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Abstract 

Reliability of software in respect to defect prediction is a trending 

topic of study. It is observed that many effective categorical models rely on 

requirement and design phase metrics and few consistent models include 

metrics from design phase. It is also noted that most studies show 

qualitative advantages by using Early Software Defect Prediction models. 

It is necessary to validate software metrics in error prevision for object-

driven methods by means of statistical methods and machine learning. The 

quality of the software product in a software organization is assured by the 

validation process. Object-oriented metrics play a key role in fault 

estimation. This paper discusses the use of Chidamber and Kemerer (CK) 

metrics, QMOOD, Size, Complexity and Martin's metrics for the 

assessment of software defects. In this study bug/defect is treated as a 

dependent variable and the considered metric fit as independent variables. 

For defect detection two data analysis techniques, logistic regression and 

Decision Tree, are applied, validated and their statistical efficacy and 

performance measures are discussed. 

 

Keywords: Software Reliability, Object-Oriented Software Metrics, 

Software bug prediction, Machine Learning, Logistic Regression, Decision 

Tree. 

 

I.INTRODUCTION 

The present development of software is 

largely based on an object-oriented 

paradigm. Software metrics can best be 

used to assess the quality of object-

oriented software. Under the IEEE 

software engineering standard, object 

design in the software development 

environment is becoming more important, 

and software measurements are essential 

for the quantification of the software 

quality in the software engineering 

business sector. These metrics help to 

check the quality of software 

properties such as fault detection. The 

significance of these metrics lies in their 

ability to predict the software's reliability. 

Software performance is generally referred 

to in practice as reliability, maintenance 

and understanding. The number of faults in 

the developed software typically tests 

reliability. 
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We find that earlier there were studies 

undertaken for detecting defect proneness 

[3, 6-8, 10, 11]. In these studies, software 

metrics for mathematical models, to 

forecast fault inclination,are used [12, 13, 

16, 18, 19]. Further, empirical analysis of 

the results from machine learning methods 

is essential for understanding the effect of 

these matrics used for prediction and 

model development.The information 

obtained from these empirical researches is 

believed to be the main support to design 

and develop the models. The capability to 

assess the process was widely accepted as 

an important aspect of quality 

management. With their key role in the 

design and implementation of computer 

information systems, managers are 

constantly aiming to improve application 

development processes.The software 

quality is the principal criteria for a client, 

academics software organizations and 

researchers. “Quality is not accidental. But 

it is a result of a wise and intelligent 

effort"[1]. Defects of software can only be 

predicted on the basis of historical data 

collected in the implementation or data 

acquired during design processes in the 

software development process. The object-

oriented approach is different from the 

traditional approach to programming. It is 

used to distinguish information and 

control, based on objects, each of which 

includes a set of specified data and a set of 

fixed predefined operations known as data-

driven methods. The OO approach offers 

greater reusability, reliability and 

maintainability than the conventional, 

functional decomposition-based approach. 

Encapsulation is the attribute of OO 

System that creates objects which are easy 

to integrate into a new design, and which 

are essentially conducive to reusability [2]. 

The significance of various software 

metrics for defect prediction has been 

investigated in this study. The findings of 

building defect prediction models have 

been analyzed. The study analyzed that 

parameters were selected and filtered for 

the model. In conclusion, the results were 

compared and the most promising method 

for predicting defects were identified and 

recommended. The paper starts with an 

insight into the related work in the field, 

which study the methodologiesand 

evaluation of Software Reliability.It 

furtherexplains models developed during 

research with their results and conclusion 

parameters from it. The paper finally 

provides with a conclusion and future 

scope in the study. 

II.RESEARCH OBJECTIVE 

Reliable software is essential for business 

processes that are complex in nature. 

Designing such software is a main 

challenge faced in software industry today. 

