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Abstract: 

In this paper, a portfolio optimization problem is proposed in an uncertain 

environment. For this portfolio optimization problem, stocks are assumed to 

function as zigzag uncertain variables. Transaction price is also included in the 

optimized version. A mean-VaR (value at risk) bi-objective portfolio 

optimization model is devised to account for market uncertainty. Cardinality, 

bounding restrictions, and liquidity are considered in addition to risk and return 

to make the model more effective. A gradient-based neural network approach is 

applied to solve the planned model. Finally, an example portfolio is presented to 

display the efficacy and the feasibility of the model suggested in this paper.  
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I. INTRODUCTION  

Portfolio optimization problems deal 

with individuals who want to invest their 

capital in the stock market to achieve personal 

investment goals. In financial planning’s 

infancy, observation and experience were the 

two main pillars for one’s success in this field. 

However, scientific developments in the field 

have provided us with tools to make better 

predictions, even for those of us who lack 

experience. 

 Modern portfolio theory’s fundamental 

basis was set by Markowitz, [7] who developed 

the mean-variance model for portfolio 

optimization. The essence of the Markowitz 

model is the minimization of risk and the 

maximization of returns. Since this model was 

first put forth, many developments have been 

applied within a horizon of one period. In the 

real world, however, portfolio optimization 

approaches are generally multi-period 

approaches, as investors, in most cases, prefer 

to revise their capital allocation occasionally. 

Therefore, it is necessary to change the 

approach from a single-period portfolio to a 

multi-period portfolio. 

 Mossin [13], Merton, [27] and 

Samuelson [24] have already considered multi-
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period portfolio selection problems. 

Meanwhile, Li and Ng [5] have formulated a 

multi-period portfolio optimization method by 

taking mean variance as the primary parameter. 

Zhu et al. [28] proposed a dynamic and highly 

generalized version of the mean-variance model 

by introducing a bankruptcy constraint. 

Gulpinar and Rustem [19] developed a worst-

case design for multiple periods for a stochastic 

market. Furthermore, a novel mean-

semivariance-CVaR model for multi-period 

portfolios was proposed by Najafi and 

Mushakhian [1]; this model was designed to 

handle uncertainty in the stock market. Najafi 

and Pourahmadi [2] applied an efficient 

heuristics method to maximize the final utility 

of the investor using a multi-period portfolio in 

an uncertain environment. Hassanlou [14] 

introduced the concept of the chance constraint 

to the existing multi-period portfolio models. In 

his work, borrowing and lending rates were 

assumed to be different from one another and to 

be normally distributed random variables. 

Additionally, he applied a genetic algorithm to 

solve the model.  

 The majority of portfolio optimization 

models that have been constructed previously 

have used probability theory to determine the 

risk and returns associated with stocks. 

However, these models may not work in the 

existing financial market, as the market 

contains many non-probabilistic aspects that 

affect the fluctuation of stocks. Moreover, 

probability theory is not entirely suitable to 

handle the uncertainty of the financial market. 

 To resolve this issue, the fuzzy set 

theory was proposed in 1965 by Zadeh [15] and 

proved to be useful in managing variations in 

the financial market. Wang [30] developed a 

fuzzy-theory-based portfolio optimization 

model, while Huang [12] and Qin et al. [26] 

investigated credibility measures in a fuzzy 

portfolio selection model. 

 Although the fuzzy theory worked well 

in the field of portfolio optimization, an 

inconstancy in this theory has been pointed out 

by Liu [16], who explained that fuzzy theory 

fails to describe the subjectivity involved in the 

financial market. He proposed a new theory 

called uncertainty theory. Several researchers 

have examined uncertainty theory within the 

portfolio optimization problem. A mean-

variance model for portfolio optimization in an 

uncertain environment was established by Qin 

et al. [25]. To further develop the model, Huang 

[11] introduced a risk curve in the mean risk 

model. Huang [10] later extended his research 

by incorporating a risk index into his existing 

work. Liu and Qin [18] then introduced a 

downside risk measure in the uncertain 

portfolio optimization problem. 

 Artificial intelligence techniques, such 

as the artificial neural network [5, 6, 9, 17, 20, 

21, 22, 23, 29, 31], are powerful tools used to 

deal with various types of optimization 

problems. Artificial recurrent neural networks 

can transform an optimization problem into a 

dynamic system called the KKT (Karush Kuhn 

Tucker) system. The KKT system consists of 

first-order differential equations. Furthermore, 

the KKT system [3] can be transformed into an 

unconstrained optimization problem that 

approaches its optimal state at the same points 

at which the solution of the original problem 

lies. 
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 In this paper, five criteria (return, risk, 

liquidity, cardinality, and threshold) are used to 

investigate the portfolio optimization problem 

in a multi-period scenario. Uncertain mean 

values are used to evaluate returns, and risks 

are calculated as the value-at-risk of uncertain 

returns. Liquidity is measuredin terms of the 

turnover rates of stocks. Transaction cost is also 

considered in the proposed model. An uncertain 

multi-objective approach is adapted to remodel 

a multi-objective portfolio problem into a 

single-objective one. Finally, a gradient-based 

neural network strategy is employed to achieve 

the best results possible. 

 The structure of the paper is as follows. 

In Part 2, some basics of uncertainty theory are 

discussed. The design of a portfolio 

optimization model in a multi-period scenario 

with transaction costs is explained in the next 

section. In Part 3, the multi-objective portfolio 

problem is transformed into a single-objective 

problem by using uncertain multi-objective 

programming. Part 5 includes the use of the 

gradient descent algorithm of the neural 

network to obtain optimal results. For 

illustrative purposes, an experiment is 

performed on the stock prices taken from BSE 

India’s website; the results are analyzed under 

different parameters in Part 6. Concluding 

remarks are given in the final section. 

