

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4435 Published by: The Mattingley Publishing Co., Inc.

A Novel Process using Impact Analysis over

Requirement Phase with Impact Transition Model

Sathyarajasekaran K

(Corresponding Author)

sathyarajasekaran.k@vit.ac.in

Ganesan R

Vellore Institute of Technology,

School of Computer Science and Engineering,

Chennai Campus

ganesan.r@vit.ac.in

Article Info

Volume 81

Page Number: 4435 - 4445

Publication Issue:

November-December 2019

Article History

Article Received: 5 March 2019

Revised: 18 May 2019

Accepted: 24 September 2019

Publication: 23 December 2019

Abstract:

Impacts are the key aspects in software engineering when it identified earlier can

reduce the overhead in all the phases of development. Although the existing works

are addressed on change impact analysis over software development phases. We

believe that analyst experience during requirement elicitation can provide way to

identify the impact based requirements. In this paper author discuss a new process

for impact analysis over requirements. We address how informal requirements of

the system under impact analysis to evolve and represented using different models

like transition and sequence. The proposed approach is based on the impact-

transition structure that was elicit impact oriented requirements and its analysis.

This work illustrated through a case study to realize the proposed approach with

precision, recall and F-measure.

1. Introduction

The requirements are the one that explained as the

needs of users, customers or the market, which

consequently administrate the development tasks

like architecture, designing, implementing and

examining. Requirements are further defined as a

well-known and completely understood earlier

design and analysis in the utopian point of view in

software development. On considering the real-

world scenario, the product attained a shape by

understanding, insights and general known

process. The users or customers can change their

mind set in accordance with their needs, as the

underlying needs after requirements might get

challenging to grasp and may have overly

optimistic time plans. Because of these factors, the

environment cannot set the requirements as fixed.

Hence, the common developmental work can get

disturbed as because of the unexpected alterations

at times.

2. Change Impact Analysis

The impact analysis has been approached based

on the two usual identified models. The main

focus of Traceability based IA is concentrated on

sketching the dependencies among artifacts such

as design documents, requirements, and source

code files. The main concentration of

Dependence based IA is on analyzing the detail

effect of ripple or change in the software system

initialized using software change.

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4436 Published by: The Mattingley Publishing Co., Inc.

Bohner&Arnold[3,4,5,6,7,8] stated that, while

changing the software in accordance to an existing

system or requirement of feature, it will typically

affect the multiple files which explain the

resources, database tables, classes, configuration

files, and other files. This considered file types

can termed as Software Life Cycle Objects

(SLOs).

SLO which is as well named as working products,

or software products, acts as the center of impact

analysis. The artifact that created at the time of a

project, like a class, a requirement, an

architectural component, and so on is termed as

SLO. SLOs are associated with each other via a

web of relations. Relations may be among SLOs

of the similar kind, and among SLOs of diverse

kinds. For instance, two requirements have been

interrelated for signifying the relationship among

each other. A requirement has been as well

associated with the architectural module, for

instance, for signifying that the component

executes the requirement.

There may begin a requirement for change within

multiple parts of the software, when SLOs can

pose dependencies among one another. This

process started with the assigning of impacted

SLOs. Initially, the first procedure assessment has

offered a SLOs set, which gets directly impacted

by the change and is called as Starting Impact Set

(SIS). Some other terms used in papers and

literature, i.e. Rajlich called that as initial impact

set.

Though, there are typically interactions and

dependencies in SLOs explained within SIS to

erstwhile SLOs which were not involved in SIS.

On investigating the interactions and

dependencies, the identification of SLOs has been

made. Estimated Impact Set (EIS) is defined as

the SLO’s dependant set computed to impact by

the change on SIS. Those can be further termed as

secondary modifications. The starting impact set

is also included within this estimated impact set.

The Actual Impact Set (AIS) is formed by the

affected modules, when performing the software

change to SLOs. The impact analysis is analyzed

to be operated fltlessly, when EIS is assigned

equivalent to AIS. To be noted, as there are

multiple techniques on performing the software

change, AIS is not generally considered as unique.

In the existed IA approaches survey, the author

determines the False Negative Impact Set (FNIS)

and False Positive Impact Set (FPIS). The FPIS is

involved with SLO’s that has determined within

EIS, still not incorporated within AIS. These

modules do not change as per the estimation. The

FNIS is the contrast process of FPIS that involved

with SLO’s that has determined within EIS, still

are incorporated within AIS. These module

changes still not determined with the phase of

estimation.