Various techniques have been used for 

predicting and estimating the error prone 

classes of the software. The primary goal 

of the research study is to develop an 

assessment model for software reliability 

by early defect prediction. Using Machine 

Learning (ML) algorithms, this research is 

intended to empirically predict the 

software defect prone areas or attributes. 

III.RELATED WORK 

The quality of software has long been 

studied. The literature contains a number 

of software quality models. In recent 

decades, numerous software developers 

and researchers have carried out software 

quality prediction studies.In this fieldof 

detecting the software reliability, neural 
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networks, fuzzy logic, regression tree, etc. 

and their techniques were used. 

Chidamber and Kemerer [2] discussed 

their research work on OO metrics at the 

software development cycle at 

design stage. The metric calculations were 

based on theory and are used by well-

trained OO developersduring 

development. Chidamber and Kemerer [2] 

emphasize on the main measurement 

criteria to improve software quality with a 

new suite comprising six design levels 

metrics called WMC, DIT, NOC, CBO, 

RFC and LCOM. 

In order to determine the overall impact of 

class sizes on the validation of OO 

metrics, Emam et al[6] used Chidamber 

and Kemerer metrics suite and Lorenz and 

Kidd sub-set metrics. Their primary 

consent in the paper was to estimate the 

proneness of class defects. The researchers 

have shown that the size of the product 

metrics has a confounding effect on fault-

proneness. An observational approach to 

determine if there is any adverse effect has 

been experimentally tested and justified. It 

has eventually carried out a study with a 

large C. 

In the Chidamber and Kemerer metrics 

Gursaran and Roy [13] found that the 

property of Weyuker 9 is not satisfied by 

any inheritance metric. Inherited metrics 

proposed by Brito and Carapuca [5], the 

authors showed that a particular class of 

structural inheritance metrics, defined on 

an abstract of the legacy structure, can 

never accomplish Weyuker's 9 property, 

building on the metric assumptions and 

concatenation definitions given by 

Chidamber and Kemerer. An analysis 

focused on processes e.g. the number of 

modifications, number of newly revised 

lines and number of defects, was given by 

Jureczko and Madeysky [18]. They 

analysed and reported that all of the above 

metrics rely on data for changes in 

artefacts in the source code. It was 

observed that some of the changes may not 

have a direct connection with the software 

process.  Finally, the researchers showed 

that system metrics can be an effective 

addition to prediction modules that are 

usually based on prediction methods. Jin 

et.al [29] have suggested, developing a 

fault proneness prediction model for Fuzzy 

c-means clustering (FCM) for clustering, 

and radial base function neural network 

(RBFNN) for classification. The analysis 

of a prediction of defects by Jureczko and 

Madeyski [18] for software projects shows 

that they have used 92 versions of open 

source projects and 38 proprietaries on the 

data repository.The classes of similar 

projects have been used in this paper to 

classify Hierarchic and K-mean clustering 

and Kohonen's neural networks. For each 

of the identified classes, two defect 

prediction models were created. The 

authors have identified two clusters and 

compared results obtained by other 

researchers. Finally, that concluded to  

clusteringbeing suggested and applied for 

further use.  

Catal [16] reported the survey of 90 

research papers in concern with the 

research. The numbers of previous 

changes in a file showed Graves et al. [7] 

to be a strong fault forecast. In particular, 

they found that when the number of times 

a module is changed, the number of lines 

of code in a module is not helpful in 

predicting defects. The authors found that 

the context of the change provides more 
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useful information than the measurements 

of size and structure could be collected. 

Moser et al [17] performed a comparative 

analysis of the process efficiency and 

defect prevention product metrics and 

showed a great improvement in the 

process metrics. 

IV.RESEARCH BACKGROUND 

This section encapsulatesrealistic data 

collection correlated with assigned 

independent and dependent variables. 

A. Data Collection 

For this research, dataset is collected for 

the experimental work, which is 

considered from the projects for OO-

deficiency of the Marian Jureczko data 

sets [31] available at http://madeyski.e-

informatyka.pl/tools/software -defect-

prediction/  it consists of study of 13 open 

source projects of similar kind having total 

instances 46,775. Each instance of the 

dataset has corresponding metrics sets with 

associated bug values. The more the data 

sample better the accuracy of the model. 