II. PRELIMINARIES  

 Some elementary concepts of 

uncertainty theory [15]are discussed in this 

section, which will be required in further 

segments. 

Let us consider a measurable space 

(Γ,ℒ), Here Γbe a non-empty set and ℒbe a 𝜎 

algebra defined on it. In uncertainty theory, 

each element Λ of ℒ is defined as an event. To 

calculate the belief degree (chance of 

occurrence) of Λ, a number M{Λ} is assigned 

to each Λ in such a way that 

itsatisfiesfollowingAxioms, 

Axiom 1.ℳ{Γ} = 1(Normality) 

Axiom 2. If  Λ1 ⊂ Λ2 thenℳ{Λ1} ≤

ℳ{Λ2}(Monotonicity) 

Axiom 3.ℳ{Λ} +ℳ{Λc} = 1(Self-Duality) 

Axiom 4.If{Λ𝑖} is the countable sequence of 

events then: 

$ℳ{⋃ Λ𝑖
∞
𝑖=1 } ≤

∑ ℳ{Λ𝑖}.
∞
𝑖=1 $(Countable Subadditivity) 

(1) 

Remark 2.1 Here ℳ is defined asan uncertain 

measure that is interpreted as belief degree of 

an uncertain event that may or may not happen.  

Definition 2.2(Liu, [15]) If Γis a non-empty 

set, ℒ be a 𝜎 algebra over it and ℳ be an 

uncertain measure. Then the triplet (Γ,ℒ,ℳ) is 

called an uncertainty space.  

Definition 2.3(Liu, [15]) An uncertain variable 

𝜉 is a measurable function from an uncertainty 

space to the set of real numbers, such that 

{𝜉𝜖𝐵} is an event for any Boral set B of real 

numbers. The uncertain variable 𝜉 has a 

uncertain distribution 

Δ(𝑢) =ℳ{𝜉 ≤ 𝑢 }, Δ: ℝ → [0,1] 

For Example,uncertainty distribution for 

• linear uncertain variable is given by 
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Δ(𝑠) =

{
 

 
0 𝑖𝑓 𝑠 ≤ ℓ,

(𝑠 − ℓ)

(𝓊 − ℓ)
𝑖𝑓 ℓ ≤ 𝑠 ≤ 𝓊,

1 𝑖𝑓 𝑠 ≥ 𝓊.

 

ℒ(𝑎, 𝑏)= notation used for Linear uncertain 

variable (𝑎 < 𝑏, 𝑎 and 𝑏 are real numbers)  

• Zigzag uncertain variable is given by  

 

Δ(𝑠) =

{
  
 

  
 

0 𝑖𝑓 𝑠 ≤ ℓ,
(𝑠 − ℓ)

2(𝓊 − ℓ)
𝑖𝑓 ℓ ≤ 𝑠 ≤ 𝓊,

ℓ+𝓋 − 2𝓊

2(𝓋 − ℓ)
𝑖𝑓 𝓊 ≤ 𝑠 ≤ 𝓋

1 𝑖𝑓 𝑠 ≥ 𝓋

 (2) 

𝒵(𝑎, 𝑏, 𝑐)=notation used for Zigzag uncertain 

variable ( 𝑎 < 𝑏 < 𝑐, 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are the real 

numbers) 

• Normal uncertain variable is given by 

Δ(𝑠) = (1 + exp(
𝜋(ℯ− 𝓈)

√3𝜎
))

−1

, 𝓈𝜖ℝ. 

𝒩(ℯ, 𝜎)=notation used for normal uncertain 

variable (𝜎 > 0,ℯ and 𝜎 are the real numbers) 

𝜉1, 𝜉2…𝜉𝑚 are the independent uncertain 

variable if  

 

ℳ {⋂{𝜉𝑖𝜖𝐵𝑖}

𝑘

𝑖=1

} = min
1≤𝑖≤𝑘

ℳ{𝜉𝑖𝜖𝐵𝑖} (3) 

For any Borel sets 𝐵𝑖 (𝑖 = 1,2…𝑘) of real 

numbers.  

Definition 2.4(Liu, [15]) Expected value of an 

uncertain variable 𝜉 is given by 

 
𝐸[𝜉] = ∫ ℳ{𝜉 ≥ 𝑠}𝑑𝑠

∞

0

−∫ ℳ{𝜉 ≤ 𝑠}𝑑𝑠
0

−∞

 

(4) 

provided that at least one of the two integralsis 

finite. 

 In regard to Eq. (4), the expected value of a 

linear uncertain variable 𝜉~ℒ(𝛼, 𝛽)is
(ℓ+𝓊)

2
;the 

expected value of azigzag uncertain 

variable𝜉~𝒵(ℓ, 𝓊, 𝓋)is 
(ℓ+2𝓊+𝓋)

4
; theexpected 

value of normal uncertain variable 

𝜉~𝒩(𝑒, 𝜎)is𝑒. 

Theorem 2.5. (Liu, [15])Let we have two 

independent uncertain variables 𝜉 and 𝜂with 

finite expected values.Then,  

 𝐸[𝛼𝜉 + 𝛽𝜂] = 𝛼𝐸[𝜉] + 𝛽𝐸[𝜂] (5) 

for any real numbers 𝛼 and 𝛽. 

Theorem 2.6. (Liu, [15])Let an uncertain 

variable 𝜉has finite expected value. Then, 

 𝐸[𝛼𝜉 + 𝛽] = 𝛼𝐸[𝜉] + 𝛽 (6) 

for any real numbers 𝛼 and 𝛽. 