3. Change Impact Analysis Techniques

 The associated reviews on change impact

analysis [18,19, 20] in accordance to the used

techniques on impact analysis are explained in this

section. In this, the major concern is on the core

approaches that introduced in the literature,

investigate their basic notations, and implement

them with regards to their probability of

supporting multiperspective impact analysis. The

three major needs on analyzing the existed

approach on change impact analysis were taken as

research objectives and these objectives are

explained below.

 The ability on analyzing heterogeneous

kinds of software artifacts.

 The support for developers that tried on

comprehending the impacts of their

changes.

 The support for diverse kinds of change

operations.

 The following are the discussion about

the six crucial terms of change impact analysis

techniques.

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4437 Published by: The Mattingley Publishing Co., Inc.

3.1Traceability Analysis

 On considering the traceability Impact

Analysis [31, 32, 33, 34], the capturing of

specifications, tests, requirements, and design

elements are made, and these correlations have

been analyzed for determining the capacity of an

initiating change. The manual determination of

what and who gets affected by the change is

considered as error-prone and time consuming

over the critical projects having thousands of

artifacts. By using the impact analysis, the peoples

and items that are impacted can be automatically

enlightened at the time of occurrence of change.

Information Retrieval

 In the literature, several techniques for

IR-based traceability [22, 23] detection were

implemented, like latent semantic indexing or

vector space model. The names and identifiers of

software artifacts are analyzed by this model as

same as the IR-based change impact analysis

techniques. Therefore, the creation of traceability

relation among both is made, when the two

artifacts names are “similar”. In order to enhance

the precision of the link detection, more

techniques are used further with pre-processing

approaches, like stop word elimination or word

stemming. Numerous approaches are analyzed and

concluded that the merging of diverse approach

can attain the precise outcomes. Though, IR-based

techniques are lacked in needed precision and

recall while comparing over other techniques and

are hence not fit for dependency detection in

multiperspective circumstances, because of the

detection of too many false-positives. Moreover,

the determination of detected relations type is not

made by IR-based approaches because of its

incapability, which directs to the restriction of

detected dependencies’ reusability for short

impact analysis. Table 1.1 delineates the synopsis

on IR approaches for Multiperspective

dependency detection

Mining of Software Repositories

 As same as the discussion in the previous

approaches on history-based impact analysis,

MSR-based [24, 25, 26] techniques has been as

well applied for traceability recovery. Hence, the

similar hypothesis is subjugated for change impact

and that is defined as: there is an existence of

traceability relation among them, when two

artifacts were regularly changed together.

Therefore, the same limitations are applied for

traceability detection by MSR. Initially, the

detection of evolutionary couplings is carried out,

while neglecting the other types of dependencies

entirely. In the second, diverse kinds of software

artifacts are generally developed in various

repositories and therefore will not share a general

“history” which has been extracted. Further, if

version history is assigned as missing or

incomplete in the early stages of software

development as well when the software is in an

unstable state, the MSR has not been applied.

Table 1.2 represents the synopsis of MSR

approaches for

 Dependency Detection Rules

 In order to detect the dependencies among

software artifacts, the developers and researchers

have defined and executed a set of rules and

record them under traceability links. For

accomplishing this task, the rules can query the

attributes, structure or relations of software

artifacts for determining the dependencies.

Typical instances are found over the requirements

traceability fields and in model-driven engineering

works. These rule-based techniques for

traceability detection have shared the similar

merits and demerits as the rule-based approaches

for change impact analysis. In contrast, more

consistent outcomes have been provided and

permitted for a superior understanding of the

outcomes while comparing with other techniques.

Moreover, this method is as well capable of

determining the detected dependency relation’s

type. Similarly, the detection rules concept is

simpler to acclimatize with any other software

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4438 Published by: The Mattingley Publishing Co., Inc.

artifacts, as narrative rules were formed for them.

While considering the other techniques, it may

need rigorous changes in their original algorithms.

The synopsis on rule-based approaches [27, 28]

for Multiperspective dependency detection is

demonstrated.

Semantic Wikis and Ontologies

 The semantic modelling concept [29] is

deployed for the fourth group of traceability

detection techniques, in order to elicit the

dependency relations among software artifacts.

The fact that motivates these techniques are by the

software development that contains numerous

stakeholders, everyone uses the own individual

vocabulary. Whereby presents the similar

concepts of synonyms and homonyms, and the

predictable drift among software artifacts because

of the ongoing evolution. These proposed

techniques have indexed the software documents

with an ontology which has permitted to retrieve

the knowledge from the software artifacts from

where the traceability links has been gathered. The

main limitations and difficulty of such techniques

is on the primary creation and concept definition,

which comprised of software and the modelling

within ontology. On contrary, this method permits

the traceability detection in the heterogeneous

framework and probably conflicting software

artifacts.