 

Figure 1: Architecture of Performance 

Evaluation During Design Phase of SDLC 

B. Dependent and Independent 

Variables 

In this research bug is dependent variable 

and the independent variables are CK 

suite(WMC, DIT, NOC, CBO, RFC 

LCOM)+Martins metrics( CA, CE)+ 

LOC+QMOOD Suite( LCOM3, NPM, 

DAM, MOA, MFA, CAM)+Extended 

CK(IC, CBM, AMC)+McCabe’s( 

MAX_CC and AVG-CC). 

V.METHODOLOGY ADOPTED 

This research work, explores different 

metrics for predicting bugs using the ML 

techniques Decision Tree (DT) and 

Logistic Regression (LR). The entire data-

set splitting is done into two parts, 70:30 

ratio as training and test data set. The 

training data set is applied for prediction 

using ML models. Testing dataset is 

applied to validate the prediction model 

for software reliability.  

A. Metrics Description   

The study consisted of 20 independent OO 

metrics summarized in table 1. 

Table 1: Metrics Description 

Suite 1 CK Metric (6 metrics) 

WMC Weighted Methods per Class 

DIT Depth of Inheritance tree 

NOC Number of Children 

CBO Coupling Between Objects increased as the methods of one class access 



 

March - April 2020 

ISSN: 0193-4120 Page No. 10501 - 10518 

 

 

10505 Published by: The Mattingley Publishing Co., Inc. 

services of another. 

RFC 
Response for Class, number of methods invoked in response to message to the 

object. 

LCOM 
Lack of cohesion in methods, i.e. the number of pairs of methods not sharing a 

reference to an instance variable. 

Suite 2 Martins metric (2 metrics) 

CA Afferent Coupling, how many other classes use the particular class. 

CE Efferent Coupling, the no of classes is used by the particular class. 

Suite 3 QMOOD  (5) 

NPM Number of Public Methods 

DAM Data Access Metric, ratio of private (protected) attributes to total attributes 

MOA 
Measure of Aggregation, count of the number of data declarations (class fields) 

whose types are user defined classes 

MFA 
Measure of Functional Abstraction, number of methods inherited by a class 

plus number of methods accessible by member methods of the class 

CAM 

Cohesion Among Methods, summation of no of different types of method 

parameters in every method divided by a multiplication of number of different 

method parameter types in whole class and number of methods. 

Suite 4 Extended CK suite (4 metrics) 

LCOM3   Lack of cohesion in methods 3 

IC 
Inheritance coupling, Number of parent classes (the number of inherited 

methods and variables) with which a given class is associated 

CBM 
total number of new/reddened methods to which all the inherited methods are 

coupled 

AMC Average methods per class 

Suite 5  

LOC Lines of code 

Suite 6 McCabe’s Cyclomatic Complexity (2 metrics) 

MAX CC maximum McCabe's cyclomatic complexity  

AVG CC Average McCabe's cyclomatic complexity  

defect/ bug:   Defects found in post-release bug-tracking systems. 

B. Metrics and Model 

Assumption  

Aim is to quantify the impact of OO 

design metric on software quality i.e. 

Reliability by building Predictive models. 

In this study we want to show how all 

considered metrics are significantly 

contributing in model building. For 

software bug prediction there are certain 

assumptions about metrics that are 

described below. 
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a. The model is built by OO 

metrics. 

b. The analyzed model 

consists of 20 OO metrics: WMC, 

DIT, CBO, RFC, COM, CA, CE, 

NPM, COM3, LOC, DAM, MOA, 

MFA, CAM, IC, CBM, AMC, 

MAX-CC and AVG CC. 

c. In the absence of metric 

value it is considered to be zero. 

d. Dependent variable is 0 or 1 

as bug value for every instance. 