Definition 2.7Value at risk (VaR) of an 

uncertain variable 𝜉is the function 

𝑉𝑎𝑟𝜉(𝛼): (0,1] → ℝ such that  

𝑉𝑎𝑅𝜉(𝛼) = sup {𝑥|ℳ{𝜉 ≥ 𝑥} ≥ 𝛼} 

Here 𝛼𝜖(0,1] is called risk confidence level.  

It can be rewritten as  

 𝑉𝑎𝑅𝜉(𝛼) = sup{𝑥|ℳ{𝜉 ≤ 𝑥}

≤ 1 − 𝛼} 
(7) 
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Since the definition of the uncertainty 

distribution 

Δ(𝑢) =ℳ{𝜉 ≤ 𝑢 }.   

So from equation (6), we have 

𝑉𝑎𝑅𝜉(𝛼) = sup{𝑥|Δ(𝑥) ≤ 1 − 𝛼} 

It can be rewritten in the form of inverse 

uncertainty distribution Δ
−1(𝛼)as 

 𝑉𝑎𝑅𝜉(𝛼) = Δ
−1(1 − 𝛼) (8) 

ClearlyVaRξ(α) is a monotonically decreasing 

function of𝛼 

 

Let 𝜉~𝒵(𝑎, 𝑏, 𝑐) be a zigzag uncertain variable, 

whose uncertainty distribution is given by Eq. 

(2). Now for any distinctive confidence level 𝛼 

with 0 < 𝛼 ≤ 1, the expression for uncertain 

value at risk function can be defined as  

 𝑉𝑎𝑅𝜉(𝛼)

= {
2(𝑎 − 𝑏)𝛼 + 2𝑏 − 𝑎 𝑖𝑓 𝛼 < 0.5,

2(𝑏 − 𝑐)𝛼 + 𝑐 𝑖𝑓 𝛼 ≥ 0.5.
 

(9) 

It should be noted that for less than 50% risk 

confidence level, 𝛼 ≥ 0.5 will be used and for 

more than 50% risk confidence level, 𝛼 < 0.5 

will be used.  

III. MULTI-PERIOD PORTFOLIO 

OPTIMIZATION MODEL 

FORMULATION IN UNCERTAIN 

ENVIRONMENT 

In this section, a multi-period portfolio 

optimization model in an uncertain 

environment is constructed. First, a brief 

description of the problem is given along with 

the notations that will be used in subsequent 

sections. Then, the uncertain returns and value-

at-risk values for the given portfolio are 

calculated. Finally, some constraints are 

introduced so that the model complies with 

real-world situations.  

3.1. Problem description and notations 

 The portfolio optimization problem is 

regarded as a dynamic affair in that trades take 

place in discrete time periods. In this paper, a 

portfolio which contains a combination of risky 

and risk-free assets is analyzed. In the proposed 

model, the initial wealth of the investor is 𝑊1, 

and the investor can readjust this value at the 

beginning of the period 𝑇1. Furthermore, the 

returns of risky assets are designed to function 

as a zigzag uncertain variable. The notations for 

different terminologies are given below. 

𝑥𝑖𝑡 =Fraction of capital assigned to 𝑖𝑡ℎ stock at 

t time period; 

𝑥𝑓𝑡 = Fraction of capital assigned to risk-free 

asset at t time period; 

𝑟𝑖𝑡=  𝑖𝑡ℎrisky asset’s return at time period t;  

𝑟𝑓𝑡 =Risk free asset’s return at time period t; 

𝑟𝑝𝑡 =Portfolio’s total return at time period t; 

𝑟𝑁𝑡 =Portfolio’s net return at time period t;  
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𝑊𝑡=Wealth accumulated after t time period;  

𝑐𝑖𝑡 =The unit tradingprice of risky 𝑖𝑡ℎasset 𝑖 at t 

time period; 

𝐿𝑖𝑡=The uncertain turnover rate of risky asset 𝑖 

at period t; 

𝛽= confidence level for annual turnover rates 

(Liquidity) 

𝑧𝑖𝑡 = ainteger (binary) variable, where  

𝑧𝑖𝑡

= {
1,  𝑖𝑓 𝑟𝑖𝑠𝑘𝑦 𝑎𝑠𝑠𝑒𝑡 𝑖 𝑖𝑠  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐾 = The number of assets that an investor 

wishes to include in the portfolio;  

𝑙𝑖𝑡 =Minimum fraction of wealth that could be 

assigned to a stock.  

𝑢𝑖𝑡 = Maximum fraction of wealth that could 

be assigned to a stock.  

3.2. Objective functions 

3.2.1 Maximization of final Wealth  

The expected return of the portfolio in 

multi-period scenario is given by 

 
𝐸(𝑟𝑝𝑡) =∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡 + 𝑟𝑓𝑡𝑥𝑓𝑡

𝑛

𝑖=1

 (10) 

 

Trading expensesis calculated for per unit 

time difference. The trading expenses for𝑖𝑡ℎ 

risky asset at t time periodis 𝑐𝑖𝑡|𝑥𝑖𝑡 − 𝑥𝑖(𝑡−1)|. 

