \delta}^{\gamma, q} f(z)=z+ \\
\sum_{n=2}^{\infty} \frac{(\gamma)_{n} q, k \Gamma k(\sigma+\beta) \Gamma(\delta+1)}{(\gamma)_{q, k \Gamma k(\sigma n+\beta) \Gamma(\delta+n)} a_{n} z^{n} .} \tag{1.3}
\end{gather*}
$$

where $\sigma, \beta, \gamma \in \mathcal{C}, \mathcal{R}(\sigma)>0, \mathcal{R}(\beta)>0, k \in \mathbb{R}, \gamma$ is non-negative real number, nq is a positive integer $q \in(0,1) \cup \mathbb{N}$.

Definition 1 A subclass of \mathcal{A} consisting of functions is of the form (1.1), and satisfying the following condition can be denoted as $\mathcal{M}(\alpha, \phi)$

$$
\begin{aligned}
& \mathcal{M}(\alpha, \phi)=\{f \in \mathcal{A}:[(1- \\
& \left.\alpha) \frac{z\left[L_{k, \sigma, \beta, \delta}^{\gamma, q} f(z)\right]^{\prime}}{L_{k, \sigma, \beta, \delta}^{\gamma, q} f(z)}+\alpha \frac{\left[z\left(L_{L, \sigma, \beta, \delta}^{\gamma, q} f(z)^{\prime}\right)\right]^{\prime}}{\left[L_{k, \sigma, \beta, \delta}^{\prime, q} f(z)\right]^{\prime}}\right]<\phi(z), \quad z \in \\
& \mathbb{U}\}
\end{aligned}
$$

where $L_{k, \sigma, \beta, \delta}^{\gamma, q} f(z)$ is defined in (1.3).

Remark

By taking the suitable choices of the parameters, we get

$$
\begin{aligned}
L_{1,0,1,2}^{1,1} f(z)= & \frac{2}{z} \int_{0}^{z} f(t) d t \\
& =z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right) a_{n} z^{n} \\
& =-\frac{2 \log (1-z)}{z}-2 .
\end{aligned}
$$

which is the type of Bernardi Integral[1] and is the special case is studied by Libera [5] and Livingston[6].

II. INITIAL COEFFICIENTS

The first few coefficient estimates for the classes of $\mathcal{M}(\alpha, \phi)$ are derived in the following theorem.

Theorem 1 If $f \in \mathcal{M}(\alpha, \phi)$ then,

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{B_{1} c_{1}}{2(1+\alpha) A} \text { and } \\
& \left|a_{3}\right| \leq \frac{1}{2(1+2 \alpha) B}\left[\frac { 1 } { 2 } B _ { 1 } \left(c_{2}-\frac{c_{1}^{2}}{2}+\frac{1}{4} B_{2} c_{1}^{2}+\right.\right. \\
& \left.\left.(1+2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{(1+\alpha)^{2}}\right)\right]
\end{aligned}
$$

$$
A=\frac{(\gamma)_{2} q, k \Gamma k(\sigma+\beta) \Gamma(\delta+1)}{(\gamma)_{q}, k \Gamma k(\sigma n+\beta) \Gamma(\delta+2)}
$$

and

$$
B=\frac{(\gamma)_{3} q, k \Gamma k(\sigma+\beta) \Gamma(\delta+1)}{(\gamma)_{q}, k \Gamma k(\sigma n+\beta) \Gamma(\delta+3)}
$$

Proof. If $f \in \mathcal{M}(\alpha, \phi)$, then

$$
\begin{align*}
& (1-\alpha)\left[1+A a_{2} z+\left(2 B a_{3}-A^{2} a_{2}^{2}\right) z^{2}+\left(A^{3} a_{2}^{3}-3 A B a_{2} a_{3}\right) z^{3}\right]+ \\
& \alpha\left[1+2 A a_{2} z+\left(6 B a_{3}-4 A^{2} a_{2}^{2}\right) z^{2}\right]=\phi(w(z) \tag{2.1}
\end{align*}
$$

If $p_{1}(z)$ is analytic and has positive real part in \mathbb{U} and $p_{1}(0)=1$, then define the functions $p_{1}(z)$ as

$$
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

From the above equation we obtain

$$
\begin{equation*}
w(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots \tag{2.2}
\end{equation*}
$$