 

Figure 2: Framework for Modeling and 

Assessment 

 

VI.MACHINE LEARNING 

TECHNIQUES 

Machine learning is a kind of artificial 

intelligence that enables computers to 

learn without explicit programming. 

Machine learning is based on software 

development programs which can grow 

and learn in the context of new data. 

Because of better results researchers will 

be using machine learning which can also 

deals with complex data as well. 

A. Logistic 

regression analysis: 

Logistic Regression is a classification 

algorithm. It is used to predict a binary 

outcome (0=Not Bug, 1=Bug). The 

logistic regression is a predictive analysis 

similar to the linear regression models. 

Logistic Regression plays vital role in 

describing data and relationship between 

one dependent (binary variable) and one or 

more independent variables (continuous-

level/ interval / ratio scale). In simple 

words, by applying data to a logit 

equation, it estimates the likelihood of an 

event occurring. glm (formula = bugs ~., 

family = binomial(logit), data = bugtrain1) 

Generalized linear model (GLM) –output 

variables with error distribution models 

other than normal distribution are allowed 

by this multipurpose extensive linear 

regression model. The general linear 

model is a regression model for statistical 

analysis. d ( y , y ) = 0 ,d ( y , μ ) > 0 ∀ y ≠ 

μ  For mapping of predicted values to 

probabilities there is a use of Sigmoid 

function. This function maps the value 

between 0 and 1 of any real value. In 

machine learning generally we make use 

of sigmoid to map predictions to 

probabilities. 
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𝑓(𝑥) =
1

𝑒−𝑥
--------------------------------------

----------------(1) 

For logistic regression it is 

σ(Z) = σ (β₀ + β₁X) ---------------------------

-----------------(2) 

We have expected that our results will give 

values between 0 and 1. 

Z = β₀ + β₁X  -----------------------------------

----------------(3) 

hθ(x) = sigmoid(Z) 

i.e. hθ(x) = 
1

1+𝑒−(𝛽0+𝛽1𝑥)
------------------------

--------------- (4) 

B. Decision Tree:   

A decision tree is a decision support and a 

popular tool in machine learning. Decision 

tree can be a type of supervised learning 

algorithm with a pre-defined output 

variable that isnormally utilized in 

classification problems.It works for the 

input and output variables both categorical 

and continuous.This technique, based on 

most significant splitter / differentiator 

in input variables, the population or 

sample is split into two or more 

homogeneous sets (or sub-populations). 

Decision Tree Analysis (0=Not 

Bug,1=Bug)   

VII. PROPOSED ALGORITHM AND 

FRAMEWORK  

Algorithm for Model Development 

1. Input: A set of datasets 

VDS(validated Combined Dataset) 

2. a set of metrics (MT = 

MT1, MT2, MT3,…,MTn);  

3. A set of classifiers (CL1, 

CL2, CL3…, CLz). 

4. Output: Proposed model 

based on error (RMSE). 

Algorithm steps:  

1. Select datasets of similar 

kind of project. 

2. Combine all the datasets to 

form validated dataset 

VDS=∑D1+D2+D3….Dm. 

3. Identify and remove Near 

Zero variance metric. 

4. Check the missing values in 

each metrics. Replace by measures 

of central tendency. 

5. Check the outliers and treat. 

6. Split data into Train and 

Test (70:30). 

7. Apply different classifiers 

CL1,CL2,...,CLz) using Train 

Dataset  & Validate using Test  

Dataset 

8. Build Model with 

significant metrics MT1 …MTn 

9. Generate Confusion matrix  

10. Apply Performance 

Measure calculate, Accuracy, 

Recall, AUC, ROC for each 

classifier on VDS  

11. Select foremost Classifier 

with Maximum Accuracy and 

minimum RMSE. 
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VIII. STATISTICAL EFFICACY 

MEASURES  

In this study, the distribution mean, 

median, and interquartile ranges of each 

metric are studied. The distribution of a 

metric determines the applicability of 

following regression analysis techniques. 