Hence total trading cost of the portfolio is given 

by  

 
𝐶 =∑𝑐𝑖𝑡|𝑥𝑖𝑡 − 𝑥𝑖(𝑡−1)|

𝑛

𝑖=1

 (11) 

Hence portfolio’s net return at 𝑡 time period is 

given by 

 
𝐸(𝑟𝑁𝑡) =∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡 + 𝑟𝑓𝑡𝑥𝑓𝑡

𝑛

𝑖=1

−∑𝑐𝑖𝑡|𝑥𝑖𝑡

𝑛

𝑖=1

− 𝑥𝑖(𝑡−1)| 

(12) 

Now from equation (12), the expected wealth at 

the beginning of period 𝑡 + 1 is determined by  

𝑊𝑡+1 = 𝑊𝑡(1 + 𝐸(𝑟𝑁𝑡)) 

= 𝑊𝑡 (1 + (∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡 + 𝑟𝑓𝑡𝑥𝑓𝑡

𝑛

𝑖=1

−∑𝑐𝑖𝑡|𝑥𝑖𝑡 − 𝑥𝑖(𝑡−1)|

𝑛

𝑖=1

)) 

 

= 𝑊1∏(1+ (∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡

𝑛

𝑖=1

𝑇

𝑡=1

+ 𝑟𝑓𝑡𝑥𝑓𝑡

−∑𝑐𝑖𝑡|𝑥𝑖𝑡

𝑛

𝑖=1

− 𝑥𝑖(𝑡−1)|)) 

(13) 

3.2.2 Minimization of Value-at-Risk  

Objective function for minimization of 

Value-at-risk is as follows 

 𝑀𝑖𝑛 𝑉𝑎𝑅𝜉(𝛼) (14) 
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3.3constraints  

3.3.1 Liquidity  

Liquidity constraint is given by 

 
ℳ(∑𝐿𝑖𝑡𝑥𝑖𝑡 ≥ 𝐿

𝑛

𝑖=1

) ≥ 𝛽           (0.5

< 𝛽 ≤ 1) 

(15) 

Here L is the minimum liquidity that an 

investor desires in any stocks.  

3.3.2 Cardinality 

This constraint allows us to diversify our 

investment and avoid capital flow in one or two 

higher return stocks. Total number of stocks on 

which an investor is allowed to distribute their 

capital is determined by  

 
∑𝑧𝑖𝑡 = 𝐾

𝑛

𝑖=1

 (16) 

  

3.3.3 Bounding constraint 

The lower and upper bounds for 𝑖𝑡ℎ risky 

stock is determined by 

 𝑙𝑖𝑡𝑧𝑖𝑡 ≤ 𝑥𝑖𝑡 ≤ 𝑢𝑖𝑡𝑧𝑖𝑡 (17) 

  

Thus, a portfolio optimization model in multi-

period scenario under uncertain environment 

will be as follows 

P(1)     𝑀𝑎𝑥  𝑊𝑡+1𝑀𝑖𝑛 𝑉𝑎𝑅𝜉(𝛼) 

Subject to  

ℳ(∑𝐿𝑖𝑡𝑥𝑖𝑡 ≥ 𝐿

𝑛

𝑖=1

) ≥ 𝛽 

∑𝑧𝑖𝑡 = 𝐾

𝑛

𝑖=1

 

𝑙𝑖𝑡𝑧𝑖𝑡 ≤ 𝑥𝑖𝑡 ≤ 𝑢𝑖𝑡𝑧𝑖𝑡 

𝑧𝑖𝑡

= {
1, 𝑖𝑓 𝑎𝑠𝑠𝑒𝑡 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑖 = 1,2, … , 𝑛     𝑡 = 1,2, … , 𝑇 

3.4 Crisp Equivalents  

In this paper, the stock returns and Liquidity 

(Turnover rate) are considered as zigzag 

uncertain variables with the triplet 𝑟𝑖𝑡 =

(𝑎𝑖𝑡,  𝑏𝑖𝑡, 𝑐𝑖𝑡) and 𝐿𝑖𝑡 = (𝐿𝑎𝑖𝑡,  𝐿𝑏𝑖𝑡,  𝐿𝑐𝑖𝑡) 

respectively.   Now from equation (9) and (13), 

P(1) will be rewritten as follows 

𝑀𝑎𝑥  𝑊1∏(1

𝑇

𝑡=1

+ (∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡 + 𝑟𝑓𝑡𝑥𝑓𝑡

𝑛

𝑖=1

−∑𝑐𝑖𝑡|𝑥𝑖𝑡 − 𝑥𝑖(𝑡−1)|

𝑛

𝑖=1

)) 

𝑀𝑖𝑛 ∑[2(𝑎𝑖𝑡 − 𝑏𝑖𝑡)𝛼 + 2𝑏𝑖𝑡 − 𝑎𝑖𝑡]

𝑛

𝑖=1

𝑥𝑖𝑡 

Zhu and Zhang[30] provided a method by 

which chance constraint of portfolio turnover 

rate can be transformed into equivalent another 

expression that is as follows  
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 ℳ{𝜉 ≥ 𝑟} ≥ 𝜆 ⇔ 𝑟

≤ (2𝜆 − 1)𝑎

+ 2(1 − 𝜆)𝑏 

(18) 

Where, 𝜉 = 𝒵(𝑎, 𝑏, 𝑐) 𝑤𝑖𝑡ℎ 𝑎 < 𝑏 < 𝑐 is a 

zigzag uncertain variable and 𝜆(0.5 < 𝜆 ≤ 1) 

is given uncertain confidence level. 