Machine Learning

 Machine learning techniques [29, 30] is

considered to be the algorithm which is capable of

automatically “learning” the traceability links

from software artifacts on the basis of a provided

dependency relation’s training set. Either the

developers or the comprised combination of

manually evolved links has supplied these training

sets and based on the granularity levels, the links

are identified by program analysis and run time

monitoring. These approaches have the ability to

eliciting such links when the training sets include

the traceability links that connect the

heterogeneous software artifacts. Furthermore,

when the reflection of types is made using the

training set, these techniques can be probably

capable on differentiating the diverse kinds among

the relations. Thus, the case studies have depicted

that the precision of the gained outcomes gets

highly varies.

4. Impact Analysis Process over Requirements

 The change impact analysis [35, 36]

process can be either formal or informal. The

change locations are identified in an informal way

by the developers with no iteration procedure and

are exclusively on the basis of the developer’s

expertise and their system knowledge close by.

The analysis can be made not under the basis of

formal addressing of impact analysis.

 One of the formal ways is on performing

the impact analysis in a recursive and incremental

manner. Fig. 1 symbolizes the art on the impact

analysis process.

1 Generally, on the basis of developer expertise,

the SIS is determined and analyzed for a

change request, as the same as a manual

process.

2 The execution of impact analysis is happened

after the identification of SIS, for discovering

the interactions and dependencies among the

Software Lifecycle Objects (SLOs)

incorporated in SIS and other SLOs. The EIS

is formed by this set of SLOs. Further, the

analysis of interactions and dependencies of

SLOs incorporated in EIS are made and

summed up to EIS, thereby after every

iterative analysis, the enlarging of EIS is made.

3 The changes are made to the system. The AIS

is formed by the SLO’s set that was really

impacted.

4 The SLOs which has been changed and can be

involved in AIS, still that hadn’t within EIS

develops the FNIS.

5 The SLOs which has not been changed and

cannot involve within AIS, still that has been

contained in EIS develops the FPIS.

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4439 Published by: The Mattingley Publishing Co., Inc.

6 When EIS = AIS, the process of change

impact analysis was assumed to be faultless

and needs previous determination on the entire

changes.

fSLOs

Figure 1.1: Art of Impact Analysis Process

 The SLOs are assigned with one of these following marks:

Receive

change request

Analyse the

SLOs to be

changed

Consider

EIS=SIS

Analyse

interactions and

dependencies

from EIS to

other SLOs

More

dependencies

found

Implement

changes

Analyze

differences among

AIS and EIS

Terminate

process

Starting Impact

Set (SIS)

Estimated

Impact Set (EIS)

Actual Impact

Set (AIS)

False Negative

Impact Set

(FNIS)

False Positive

Impact Set

(FPIS)

<<produces>>

<<input>>

<<input>>

<<produces>>

<<produces>>

<<produces>>

<<produces>>

Yes

No

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4440 Published by: The Mattingley Publishing Co., Inc.

 Blank, mean the SLO hasn’t examined

nor scheduled for inspection

 Changed, denotes the SLO can get

affected as per the change and is a

branch of EIS

 Unchanged, indicates the SLO as

examined and the result of the analysis

is defined with the non-impact of the

changes over SLO

 Subsequently, schedules the SLO for

examining at the time of impact

analysis

 Propagating, indicates the SLO has not

get affected in accordance with the

change directly, still there may be a

change in the dependencies of this

SLO, i.e. the change can get

proliferated to dependant SLOs

 At first, the SLOs can be assigned as

blank. After that begins the impact analysis

process and the identification of SIS is made as

per the Fig. 1. The files that contained within SIS

are assumed as changed. Subsequently, the entire

dependent SLOs are assumed as next that

determines the first EIS. Afterward, the procedure

of analysis process goes on continuously by

means of monitoring the EIS SLOs and their

appropriate dependencies are marked with suitable

marking. The propagating SLO dependencies are

marked as next, when using the propagating mark.

This process goes on iteratively till there contains

no SLOs with marking as next has been found.