Descriptive statistics of metrics on related 

data is represented in Table 2. 

 

Table 2: Descriptive Statistics of Metrics 

Metric Min    1st Qu Median  Mean    3rd Qu. Max.  

WMC 0 2 4 6.33 7 212 

DIT 0 1 2 2.49 3 9 

NOC 0 0 0 0.49 0 467 

CBO 0 4 9 13.41 17 860 

RFC 0 7 16 25.19 31 428 

LCOM 0 1 1 41.75 10 11323 

CA 0 0 1 3.54 2 860 

CE 0 2 7 10.10 15 133 

NPM 0 2 2 4.55 4 212 

LCOM3 0 0.85 1 1.26 2 2 

LOC 0 28 76 210.70 196 13175 

DAM 0 0 0 0.29 0.6 1 

MOA 0 0 0 0.29 0 158 

MFA 0 0 0.75 0.50 0.89 1 

CAM 0 0.37 0.57 0.53 0.67 1 

IC 0 0 0 0.77 1 6 

CBM 0 0 0 1.40 2 33 

AMC 0 7.5 17.33 30.81 37.29 3492 

MAX.CC. 0 1 1 3.70 4 252 

AVG.CC. 0 0.5 1 1.343 1.6 30.5 

IX.MODEL BUILDING 

The Framework for modelling and 

assessment is shown in figure 2. It 

present,Architecture of Data Validation, 

Metric selection, Classifier selection,block 

diagrams of Data Pre-processing and 

Accuracy calculation using the proposed 

model. The model is build using all metric 

by considering the formula of logistic 

regression. 

Pred bug=1/1+e^- [(2.92E-02)*WMC + (-

1.52E-01)*DIT + (1.76E-02)*CBO + (-

1.62E-03)*RFC + (-6.96E-04)*LCOM  + 

(-1.09E-02)*CA + (2.06E-02)*CE + (-

2.61E-05)LOC + (4.19E-01)*LCOM3 + 

1.38E-02*NPM + (-7.27E-02)*DAM + 

(7.45E-02)*MOA+ (8.25E-01)*MFA + (-

1.30E+00)*CAM + (-3.04E-02)*IC + 

(5.86E-02)*CBM +(6.58E-03)*AMC + (-

8.75E-03)*MAX_CC+(3.78E-02)*AVG-

CC]-------------------- (5) 

Derived from this glm (formula = bugs ~., 

family = binomial (logit), data = 

bugtrain1)  
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Table 3: Coefficient table output 

Coefficients Estimate Std. Error z value Pr(>|z|) Signifi-cant 

Rate 

(Intercept) -1.83E+00 7.10E-02 -25.768 < 2e-16 *** 

WMC 2.92E-02 6.33E-03 4.612 3.99E-06 *** 

DIT -1.52E-01 1.86E-02 -8.17 3.10E-16 *** 

CBO 1.76E-02 1.36E-02 1.295 0.1953 
 

RFC -1.62E-03 1.12E-03 -1.45 0.1471 
 

LCOM -6.96E-04 8.25E-05 -8.434 < 2e-16 *** 

CA -1.09E-02 1.35E-02 -0.802 0.4223 
 

CE 2.06E-02 1.36E-02 1.509 0.1313 
 

NPM 1.38E-02 5.39E-03 2.552 0.0107 * 

LCOM3 4.19E-01 2.88E-02 14.553 < 2e-16 *** 

LOC -2.61E-05 6.59E-05 -0.397 0.6916 
 

DAM -7.27E-02 4.40E-02 -1.653 0.0983 . 