From (18), the chance constraint of portfolio 

turnover rate can be replaced by equivalent 

constraint as follows  

ℳ(∑𝐿𝑖𝑡𝑥𝑖𝑡 ≥ 𝐿

𝑛

𝑖=1

) ≥ 𝛽 ⇒ 

∑((2𝛽 − 1)𝐿𝑎𝑖𝑡 + (2 − 2𝛽)𝐿𝑏𝑖𝑡)𝑥𝑖𝑡 ≥ 𝐿

𝑛

𝑖=1

 

Now crisp equivalence of P(1) is defined as 

follows  

P(2)  

𝑀𝑎𝑥  𝑊1∏(1

𝑇

𝑡=1

+ (∑𝐸(𝑟𝑖𝑡)𝑥𝑖𝑡

𝑛

𝑖=1

+ 𝑟𝑓𝑡𝑥𝑓𝑡

−∑𝑐𝑖𝑡|𝑥𝑖𝑡

𝑛

𝑖=1

− 𝑥𝑖(𝑡−1)|)) 

(19) 

 
𝑀𝑖𝑛 ∑[2(𝑎𝑖𝑡 − 𝑏𝑖𝑡)𝛼 + 2𝑏𝑖𝑡

𝑛

𝑖=1

− 𝑎𝑖𝑡] 𝑥𝑖𝑡 

(20) 

Subject to 

 
∑((2𝛽 − 1)𝐿𝑎𝑖𝑡 + (2 − 2𝛽)𝐿𝑏𝑖𝑡)𝑥𝑖𝑡

𝑛

𝑖=1

≥ 𝐿 

(21

) 

 
∑𝑧𝑖𝑡 = 𝐾

𝑛

𝑖=1

 
(22

) 

 𝑙𝑖𝑡𝑧𝑖𝑡 ≤ 𝑥𝑖𝑡 ≤ 𝑢𝑖𝑡𝑧𝑖𝑡 (23

) 

 𝑧𝑖𝑡

= {
1, 𝑖𝑓 𝑠𝑡𝑜𝑐𝑘𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(24

) 

 

𝑖 = 1,2, … , 𝑛     𝑡 = 1,2, … , 𝑇 (25

) 

IV. UNCERTAIN MULTI-OBJECTIVE 

PROGRAMMING 

Liu [15] described a compromise model 

through which a multi-objective uncertain 

programming problem can be transformed into 

a single-objective programming problem. The 

optimality condition for the compromised 

solution is Pareto to the original problem. 

The solution methodology for a compromise 

model of  P(2) consist of four steps that are as 

follows:  

Step 1: Firstly P(2) model is solved for each 

objective separately. That is   

For maximization of wealth:𝑓1 =  𝑀𝑎𝑥 𝑊𝑡+1 

subject to the constraints (21)-(25) 

For minimization of value-at-risk: 𝑓2 =

𝑀𝑖𝑛 𝑉𝑎𝑅(𝛼) subject to the constraints (21)-

(25) 
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If the optimality condition is same for both 

the objective functions then an efficient 

solution is achieved. Otherwise go to step 2 

Step 2: Optimum values of 𝑓1(𝑓1
+)and 

𝑓2(𝑓2
+)are considered as upper bound and lower 

bound for wealth and risk objective 

respectively: 

𝑓1
+ = 𝑓1(𝑥

1) 

𝑓2
+ = 𝑓2(𝑥

2) 

Step 3: To find the compromise solution, a 

distance function is constructed as follows 

 

𝑑 =∑𝜆𝑖(𝑓𝑖 − 𝑓𝑖
+)2

2

𝑖=1

 (26) 

Where 𝜆𝑖, (𝑖 = 1,2) reflects the relative 

importance of the 𝑖𝑡ℎ objective function. 

Step 4: Now P(2) modelwill be represented in 

terms of the distance function as follows: 

P(3) 

𝑀𝑖𝑛 𝑑 =∑𝜆𝑖(𝑓𝑖 − 𝑓𝑖
+)2

2

𝑖=1

 

subject to the constraints (21-25) 

V. PROPOSED NEURAL NETWORKS  

This section outlines the steps taken to 

transform P(3) into a corresponding neural 

network model. First of all, to formulate P(3) in 

terms of the neural network, an energy function 

𝐸(𝑧) is constructed in such a way that when 

𝐸(𝑧) moves toward zero, 𝑧 moves toward to 𝑧∗, 

which corresponds with the intended optimal 

solution. A system of differential equations is 

constructed by taking the gradient of an energy 

function that leads to the development of neural 

networks. 

Let us first transform P(3) into standard 

form.  

 

{

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑔(𝑥) ≤ 0 ,

ℎ(𝑥) = 0,
 (27) 

where 𝑥𝜖ℝ2𝑛, 𝑔(𝑥) = (𝑔1(𝑥), 𝑔2(𝑥),… , 𝑔𝑚(𝑥))
𝑇
 

ℎ(𝑥) = (ℎ1(𝑥), ℎ2(𝑥),… , ℎ𝑙(𝑥))
𝑇
.  

Suppose that the problem (27) has an optimal 

solution. Let its Lagrange’s function be  

 𝐿(𝑥, 𝜇, 𝜆) = 𝑓(𝑥) + 𝜇𝑇 . 𝑔(𝑥)

+ 𝜆𝑇 . ℎ(𝑥) 
(28) 

Where 𝜇 = (𝜇1,   𝜇2, … 𝜇𝑚)
𝑇    and                       

𝜆 = (𝜆1,   𝜆2, … , 𝜆𝑙)
𝑇. 

Then  

∇𝑥𝐿(𝑥, 𝜇, 𝜆) = ∇𝑓(𝑥) + ∇𝑔(𝑥)
𝑇𝜇 + ∇ℎ(𝑥)𝑇𝜆 

Where ∇ denotes the gradient [20] of a 

function.  