Then p_{1} is analytic in \mathbb{U} with $p_{1}(0)-1=0$ and has a positive real part in \mathbb{U}. By using (2.2) and (1.2), it is clear that
$\phi\left(\frac{p_{1}(z)-1}{p_{2}(z)+1}\right)=1+\frac{B_{1} c_{1}}{2} z+\left\{\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\right.$
$\left.\frac{B_{2} c_{1}^{2}}{4}\right\} z^{2} \ldots$
Equating the co-efficients of like powers of z in (2.1), we obtain

$$
\begin{equation*}
a_{2}=\frac{B_{1} c_{1}}{2(1+\alpha) A} \tag{2.4}
\end{equation*}
$$

$a_{3}=\frac{1}{2(1+2 \alpha) B}\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}+\frac{1}{4} B_{2} c_{1}^{2}+(1+\right.\right.$
2 $\left.\left.\alpha) \frac{B_{1}^{2} c_{1}^{2}}{(1+\alpha)^{2}}\right)\right]$

III. THE FEKETE-SZEGÖ INEQUALITY

T Theorem 2 If $f \in M_{\alpha}(\alpha, \phi)$, then
where

$$
\begin{aligned}
& \quad\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{2(1+2 \alpha) B} \max \left\{1, \frac{B_{2}}{B_{1}}-\right. \\
& \left.\frac{B_{1}(1+2 \alpha)}{(1+\alpha)^{2}}\left(2 \mu \frac{B}{A^{2}}-4 B_{1}\right)\right\}
\end{aligned}
$$

Proof. From (2.4) and (2.5) we get

$$
\begin{gathered}
a_{3}-\mu a_{2}^{2}=\frac{1}{2(1+2 \alpha) B}\left[\frac { 1 } { 2 } B _ { 1 } \left(c_{2}-\frac{c_{1}^{2}}{2}+\right.\right. \\
\left.\left.\frac{1}{4} B_{2} c_{1}^{2}+(1+2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{(1+\alpha)^{2}}\right)\right]-\mu \frac{B_{1}^{2} c_{1}^{2}}{4(1+\alpha)^{2} A^{2}}
\end{gathered}
$$

By simple calculation we get

$$
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{4(1+2 \alpha) B}\left[c_{2}-\frac{c_{1}^{2}}{2}\left[1-\frac{B_{2}}{B_{1}}+\right.\right.
$$

$\left.\left.\frac{B_{1}(1+2 \alpha)}{(1+\alpha)^{2}}\left(2 \mu \frac{B}{A^{2}}-4 B_{1}\right)\right]\right]$
Hence, we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{4(1+2 \alpha) B}\left[c_{2}-v c_{1}^{2}\right] \tag{3.1}
\end{equation*}
$$

where

$$
v=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{B_{1}(1+2 \alpha)}{(1+\alpha)^{2}}\left(2 \mu \frac{B}{A^{2}}-4 B_{1}\right)\right]
$$

By applying Lemma 1 to equation (3.1), we get the required result

Corollary 1 When $\alpha=1$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{12 B}\left[c_{2}-v c_{1}^{2}\right]
$$

where,

$$
v=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{3 B_{1}}{4}\left(2 \mu \frac{B}{A^{2}}-4 B_{1}\right)\right] .
$$

Corollary 2 When $\alpha=0$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{4 B}\left[c_{2}-v c_{1}^{2}\right]
$$

where,

$$
v=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+B_{1}\left(2 \mu \frac{B}{A^{2}}-4 B_{1}\right)\right] .
$$

REFERENCES

[1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[2] G. Fekete M., Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc., 8(1933), 85-89.
[3] Hameed Ur Rehman, Maslina Darus, And Jamal Salah , Coefficient Properties Involving The Generalized K -Mittag-Leffler Functions, Transylvanian Journal Of Mathematics And Mechanics, 9(2)(2017), 155-164.
[4] F.R Keogh, E.P Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.https://doi.org/10.1090/S0002-9939-1969-0232926-9.
[5] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
[6] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[7] G. M. Mittag-Leffler, Sur la nouvelle function, C.R. Acad. Sci., Paris, 137 (1903), 554-558.
[8] G.M. Mittag-Leffler, Sur la representation analytique dâ ϵ^{TM} une function monogene (cinquieme note), Acta Math., 29 (1905), 101-181.
[9] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht,Göttingen, (1975)