4.1Interaction and Dependencies with Impact

Transition Model

An impact transition modelgiven in fig.1.2 shows

the third section in fig. 1.1 (Analyse interaction

and dependencies). In this, each noderepresent

possible estimated impact object over a change or

set of estimated impact objects sequence. Model

impact (MI) can be an edge from node P to Q

represents requirements impact or a set of

sequential impact represented by P, likely transit

to node Y which also represents same.

Here, in figure 1.2 nodes are represented as IA,

IBID, IC, IE, IFIG , MI can be calculated based on

the impact weight assigned by the experts over

different SLOs.

Figure1.2.Example Impact Transition Model for Interaction and Dependencies

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4441 Published by: The Mattingley Publishing Co., Inc.

4.2 Evaluation

For the evaluation of the impact transition model,

this paper uses precision, recall and F-Measure.

True Positive (TP) represents a sample that is

positive and predictively positive, False Positive

(FP) represents a sample that is actually negative

but positively predicted, False Negative (FN)

represents a sample that is actually positive but

negatively predicted, and True Negative (TN)

represents a sample that is actually negative and

predicted to be negative, available tables 4.1

indicates.

Table 4.1 Prediction Matrix Table

Prediction matrix
Prediction

positive negative

Actual
positive TP FN

negative FP TN

the above evaluation indicators are calculated based on the application considered.

TP

Precision
TP FP

 (1)

 =
TP

Recall
TP FN

 (2)

2 2

2

Precision Recall TP

Precision Rec
F Measu

all TP FP
r

F
e

N

 (3)

Precision is used to evaluate the system's ability to

reject erroneous samples in samples, Recall is

used to indicate the ability to find the right sample,

and F-Measure is the harmonic mean of Precision

and Recall, which is a comprehensive evaluation

of the classification. The above three indicators

are all the overall evaluation of the classification,

4.3 A Case Study

In this work we consider a student portal case

study to show the proposed transition model with

the adopted process. A student portal which

handles 25000 students of different streams in a

university.

 All students can able to receive the exam

schedule but few of them not able to get

the schedule in their student portal.

 Set of students not able to take exam

scheduled. Since, out of 25K set of

students exam schedule is not reflected in

their student portal. This is an serious

problem relates to reliability and quality

Impact Analysis over the above scenario has to be

done well in advance during the requirement

change or new requirement occurs. Similarly,

other set of scenarios can be considered. Like way

can be considered for three applications with five

different modules using change impact transition

(CIT) and no change impact transition (NonCIT).

Following figure shows that the details.

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4442 Published by: The Mattingley Publishing Co., Inc.

Figure 4.1 Impact transition over different applications with requirements

Every now and again, there is an opposite

relationship among precision and recall, where it

is possible to increase one at the cost of reducing

the other. Software application with impact and

non-impact requirements provides an illustrative

example of the tradeoff. Consider ansoftware

analyst tasked with classifies impact

requirementsfrom an application over Non-impact

requirements. The system analyst needs to avoid

all of the non-impact requirements since any

remaining may become impact or non-impact

requirement. Conversely, the analyst must not

remove impact requirements since that would

leave the application with weak process. This

decision increases recall but reduces precision. On

the other hand, the analyst may be more

traditional in the applicationthat analyst ensures

that he removes only irrelevant requirements

only.This decision increases precision but reduces

recall. That is to say, greater recall increases the

chances of removing relevant requirements

(negative outcome) and increases the chances of

removing all cancer cells (positive outcome).

Greater precision decreases the chances of

removing impact requirements (positive outcome)

but also decreases the chances of removing

irrelevant requirements (negative outcome).

Typically, precision and recall scores are not

talked about in confinement. Rather, either values

for one measure are analyzed for a fixed level at

the other measure (for example exactness at a

review level of 0.75) or both are consolidated into

a solitary measure. Measures that are a blend of

precision and recall are the F-measure (the

weighted consonant mean of exactness and

review). Here, we concentrated dependent on the

analyst who chose the impact and non-impact

requirements dependent on three distinctive

application he/she has worked. Here, below

figure shows the precision, recall and F measure.

0
2
4
6
8

10
12
14
16
18
20

CIT Non-CIT CIT Non-CIT CIR Non-CIT

Application 1 Application 2 Application 3

Impact Transition in - Requirements

User Interface Server modules Client Functions Control function data storage

CIT - Change Impact Transtion
Non-CIT -No Impact

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4443 Published by: The Mattingley Publishing Co., Inc.

Figure 5.2 Precision-Recall and F measure in impact transition

6. Conclusions and Future works

There is a huge requirement for systems to find

the impact of changes in early stages. Assume

that if it is identified when we process the initial

stage of requirements. This work is trying to

address the structure of the transition model and

process steps for impact analysis. This analysis

carried over different system and produced the

transition model to identify the priority of work.