KKT conditions for (27) are as follows  

 

{

∇𝑥𝐿(𝑥
∗, 𝜇∗, 𝜆∗) = 0

𝜇∗𝑇𝑔(𝑥∗) = 0,    𝜇∗ ≥  0   

𝑔(𝑥∗) ≤ 0, ℎ(𝑥∗) = 0 

 (29) 

Theorem 5.1[3]:𝑥∗𝜖ℝ2𝑛 minimizes 𝑓(𝑥) in 

(27) if and only if (𝑥∗𝑇 , 𝜇∗𝑇 , 𝜆∗𝑇)
𝑇
,  

𝜇∗𝜖ℝ𝑚𝜆∗𝜖ℝ𝑙satisfies (29). 

𝜇∗𝑇and 𝜆∗𝑇 are Lagrange’s multiplier vectors 

and  𝑥∗is termed as the KKT point of (27)  
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Theorem 5.2[3]: 𝑥∗ is the optimal solution of 

(27) if and only if 𝑥∗ is the KKT point of (27). 

Theorem 5.3[3]: Suppose that 𝑔(𝑥)𝜖ℝ𝑚is the 

continuously differentiable function Then 

 
𝑔(𝑥) ≤ 0 ⇔

1

2
𝑔(𝑥)𝑇[𝑔(𝑥)

+ |𝑔(𝑥)|] = 0  
(30) 

Moreover, 
1

2
𝑔(𝑥)𝑇[𝑔(𝑥) + |𝑔(𝑥)|]𝜖𝐶1. Where 

|.| denotes the absolute value. Theorem 5.3, is 

used to transformed general inequality 

constraint into equality constraints, since it does 

not affect the differentiability of𝑔𝑗(𝑥). 

Convexity of (30) can be easily verified when 

𝑔𝑗(𝑥) is concave.  

Similarly  

 
𝜇 ≥ 0 ⇔

1

2
𝜇[𝜇 − |𝜇|] = 0 (31) 

With the help of (29),(30) and (31), The Energy 

function of (27) can be constructed as follows: 

 𝐸(𝓏) = 𝐸(𝑥, 𝜇, 𝜆)

=
1

2
‖∇𝑥𝐿(𝑥, 𝜇, 𝜆)‖

2

+
1

2
‖𝜇. 𝑔(𝑥)‖2

+
1

2
‖ℎ(𝑥)‖2

+
1

2
𝜇[𝜇 − |𝜇|]

+
1

2
𝑔(𝑥)𝑇[𝑔(𝑥)

+ |𝑔(𝑥)|] 

(32) 

Here 𝜇. 𝑔(𝑥) denotes the component-wise 

multiplication of 𝜇 and 𝑔(𝑥). 

Where 𝓏 = (𝑥𝑇 , 𝜇𝑇 , 𝜆𝑇)𝑇𝜖ℝ𝑛+𝑚+𝑙.The energy 

function (32) is formulated in such a way that it 

can’t be negative i.e. 𝐸(𝓏) ≥ 0. So, optimality 

will be achieved at 𝐸(𝓏) = 0. 

Theorem 5.4[3]: 𝑥∗is the optimal solution of 

(27)⇔  𝐸(𝓏∗) = 0, 𝓏∗ = (𝑥∗𝑇 , 𝜇∗𝑇 , 𝜆∗𝑇)
𝑇
. 

Proof: If 𝓏∗ = (𝑥∗𝑇 , 𝜇∗𝑇 , 𝜆∗𝑇)
𝑇
 is the zero point 

of 𝐸(𝓏) then it must satisfy the KKT system 

(29). 

Hence it follows from Theorem 4, 𝑥∗is the 

optimal solution of   (27). 

Converse: Since from theorem 4, If 𝑥∗ is the 

optimal solution of (27) then 𝓏∗ =

(𝑥∗𝑇 , 𝜇∗𝑇 , 𝜆∗𝑇)
𝑇
 satisfies the KKT system (29). 

Now it is straightforward to show 𝓏∗ is the zero 

point of 𝐸(𝓏).  

With the help of Energy Function 𝐸(𝓏), a 

gradient-based neural network [3] can be 

formulated to solve our portfolio optimization 

problem.  

 𝑑𝓏

𝑑𝑡
= −∇𝐸(𝓏) 

Leung et al. [3] computedthe gradient in details 

as follows: 

 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= −∇𝑥𝐸(𝓏)

𝑑𝜇

𝑑𝑡
= −∇𝜇𝐸(𝓏)

𝑑𝜆

𝑑𝑡
= −∇𝜆𝐸(𝓏)

 (34) 

If∇𝐸(𝓏) is Lipchitz continuous, then (33) has a 

unique solution because Lipchitz continuity 

implies continuity.  
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5.1 Stability analysis 

The Energy function 𝐸(𝓏) (32) is bounded 

below, and it is easy to show that its gradient 

∇𝐸(𝓏)is locally Lipchitz continuous [3]. In 

gradient descent algorithm any trajectory 

converges to an equilibrium point and, the 

Lyapunov stability and asymptotical stability 

are identical in this context. Now it is enough to 

show that any trajectory of proposed approach 

converges to asymptotical stable point.  

Theorem 5.5[3]: Let the set of equilibrium 

points𝑀 = {𝓏 =

(𝑥𝑇 , 𝜇𝑇 , 𝜆𝑇)𝑇 𝜖ℝ𝑛+𝑚+𝑙|𝛻𝐸(𝓏) = 0}of (32) 

andΘ = {𝓏 =

(𝑥𝑇 , 𝜇𝑇 , 𝜆𝑇)𝑇𝜖ℝ𝑛+𝑚+𝑙|(𝑥𝑇 , 𝜇𝑇 , 𝜆𝑇)𝑇satisfies(29

)} thenΘ ⊆ M i.e. each point𝓏that 

satisfies(29)must be an equilibrium point 

of𝐸(𝓏). 

