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Abstract: This research article mainly explores on matrix Lie groups admitting the 

Cayley Construction and presents innovative proofs of the following propositions. 

• If a matrix group admits the Cayley construction and so is a matrix Lie 

group then the corresponding vector space coincides with the Cayley 

image of it. 

• Every matrix Lie group possesses an in-image. 

Furthermore three most important lemmas and one proposition in Lie Groups and 

Lie Algebras are presented with very simple and innovative proofs. One of three 

lemmas gives the necessary and sufficient condition for a topological group to be 

Hausdorff.As well the condition for a topological group to be connected is also 

derived.  
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I. INTRODUCTION 

L.D. Faddeer et.al [1] in 1988, in their research 

paper discussed quantum formal groups, a finite 

dimensional example and reviewed the deformation 

theory and quantum groups. J.C. Benjumea et.al 

[2], in 2005, in their research article presented a 

method to obtain the Lie group associated with 

finite dimensional nilpotent Lie algebra. In 1968, 

J.G. Belinfante et.al [3], in their research paper 

classified the finite dimensional representations of 

semi simple Lie algebras. David A. VoganJr, in 

1979, in his research paper presented an essentially 

algebraic description of the irreducible 

representations of connected semi simple Lie group 

G in terms of their restriction to a maximal compact 

subgroup K of G. In 1947, Claude Chevalley [4], in 

his research article discussed the applications which 

can be made of the notion of algebraic Lie algebra 

to the general theory of Lie algebra and particularly 

of semi-simple algebra. 

A subgroup H of ( )HK m is called a matrix Lie 

group ( ( )HK m is full linear group) if a smoothness 

is introduced on H  w.r.t which it is a Lie group and 

the embedding : ( )H HK m → is smooth and 

hence it is a homomorphism of a Lie groups. Every 

one parameter subgroup of the group H is 

automatically a one parameter subgroup of ( )HK m

and so is of the form sBs e→ . This defines a 1-1 

function ( ) ( )( ) ( )I H I HK m m→ = which is 

nothing but the mapping ( )I  . Thus any matrix Lie 

group the vector space ( )g I H=  is naturally 

identified with some subspace of the vector space

( )m . Any group admitting the Cayley 

construction is an example of matrix Lie group say 

a group ( )DE m of all D -orthogonal matrices. By 

definition a matrix one-parameter subgroup sBs e→

is a one-parameter subgroup of ( )DE m iff for any

s , ( )sB z sBe De D= , w.r.t s differentiate this and 
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put 0s = ,one can get 2 0B D DB+ = .Using 

definition  this relation provides that B is a D -skew 

symmetric matrix. Conversely the function sBs e→

is seen to be a one-parameter subgroup of ( )DE m

for any D skew symmetric matrix B . To prove this 

one can use the analogue of the family relation 

1lim
m

b

q

b
e

q→

 
= + 

 
one can prove that this formula 

is valid in any finite dimensional associate algebra. 

 In fact since 

( ) ( )1 11 1 1

. . ................. ( )l

q q q q k

lq q q q q ltimes s l

− −−−− − + 
=  

   

For any multiplicative norm  

0

1 1
q

b l

l
l

qb
e e b

lq l q



=

    
− + −    
    



0

1 1 l

l
l

q
b

ll q



=

  
 −  

  
  

1

q

b b
e

q

 
= − + 

 
 

lim 0

q

b

q

b
e e

q→

 
− + = 
 

as 1

q

bb
e

q

 
+ → 

 
 

One can see that for any s ,  
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Since ( ) ( )zDh B h B D= −  for any polynomial 

( )h B of matrix B . 

So
( ) ( )

z z
sB sB sB sBe De e e D D−= =

. 

Hence in fact
( ) ( )sB

De E m
. 

This prove that for a group ( )DE m the vector space 

of all D-skew symmetric matrices is a subspace 

( )( )DI E m
of space 

( )m
 and the subspace 

( )( )DI E m
coincides with the Cayley image of 

( )DE m
 

A group M is called a lie group or smooth group if 

the functions  

:f M M M → defined by ( ),f a b ab= ……..(1)  

and :f M M→ defined by 
1( )f a a−= ………..(2) 

are smooth functions. If M and N are lie groups 

then the mapping M N→ is called morphism of lie 

groups if it is their homomorphism as abstract 

groups and their smooth mapping as manifolds. All 

lie groups and all their homeomorphisms form a 

category devoted by GR-DIFF. Depending on D’s 

smoothness there is a countable family of 

categories GR-DIFF where either 2 s  or 

s =  one require of the manifolds under 

consideration, but practically nothing depends on s
as any D’s-isomorphic to the analytic class  group. 