This work can be extended to learning of

requirements and predicts what might be the

feature impacts. There are other enhancement

over the system in different capacity it can be

worked as an future enhancement.

7. References

1. Robert Heinrich, Sandro Koch, Suhyun Cha,

Kiana Busch, Birgit Vogel-Heuser, “Architecture-

based change impact analysis in cross-

disciplinary automated production systems”,

Journal of Systems and Software, vol. 146, pp.

167-185, December 2018.

2. Ines Hajri, ArdaGoknil, Lionel C. Briand, Thierry

Stephany, “Change impact analysis for evolving

configuration decisions in product line use case

models”, Journal of Systems and Software, vol.

139, pp. 211-237, May 2018.

3. S. A. Bohner, “Impact analysis in the software

change process: a year 2000 perspective,” in

Proceedings of the 12th International Conference

on Software Maintenance (ICSM’96), Monterey,

CA, pp. 42–51, November 1996.

4. S.A. Bohner, “Extending software change impact

analysis into COTS components”, in: 27th

Annual NASA Goddard Software Engineering

Workshop, pp. 175–182, 2002.

5. S.A. Bohner, D. Gracanin, “Software impact

analysis in a virtual environment”, 28th Annual

NASA Goddard Software Engineering Workshop,

pp. 143–151, 2003.

6. Robert S. Arnold and Shawn A. Bohner, “Impact

analysis - towards a framework for comparison”,

In Proceedings of the IEEE Conference on

Software Maintenance (CSM ’93), pages 292–

301, Montreal, Quebec, Canada, September 1993.

7. S.A. Bohner, Software change impacts – an

evolving, perspective, ICSM’02, 2002, pp. 263

271.

8. S. A. Bohner and R. S. Arnold, “Software Change

Impact Analysis”, Los Alamitos, CA, USA: IEEE

Computer Society Publications Tutorial Series,

1996.

9. BixinLi, XiaobingSun, HaretonLeung,"

Combining concept lattice with call graph for

impact analysis", Advances in Engineering

Software, vol.53, pp.1-13, November 2012

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

User
Interface

Server
modules

Client
Functions

Control
function

data
storage

A
xi

s
Ti

tl
e

Precision-Recall-F-Measure over CIT Vs Non CIT

Precision

Recall

F Measure

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4444 Published by: The Mattingley Publishing Co., Inc.

10. BasCornelissen, AndyZaidman, DannyHolten,

LeonMoonen, ArievanDeursena,

JarkeJ.vanWijk," Execution trace analysis

through massive sequence and circular bundle

views", Journal of Systems and Software, vol.81,

no.12, pp.2252-2268, December 2008

11. P. Wu, J. Wang and B. Tian, "Software

Homology Detection With Software Motifs

Based on Function-Call Graph," IEEE Access,

vol. 6, pp. 19007-19017, 2018.

12. B. G. Ryder, "Constructing the Call Graph of a

Program," IEEE Transactions on Software

Engineering, vol. SE-5, no. 3, pp. 216-226, May

1979.

13. S. Casale-Brunet and M. Mattavelli, "Execution

Trace Graph of Dataflow Process Networks,"

IEEE Transactions on Multi-Scale Computing

Systems, vol. 4, no. 3, pp. 340-354, 1 July-Sept.

2018.

14. F. Lanubile and G. Visaggio, "Extracting reusable

functions by flow graph based program slicing,"

in IEEE Transactions on Software Engineering,

vol. 23, no. 4, pp. 246-259, April 1997.

15. B. Korel, "Computation of dynamic program

slices for unstructured programs," IEEE

Transactions on Software Engineering, vol. 23,

no. 1, pp. 17-34, Jan. 1997.

16. M. Mock, D. C. Atkinson, C. Chambers and S. J.

Eggers, "Program slicing with dynamic points-to

sets," IEEE Transactions on Software

Engineering, vol. 31, no. 8, pp. 657-678, Aug.

2005.

17. K. B. Gallagher and J. R. Lyle, "Using program

slicing in software maintenance," IEEE

Transactions on Software Engineering, vol. 17,

no. 8, pp. 751-761, Aug. 1991.

18. X. Sun, B. Li, C. Tao, W. Wen and S. Zhang,

"Change Impact Analysis Based on a Taxonomy

of Change Types," 2010 IEEE 34th Annual

Computer Software and Applications Conference,

Seoul, pp. 373-382, 2010.