Theorem 5.6[3]: Suppose that the neural 

network (33)has a unique equilibrium point𝓏∗, 

then𝓏∗is uniformly and asymptotically stable.  

Theorem 5.7[3]: Suppose that a level 

set𝐿(𝓏0) = {𝓏𝜖ℝ𝑛+𝑚+𝑙: 𝐸(𝓏) ≤ 𝐸(𝓏0)}is 

boundedthen there exists an equilibrium 

point�̅�ϵ𝑀and a strictly increasing 

sequence{𝑡𝑛}, (𝑡𝑛 ≥ 0)such 

that lim
𝑛→∞

𝓏(𝑡𝑛, 𝓏
0) = �̅�, ∇𝐸(�̅�) = 0. 

Theorem 5.8[3]: Suppose that the neural 

network(33)has a unique equilibrium point and 

the level set𝐿(𝓏0) = {𝓏𝜖ℝ𝑛+𝑚+𝑙: 𝐸(𝓏) ≤

𝐸(𝓏0)}is bounded. Then every trajectory of 

network equation(32)converges to𝓏∗that 

satisfies(29). i.e., 𝓏∗is globally and 

asymptotically stable for(29). 

Now an algorithm is used in the next section to 

describe the technical aspect of the proposed 

neural network. Algorithm starts with an initial 

vector at which value of energy function is 

calculated. Then while loop is used for further 

iterations. Each iteration consists of, calculating 

the gradient of 𝐸(𝓏), updating the initial vector, 

calculating the error and stopping criteria. 

Algorithm:  

Step 1: Initialization 

let𝑥𝜖ℝ𝑛, 𝜇𝜖ℝ𝑚, 𝜆𝜖ℝ𝑙, ∆𝑡 > 0, 𝑡 = 0are initial 

arbitrary vectors and let error 𝜀 = 10−15. 

Step 2: Construct Energy function 𝐸(𝓏) from 

the KKT system (29) 

Step 3: Gradient of 𝐸(𝓏)is calculated to obtain 

the system of differential equation as follows: 

𝑒(t) = ∇𝑥𝐸(𝓏) 

𝑣(t) = ∇𝜇𝐸(𝓏) 

𝑢(t) = ∇𝜆𝐸(𝓏) 

Step 4: Initial vector updation 

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) − ∆𝑡. 𝑒(𝑡) 

𝜇(𝑡 + ∆𝑡) = 𝜇(𝑡) − ∆𝑡. 𝑣(𝑡) 

𝜆(𝑡 + ∆𝑡) = 𝜆(𝑡) − ∆𝑡. 𝑢(𝑡) 

Step 5: Error calculation 

𝑟(𝑡) =∑𝑒𝑖
2

𝑛

𝑖=1

(𝑡);   𝑙(𝑡) =∑𝑣𝑗
2

𝑚

𝑗=1

(𝑡);   𝑚(𝑡)

= ∑𝑢𝑘
2

𝑙

𝑘=1

(𝑡) 

Step 6: if 𝑟, 𝑙 and 𝑚 < 𝜀, stop; else 𝑡 = 𝑡 + 1 

end 
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Output: 𝑥(𝑡 + ∆𝑡), 𝜇(𝑡 + ∆𝑡), 𝜆(𝑡 + ∆𝑡) 

VI. NUMERICAL ILLUSTRATION  

An empirical study is conducted in the 

Bombay Stock Exchange (BSE) market to 

appraise the designed model for multi-period 

portfolio optimization. Suppose that an investor 

chooses to invest in ten risky assets from 

different sectors (e.g., the automobile, banking 

and finance, cement and construction, chemical, 

and manufacturing sectors). The mean and 

value-at-risk for the different confidence levels 

of stocks are organized in Table 1, and the data 

associated with the annual turnover rate are 

presented in Table 2. The initial wealth of the 

investor is considered as one unit and can be 

modified in the subsequent period. The return 

rates of stocks have been assumed to be a 

zigzag uncertain variable. One year’s worth of 

data (from January 2017 to December 2017) for 

these stocks are used for subsequent 

calculations. The transaction expenses are fixed 

at 0.2% of the turnover rate.  

 To solve the P(3) model, a gradient-

based neural network technique is employed to 

simulate the dynamic system. Calculations have 

been made under various uncertain confidence 

levels (β); the results are presented in Table 3. 

It is evident that the value-at-risk and wealth 

objective have opposite trends. Hence, to 

achieve one objective, an investor has to 

compromise the other. 

Table 1 Mean and Value at Risk of monthly returns of risky asset 

S.No. Stock Code Mean 𝜶 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 

1 500180 0.0422 0.0044 0.0040 0.0032 

2 500209 -0.0039 0.0063 0.0051 0.0029 

3 500312 -0.0094 0.0043 0.0033 0.0017 

4 500425 0.0221 0.0053 0.0045 0.0030 

5 500470 0.0368 0.0135 0.0117 0.0084 

6 500495 0.0855 0.0365 0.0315 0.0226 

7 500650 0.0548 0.0260 0.0221 0.0151 

8 503806 0.0091 0.0067 0.0055 0.0034 

9 506480 0.0779 0.0246 0.0214 0.0157 

10 514034 -0.0380 0.1147 0.0912 0.0522 

Table 2  Annual Turnover rates of the assets in different confidence level 

S.No. Stock Code Mean 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 

1 500180 0.0025 0.00176 0.00144 0.0032 

2 500209 0.0056 0.00434 0.00396 0.0029 

3 500312 0.009 0.00563 0.00472 0.0017 

4 500425 0.0094 0.00521 0.00424 0.0030 

5 500470 0.0846 0.04828 0.03492 0.0084 

6 500495 0.1575 0.105 0.09 0.0226 

7 500650 0.01405 0.00747 0.00568 0.0151 

8 503806 0.02062 0.0123 0.0102 0.0034 
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9 506480 0.0096 0.00367 0.00248 0.0157 