Some researchers find slight differences between 

Lie groups and smooth groups. The group M which 

is at the same time a topological space is called a 

topological group if the functions (1) and (2) are 

continuous for it. The homomorphism M N→ of 

topological groups is called continuous if it is a 

continuous mapping. Topological groups and their 

continuous homomorphism are called the category 

GR-TOP. The topological space P is said to be 

Hausdorff or separable if any two of its different 

points have disjoining neighbourhoods. In other 

words the diagonal  is called in P. A topological 

group should not necessarily be Hausdorsff. 

II. PROPOSITION 

If the matrix group ( )H HK m admits the Cayley 

construction and so is a matrix  

Lie group then the corresponding vector space 

( )I H coincides with the Cayley image H  of H . 

Proof: Let ( )B I H that is , let the mapping 

sBs e→ be a one-parameter subgroup of the group 
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H Since the set H  of non-exceptional matrices in 

H is a neighbourhood of the identity F of H there 

is 0  such that s  the matrix sBe is non-

exceptional and therefore its Cayley image 

( ) ( )( )
1

sB sB sBe F e F e H
 −

= − +  is defined. Since 

H  is a vector space it follows that the matrix 

( ) ( )
0

0

lim

sB sB

s

s

d e e

ds s

 

→

=

 
  =
 
 

also belongs to H  . But 

on the other hand 

( )
( ) ( )

( )( )1

1

sB
sB

sB sB sB

d F ed e
Be F e F e

ds ds

−


−
  +
  = + + −
 
 

 

And 
( )

0

1

2

sB

s

d e
B

ds



=

 
  =
 
 

and consequently B H   

III. PROPOSITION 

A subgroup ( )HK m is a matrix Lie group if there is 

a diffeomorphism :h U U→ of some 

neighbourhoodU of the identity matrix in ( )HK m

onto an open set U of ( )m that has the property 

that the set ( )h H U is the intersection of H  and 

some vector subspace H  of the space ( )m . 

( )h H U H U=  

Proof: Let dimq H= and let : qH  → be an 

isomorphism of the space H  onto the space q . 

Also let W H U= andW H U  
=  

 
. Then W

is an open set in q and the mapping k h= onto 

W is a 1-1 onto correspondenceW W→ . In other 

words the pair ( ),W k is a chart on H . 

Now let B be an arbitrary matrix in H and let 

( )B BW K w= and 1

B Bk k k −= . Then the pair ( ),B BW k

is also chart on H . Since BB W , all sets of the 

form BW over H . Moreover if 0B CW W  then on

( )B B Ck W W the mapping 1

C Bk k− will be a 

restriction of the diffeomorphism 

1

1 1 1 1

C B C B
k k k k h k h −

− − − −=  

and hence it will itself be a  diffeomorphism. 

Consequently charts ( ),B BW k make up an atlas. This 

defines on H smoothness w.r.t which H is 

obviously a matrix Lie group. 

IV. PROPOSITION: 

If for a subgroup H of a group ( )HK m there is a 

analytic diffeomorphism :h U U→ which satisfies 

the conditions of proposition 3, then the vector 

space ( )I H corresponding to that group coincides 

with the vector space H  specified in proposition 3. 

Proof:Let ss e → be an arbitrary one –parameter 

subgroup of a group H and let 0 → be a number 

such that for s  the matrix se  belongs to U then 

se H U  and hence ( )sh e H U  . 

Therefore
( )sdh e

H
ds



 .But

( )
( )1

1
0

0

s

s s

s

s

dh e
h e Be b B

ds



 

=

=

 
   = =
 

  

as 

( ) ( ) ( )
11

1 22 1 ......... 1 .......
q

qh z b b z qb z
−

= + − + + − +  

and when ( )1

1h F b F= .Consequently 
1b B H  and 

so B H  for under the hypothesis 1 0b  . This 

proves that ( )I H H  . So ( )I H H = since these 

vector spaces are of the same dimension. 