19. J. W. Wilkerson, "A software change impact

analysis taxonomy," 2012 28th IEEE

International Conference on Software

Maintenance (ICSM), Trento, 2012, pp. 625-628.

20. M. Ceccarelli, L. Cerulo, G. Canfora and M. Di

Penta, "An eclectic approach for change impact

analysis," 2010 ACM/IEEE 32nd International

Conference on Software Engineering, Cape Town,

pp. 163-166, 2010.

21. Bohner Shawn A., "Impact Analysis in Software

Change Process: A Year 2000 Perspective", IEEE,

pp. 42 - 51, 1996.

22. MaurizioPighin, GiorgioBrajnik," A formative

evaluation of information retrieval techniques

applied to software catalogues", Journal of

Systems and Software, vol.52, no.2–3, pp.131-

138, 1 June 2000.

23. AndrásKicsi, ViktorCsuvik, LászlóVidács,

FerencHorváth, ÁrpádBeszédes, TiborGyimóthy,

FerencKocsis," Feature analysis using

information retrieval, community detection and

structural analysis methods in product line

adoption", Journal of Systems and Software,

vol.155, pp.70-90, September 2019.

24. XiaobingSun, BixinLi, HaretonLeung, BinLi,

YunLi," MSR4SM: Using topic models to

effectively mining software repositories for

software maintenance tasks", Information and

Software Technology, vol.66, pp.1-12, October

2015.

25. Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang,

Jeffrey D. Kymer, "Automatically classifying

software changes via discriminative topic model:

Supporting multi-category and cross-project",

Journal of Systems and Software, vol.113,

pp.296-308, March 2016.

26. OlivierVandecruys, DavidMartens, BartBaesens,

ChristopheMues, ManuDe Backer, RafHaesen,"

Mining software repositories for comprehensible

software fault prediction models", Journal of

Systems and Software, vol.81, no.5, pp.823-839,

May 2008.

27. MeghaBhushan, ShivaniGoel, KaramjitKaur,"

Analyzing inconsistencies in software product

lines using an ontological rule-based approach",

Journal of Systems and Software, vol.137,

pp.605-617, March 2018.

28. DongWang, RuibingHao, DavidLee," Fault

detection in Rule-based Software systems",

Information and Software Technology, vol.45,

no.12, pp.865-871, 15 September 2003.

29. OmarMeqdadi, NouhAlhindawi, JamalAlsakran,

AhmadSaifan, HatimMigdadi," Mining software

repositories for adaptive change commits using

machine learning techniques", Information and

November-December 2019
ISSN: 0193-4120 Page No. 4435 - 4445

4445 Published by: The Mattingley Publishing Co., Inc.

Software Technology, vol.109, pp.80-91, May

2019.

30. QinbaoSong, XiaoyanZhu, GuangtaoWang,

HeliSun, HeJiang, ChenhaoXue, BaowenXu,

WeiSong," A machine learning based software

process model recommendation method", Journal

of Systems and Software, vol.118, pp.85-100,

August 2016.

31. CatiaTrubiani, AchrafGhabi, AlexanderEgyed,"

Exploiting traceability uncertainty between

software architectural models and extra-

functional results", Journal of Systems and

Software, vol.125, pp.15-34, March 2017.

32. GilbertRegan, FergalMcCaffery, KevinMcDaid,

DerekFlood," Medical device standards'

requirements for traceability during the software

development lifecycle and implementation of a

traceability assessment model", Computer

Standards & Interfaces, vol.36, no.1, pp.3-9,

November 2013.

33. SalomeMaro, Jan-PhilippSteghöfer,

MiroslawStaron," Software traceability in the

automotive domain: Challenges and solutions",

Journal of Systems and Software, vol.141, pp.85-

110, July 2018.

34. GabrieleBavota, AndreaDe Lucia, RoccoOliveto,

GenoveffaTortora," Enhancing software artefact

traceability recovery processes with link count

information", Information and Software

Technology, vol.56, no.2, pp.163-182, February

2014.

35. A. Oliveira Filho, "Change impact analysis from

business rules," 2010 ACM/IEEE 32nd

International Conference on Software

Engineering, Cape Town, 2010, pp. 353-354.

36. M. Shahid and S. Ibrahim, "Change impact

analysis with a software traceability approach to

support software maintenance," 2016 13th

International Bhurban Conference on Applied

Sciences and Technology (IBCAST), Islamabad,

pp. 391-396, 2016.