10 514034 0.0250 0.01266 0.01004 0.0522 

Table 3.1 The results of multi-objective portfolio optimization under different risk and liquidity 

confidence levels 

Alpha Value Beta Value Stock Code Proportion 

0.05 0.7 

500180 0.3000 

500312 0.0500 

500495 0.1409 

500650 0.2561 

503806 0.2529 

0.05 0.8 

500180 0.3000 

500209 0.0500 

500312 0.3000 

500425 0.0500 

500495 0.3000 

0.05 0.9 

500180 0.3000 

500209 0.0968 

500312 0.3000 

500495 0.2498 

506480 0.0534 

Table 3.2 

Alpha Value Beta Value Stock Code Proportion 

0.1 0.7 

500425 0.0500 

500470 0.3000 

500650 0.3000 

503806 0.2737 

506480 0.0763 

0.1 0.8 

500180 0.1306 

500209 0.0804 

500312 0.3000 

500495 0.1889 

500650 0.3000 

0.1 0.9 

500180 0.0500 

500209 0.1594 

500312 0.3000 

500495 0.2473 

506480 0.2433 

Table 3.3 

Alpha Value Beta Value Stock Code Proportion 

0.2 0.7 

500180 0.3000 

500209 0.1410 

500495 0.1513 
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500650 0.3000 

514034 0.1077 

0.2 0.8 

500180 0.1602 

500209 0.0500 

500312 0.3000 

500495 0.1898 

500650 0.3000 

0.2 0.9 

500180 0.0500 

500209 0.1009 

500312 0.3000 

500495 0.2491 

506480 0.3000 

Table 4 Final Risk, Return and Liquidity of multi-objective portfolio optimization under different risk 

and liquidity confidence levels 

S.no. Alpha value Beta value Return Risk Liquidity 

1. 0.05 0.7 0.0406 0.015 0.0206 

2. 0.05 0.8 0.03641 0.0141 0.0342 

3. 0.05 0.9 0.035 0.0136 0.0291 

4. 0.1 0.7 0.03702 0.016 0.0206 

5. 0.1 0.8 0.035 0.01704 0.0243 

6. 0.1 0.9 0.03879 0.01751 0.0293 

7. 0.2 0.7 0.03741 0.0279 0.0206 

8. 0.2 0.8 0.03644 0.01701 0.0244 

9. 0.2 0.9 0.04357 0.0186 0.0295 

 

 

Figure 2. Comparison chart for 𝛼 = 0.05 
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Figure 3. Comparison chart for 𝛼 = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Comparison chart for 𝛼 = 0.2 

Table 5 Wealth for consecutive three periods under different risk and liquidity confidence interval 

(𝑊1 = 1) 

S.no. Alpha value Beta value 𝑾𝟐 𝑾𝟑 𝑾𝟒 

1. 0.05 0.7 1.0385 1.0786 1.1203 

2. 0.05 0.8 1.0344 1.0701 1.1068 

3. 0.05 0.9 1.0329 1.0670 1.1023 

4. 0.1 0.7 1.0350 1.0713 1.1088 

5. 0.1 0.8 1.0329 1.0670 1.1023 

6. 0.1 0.9 1.0367 1.0749 1.1144 

7. 0.2 0.7 1.0354 1.0721 1.1100 

8. 0.2 0.8 1.0344 1.0701 1.1069 

9. 0.2 0.9 1.0415 1.0849 1.1300 

 



 

March-April 2020 
ISSN: 0193-4120 Page No. 11089 - 11106 

 
 

11104 Published by: The Mattingley Publishing Co., Inc. 

VII. CONCLUSION 

This paper focuses on a portfolio 

optimization model by considering more than 

one period and by considering transaction costs 

in uncertain situations. The optimization 

problem is developed as a bi-objective problem. 

Wealth is chosen as one objective and value-at-

risk as another. Liquidity, bounds, and 

cardinality are the constraints imposed on the 

model. An artificial neural network algorithm is 

adapted to achieve optimal results. The results 

are computed for different values of α (VaR 

confidence level) and β (liquidity confidence 

level) so that most investors’ aspirations and 

preferences are accounted for, which will help 

them achieve their desired outputs.  

 In the stock market, historical data alone 

are insufficient for one to make predictions 

about the future; therefore, uncertainty theory is 

more suitable than other theories for handling 

the subjectivity inherent in imprecise market 

situations. Furthermore, a neural network as an 

artificial intelligence method is a tool that 

allows us to solve very sophisticated and 

complex optimization problems that would 

otherwise require the use of several 

optimization techniques to reach optimal 

solutions. Thus, uncertainty theory saves 

significant time and effort.  

 In the future, we will attempt to 

incorporate more parameters, like skewness, 

kurtosis, entropy, etc., as objective functions 

and conditional value-at-risk (CVaR) and 

conditional downside risk (CDaR) as risk 

measures to improve the comprehensiveness of 

the optimization model. We also intend to 

introduce other uncertainty variables, like a 

normal uncertain variable and an empirical 

uncertain variable, into the portfolio 

optimization model and to contrast the 

outcomes of these models with those derived 

from the present analysis. 
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