V. PROPOSITION: 

 Every matrix Lie group H possesses an  ln –image 

Proof: According to the foregoing the only 

candidate for the role of the vector space pH is the 
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vector space ( )I H . One can show that it in fact the 

necessary property. Suppose as before that U andU

are neighbourhoods of the identity and zero 

matrices respectively such that the function 

lnB B→ defines a diffeomorphism ln :U U→ with 

the inverse diffeomorphism exp :U U→ . Then for 

any matrix ( )B I H U . There is an inclusion 

Be H U as sBe H for any s . Since ln Be B=

this proves that ( ) ( )lnI H U H U . Conversely 

let C H U . Then a matrix lnB C U=  is 

defined. Consider on ( )HK m the corresponding left 

invariant vector field :P Y YB→ . The restriction 

/Q P H= of the field P to H is obviously a smooth 

left-invariant vector field on H (an element of the 

vector space ( )I H ) which is  connected with the 

field P . Where ( ): H HK m → is an embedding. 

This means that ( )I Q P = . Consequently by the 

virtue of the general identifications the field Q

identified with the matrix B . Hence ( )B I H . This 

proves that ( ) ( )ln H U I H U
 

Thus ( ) ( )ln H U I H U= . 

 

6. Lemma:A topological group M is Hausdorffiff 

its identity is closed. 

Proof: Any point in Hausdorff space is closed and 

hence the condition is required. But as the diagonal 

M M  is the inverse image of the identity 

under the continuous function M M M → ,

( ) 1,x y xy−→ it is also enough. From this lemma 

one can obtain that every Lie group is a Hausdorff 

topological group. In defining smooth groups the 

condition that function (2) must be smooth is 

required. 

7. Lemma: Let , ,A B C  be smooth manifolds and 

let : A C B  → be a smooth mapping such that for 

any point l C the function 

( ): , , ,i A B t t l t A → →  is a diffeomorphism of 

A  onto the manifold B then the function 

: B C A  → given by ( ) 1, ( )lq l q  −= , where 

,q B l C  is a smooth mapping. 

Proof:  

The mappings : , :F A C B C G B C A C →   →   

be defined respectively by 

( ) ( )( ) ( )( ), , , , , ,lF t l t l l t l t A l C = =    and 

( ) ( )( ) ( )( )1, , , , , ,lG q l q l l q l q B l C  −= =   In 

this obvious that these functions are smooth iff so 

are the functions ,  respectively. So under the 

hypothesis the mapping F is smooth and it is 

required to prove that so is the function G .To this 

end one can observe by definition

( )( ) ( )( )( ) ( )1( )( , ) , , ,l l lG F t l G t l t l t l   −= = = . 

For any point ( ),t l A C  . In the same way

( )( )

( )( )( ) ( )

1

1

( )( , ) ,

, , ,

l

l l

F G q l F q l

q l l q l

 

 

−

−

=

= =  

For any point ( ),t l B C  . This is to say that the 

functions F and G are inverse to each other and 

hence both are one - one and onto correspondences. 

The statement about that the smoothness of G

therefore is equivalent to the statement that the 

smooth bijective function F is a diffeomorphism. 

However it is evident that a smooth one-one and 

onto correspondence is a diffeomorphism. 

Everything has thus boiled down to calculating at 

each point ( ),b l A C   the differential ( )
( ),b l

dF of 

the mapping F which can be identified as a linear 

function of the form 

( ) ( ) ( ) ( )b l c lZ A Z C Z B Z C →  ……………...(3) 

where ( ),c b l= . Every function (3) is given 

graphically by a matrix of the form 
  I

J    K

H 
 
 

…….. 

(4) 
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Where ( ) ( ) ( ) ( ): , :b c l cH Z A Z B I Z C Z B→ →

( ) ( ) ( ) ( ), :  K:Zb l l lJ Z A Z C and C Z C→ →  are 

linear mapping defined in clear manner. In 

particular for the mapping ( )
( ),b l

dF the mapping H 

is nothing but the differential at a point ‘a’ of the 

mapping :l A B → , the mapping and J is the 

differential of the constant mapping and 

consequently it is a zero mapping and the mapping 

K is the differential of the identity mapping and so 

it is also an identity mapping. Hence for the 

differential ( )
( ),b l

dF  matrix (4) is of the form

( )   I

  0        id

l b
d 

  
 

. Since the differential ( )
( ),b l

dF is an 

isomorphism by the hypothesis of the lemma it 

follows that the differential ( )
( ),b l

dF is also an 

isomorphism. For every group M any element

b M defined by the formulas 

, ,b bP y by S y yb y M= =   and two formulas 

: , :b bP M M S M M→ → which are called shifts by 

an element b (the function bP is called a left shift 

and the function bS is a right shift). The following 

propositions of shifts are clear. 

f fP S id= = where f is the identity in M . 