MOA 7.45E-02 1.42E-02 5.245 1.56E-07 *** 

MFA 8.25E-01 6.24E-02 13.22 < 2e-16 *** 

CAM -1.30E+00 6.89E-02 -18.851 < 2e-16 *** 

IC -3.04E-02 2.79E-02 -1.092 0.275 
 

CBM 5.86E-02 8.21E-03 7.14 9.35E-13 *** 

AMC 6.58E-03 4.58E-04 14.371 < 2e-16 *** 

MAX.CC. -8.75E-03 3.62E-03 -2.417 0.0157 * 

AVG.CC. 3.78E-02 1.51E-02 2.5 0.0124 * 

[Signif.codes:0 ‘***’0.001‘**’ 0.01 ‘*’ 

0.05 ‘.’ 0.1 ‘’ 1] the table 3 defines the 

relation between the regression 

coefficients and values of intercept, 

standard error, z-value and p-value. On 

various parameters for each coefficient: 

the intercept and other independent 

variables. (*** – high importance, * – 

medium importance, and dot – next level 

of importance). In this context for 

significant variables estimate, Std. Error, 

Z-value, Pr (>|z|) can be observed from 

table 3. It can be seen that WMC, DIT, 

LCOM, LCOM3, MOA, MFA, CAM, 

CBM, AMC, shown as *** as highest 

significance rate.* least significanceis 

NPM, MAX_CC and AVG-CC and lastly 

seen as. (dot) dam very low significant 

whereas CBO, RFC, CA, CE, LOC, IC has 

no significance in model building.      
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X. PERFORMANCE MEASURES AND 

DISCUSSION 

Experiments were conducted in R tool for 

Machine learning techniques and build the 

model using Logistic Regression, Decision 

Tree. Further to assess the performance of 

a logistic regression model, we must study 

few measures. 

A. Experimental analysis of 

Logistic Regression 

1] Null and Residual Deviance 

Instatistical hypothesis testing deviance is 

a quality-of-fit measurement for a model 

that is regularly used.Where model-fitting 

is achieved by maximum likelihoodby a 

generality of the impression of using the 

sum of squares of residuals in ordinary 

least squares to cases, it plays an vital role 

in exponential dispersion models and 

generalized linear models. 

The unit deviance d(y, μ) --------------------

-----------------(6) 

is a bivariate function that satisfies the 

following conditions: 

D(y,y)=0 and D(y,µ)= ∑ d(yi,µi) . The 

(total) deviance for a model M0 with 

estimates  

μ= E [Y/θ0] -------------------------------------

-------------(7)based on a dataset y, may be 

constructed by its likelihood. 

Null Deviance: - Deviance is a fitness 

measure of a model. Higher numbers 

usually explain the poor fit. The null 

deviance indicates how well a model 

predicts the response variable, which 

contains only the intercept (great mean) 

while the residual one with independent 

variables is included. 

From the model summary, the response 

bug variable is affected by WMC, DIT, 

NOC, CBO, RFC LCOM, CA, CE, LOC, 

LCOM3, NPM, DAM, MOA, MFA, 

CAM, IC, CBM, AMC, MAX_CC and 

AVG-CC               variables.The legend of 

the correlated coefficients (* * * – high 

priority, * – medium importance and dot – 

next level importance) realizes the rank of 

the variable. Rerunning the model with 

these significant independent variables 

will impact the model performance and 

accuracy. 

Reduced Model of Logistic Regression is 

built with significant Variable: 

glm (formula = bugs ~ wmc + dit + lcom + 

npm + lcom3 + dam + moa + mfa + cam + 

cbm + amc + max.cc. + avg.cc., family = 

binomial(logit), data = bugtrain1) ----  (8) 

It is observed that the Null deviance and 

degree of freedom of full and reduced 

model is 38197 on 32743 degrees of 

freedom and Residual deviance as 34429 

on 32724 degrees of freedom for full 

model and 35037 on 32730 degrees of 

freedom.  Deviance is a measure of 

goodness of fit of a model. Higher 

numbers always indicate bad fit. The null 

deviance shows how well the response 

variable is predicted by a model that 

includes only the intercept (grand mean) 

whereas residual with inclusion of 

independent variables. 