, ,c b cb c b bC b b c bP P P S S S P S S P= = = .Since

1

1

b b b fb
P P P P P id−

− = = = and

1

1

b b b fb
S S S S S id−

− = = = . In particular one can 

see that every shift is a 1-1 onto function with 

1 1

1 1,b bb b
P P S S− −

− −= = for any element b M . If M is 

a topological (smooth) group then the functions bP

and bS are continuous (smooth) and so they are 

homeomorphisms. 

8. Proposition: If for a group M which is at the 

same time a smooth manifold function (1) is 

smooth then so is function (2) and hence the group 

M is a Lie group. 

Proof:The smoothness of mapping (1) implies the 

smoothness of shifts bP and hence the fact that they 

are diffeomorphisms. The corresponding function 

( ) ( ): , bP y b P y by→ = is nothing but mapping (1) 

and is therefore smooth. Thus under the hypothesis 

of lemma (1) (for A=B=C=M) and consequently by 

this lemma the mapping :P M M M  → defined 

by the formula  

( ) ( )1 1 1, bP y b P y b y− −→ = is smooth. To complete 

the proof it remains to notice that the mapping 
1x x−→ is the composition of the smooth mapping

M M M→  , ( ),x f b→ and of the mapping 1P . 

Therefore it is also smooth. 

 

5. OBSERVATIONS: 

(i) Any abstract discrete topological group is a Lie 

group as a zero-dimensional smooth manifold. 

(ii) Any finite dimensional vector space is a Lie 

group under addition.  

(iii) A unit circle 1z = whose points are complex 

numbers iz e = is a Lie group under 

multiplication.(iv)The discrete product U V of two 

smooth (or topological) groups UandV is a smooth   

(respectively topological) group. 

(v) Any torus, , 1nT n  is a Lie group 

(vi)A full linear group is a Lie group 

(vii) The intersection ( ; ) (2 )Sp m O m is called an 

orthogonal sympletic group. The Cayley 

images of non-exceptional matrices of this group 

are of the form
  B

-B  A

A 
 
 

. Where B is a symmetric 

matrix and A is a skew-symmetric matrix. Since 

matrices of this form also constitute a vector space 

( ; ) (2 )Sp n O n is a Lie group of dimension 2m . 

(viii) The intersection ( ; ) (2 )Sp n n is called a 

unitary sympletic group and denoted by ( )Sp m .  

 It is a Lie group of dimension 2 1m+ . 
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9. Lemma: A topological group M is connected if it 

contains a connected subgroup N with a connected 

factor M
N

 

Proof: The natural mapping : MM
N

 → is open 

i.e. turns open sets into open sets. In fact if V M

then by the definition of factor topology a set 

( ) Mv
N

  is open iff so is ( )( )1 v M −  . But it 

is clear that the latter is the union 
y v

yN


of all 

cosets yN , y V and hence coincides with the 

union 
n N

Vn


 of all shifts of V by the elements

n N . So if V and hence any nV is open then the 

set ( )( )1 v −
and hence ( )v are open. Now let

M V W= , whereare non-empty sets, then

( ) ( )M v w
N

 = , where ( )v and ( )w are also 

nonempty and open. So ( ) ( )v w   is 

nonempty either (since the space M
N

is assumed 

to be connected). Let ( ) ( ) ( )b v w   , the 

inclusion ( ) ( )b v  implies that the coset

( )b bN = intersects and the inclusion 

( ) ( )b N  implies that the coset intersects W . 

One can have 1 1bN v w= where 1v bN V= and 

1w bN W= are open in bN . Since bN (together 

with N ) is connected. This is possible iff

1 1v w  and hence v w  . Consequently M is 

connected.  

Conclusion: 

In the above research article four important 

propositions are presented with elegent proofs. The 

concepts namely matrix Lie groups admitting the 

Cayley construction. A generalization of the 

Cayleyconstruction and the groups possessing ln –

images are briefly discussed. In the context of 

future research one can derive the formulae for (i) 

the values of smooth functions in the normal 

neighbourhood of the identity of a Lie group and 

(ii) values of smooth functions on the product of the 

elements.In addition to the above research 

discussion the necessary and sufficient condition 

for a topological group to be Hausdorff is derived. 

In addition to this the necessary condition for a 

topological group to be connected has been proved. 

In the context of future research one can extend 

these ideas to prove that a Lie group is always 

parallelizable. 
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