The reduced model only the significant 

variables that are seen by degree of 

freedom (i.e 32743-32730=13). Model 

only with significant variables increases 

the deviance to 35037 from 34429; it’s a 

significant increase in devianceIf you have 

a very small Null Deviance, the Null 

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Exponential_dispersion_model
https://en.wikipedia.org/wiki/Generalized_linear_model
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Model explains the data fairly well. With 

your Residual Deviance, too. 

2] AIC (Akaike Information Criteria) – 

 The analogous metric of adjusted R² in 

logistic regression is AIC. AIC is the 

fitness measure which penalizes the 

number of model coefficients in the 

sample. 

 

Table 4 : AIC Values of LR Model 

Model AIC: 

Logistic Full Model  34469 

Logistic Reduced Model  35065 

In full model of logistic regression all 

metrics are contributing to the model 

development where as in reduced model 

only significant variables. Significant 

variables are derived from P-values for 

regression coefficients. Each regression 

coefficient in reduced model is statistically 

significant(P-value<0.05). As reduced 

model has AIC value high as compared 

with AIC value of full model observed in 

table 4, hence Full model is better than 

reduced model.  

3] Confusion Matrix 

The confusion matrix is a contingency 

table of 2X2 dimension, a binary 

classification problem with two possible 

classes Positive and negative. In this study 

classes having bug and not bug, the 

consideration is that the not bug is positive 

case and the bug is negative case 

4] Model Evaluation 

The classification model performance 

evaluation is done by performance metrics 

on the basis of confusion matrix. A binary 

classifier can make two possible errors: 

false positives (FP) and false negatives 

(FN). In addition, a correctly classified 

buggy class is a true positive (TP) and a 

correctly classified non-buggy class is a 

true negative (TN). We have evaluated 

results of binary classification results 

given as follows: 

1. Total no of instances = properly 

classified instances + wrongly classified 

instance------------------------------ (9) 

2. properly classified instance = TP 

+TN 

3. wrongly classified instance = 

FP+FN 

4. Accuracy: How often the classifier 

is correct.accuracy = (TP + TN)/ (TP + 

TN + FP + FN)----(10)      i.e accuracy 

= properly classified instances / no of 

instances. 

5. Misclassification Rate: How often 

is it wrong.       Misclassification 

rate=1-Accuracy i.e Error Rate       

=(FP + FN)/(TP + TN + FP + FN) ------

--------------(11)                                      

6. True Positive Rate(Sensitivity 

/Recall): when its actually yes and how 

often does it predicts 

yesSensitivity=TP/FN+TP----------------

------------------(12) 

7. False Positive Rate: when its 

actually No and how often does it 

predicts yes:  FP/FP+TN------------------

------(13) 

8. Specificity : When it’s actually No, 

how often does it predict No : 

Specificity =TN/TN+FP -----------------

(14) 
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9. Precision : When it predicts yes, 

how often is it correct 

Precision = TP/TP+FP---------------------

--------------(15) 

10. Prevalence: how often does the yes 

condition actually occur in our sample. 

Prevalence = FN+TP/(TP + TN + FP + 

FN)---------(16) 

i] LR Train Data 

As per the values in Table 5 accuracy is 

calculated with properly classified 

instances by dividing total no of instances 

whose rows correspond to the observed 

values and the predicted values by the 

classification model are shown at the 

columns 

Table 5 : Confusion Matrix for Train Data 

n=32744 Pred-N Pred-Y 

Actual-N 22944 7230 

Actual-Y 959 1611 

The model classifies the classes with 

overall 74.99% accuracy and 

misclassification with 25.01%.  

Table 6: Performance Measures of LR 

Train Data 

Accuracy 74.99% 

Misclassification 

Rate: 
25.01% 

Sensitivity  95.99% 

Specificity 18.22% 

PosPred Value 76.04% 

NegPred Value 62.68% 

Prevalence 73.00% 

CI (0.7452, 0.7546) 95% 

Area under the curve:  0.6936 

Model also shows the positive predicted 

value as 76.04% and negative predicted 

value 62.68%. Model shows the 95.99% 

sensitivity and the specificity with 18.22%. 

The model also shows the 73% prevalence 

in the sample data. The different 

parameters observed and noted in the table 

are scaled in the graphical format in Figure 

5. 

5] Receiver Operating Characteristic 

(ROC)  

Précises the model’s performance by 

assessing the trade-offs between true 

positive rate (sensitivity) and false positive 

rate (1- specificity). To plot ROC, it is 

recommended to assume p > 0.5 since we 

are more concerned about success rate. 

ROC explains the predictive power for all 

possible values of p > 0.5.    

 

Figure 3 : Graph for Measures on Train 

Data 

 

Figure4: ROC Curve for Train Data 

The area under curve (AUC), referred to as 

index of accuracy (A), is a perfect 

0
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performance metric for ROC curve. Here 

is the sample ROC, higher area under 

curve means better prediction power of the 

model.The ROC of a perfect predictive 

model has TP (True positive) equals 1 and 

FP (False positive) equals 0. This curve 

will touch the top corner of the graph. 

ROC curve shows that AUC for train data 

is 0.6936 

ii] Test Data 

As per the confusion matrix of test model, 

during testing of model it can be seen that 

overall 75 % accuracy in classifying the 

classes and it misses to classify by 25%.  

Table 7: Confusion Matrix Test Data 

n= 14031 Pred N Pred Y 

Actual N 9818 3083 

Actual Y 425 705 

Table 8 :  Performance Measures of Test 

Data 

Accuracy 75.00% 

Misclassification rate 25.00% 

Sensitivity 95.85% 

Specificity 18.61% 

PosPred Value 76.10% 

NegPred Value 62.39% 

Prevalence 73.00% 

CI  (0.7427, 0.7571) 95% 

Area under the curve:  0.6936 

The model Correctly predicts the 76.10% 

positive prediction condition and there is 

62.39% of negative prediction status. The 

sensitivity is 95.85% whereas specificity is 

18.61%. The prevalence is observed as 

73%. 

 

Figure 5 : Graph for Measures on Test 

Data 

The graphical presentation of all the 

measures accuracy, specificity, prevalence, 

sensitivity positive predicted value and 

negative predicted value can on the graph 

in figure 6. There is 95% confidence 

interval ranges between 0.7452 and 0.7546 

occurs in the considered data sample. The 

area under curve for test data is 0.6925. 

Hence model working good in both data 

sets. By using these measures, the 

selection of the best model is determined. 

The model build on train data is tested and 

validated by test data which is graphically 

shown in figure 7. The graph shows the 

comparative analysis of both. There are 

perfect.Balancing results are observed 

through the various measures. It shows 

that the model fits well on the considered 

data. 

 

Figure 6 : ROC Curve for Test Data 
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Table No 9 : Comparative Analysis of 

Performance measures of Logistic 

regression 

Model   
Train 

data 

Test 

data 

  Accuracy 74.99 75.00 

Logistic 

Regression 

Misclassification 25.01 25.00 

Sensitivity 95.99 95.85 

Specificity 18.22 18.61 

PosPred Value 76.04 76.10 

NegPred Value 62.68 62.39 

 Prevalence 73.00 73.00 

 

Figure 7 : Graph for Comparison Train & 

Test   

With the choice of logistic regression, it is 

evident that the accuracy for this model is 

evaluated as 75% and error rate as 25%. 

The model accuracy improvement can be 

done with other classification models. 

B.  Experimental analysis of 

Decision Tree 

Let’s use the combined dataset and apply 

decision tree method to predict whether a 

class is buggy or not. The attributes are 

available to predict the Model. Below the 

data is split as training and test data, which 

will be used for building the model and 

predictions. Let’s predict on fitted data and 

calculate misclassification percentage.  

Table 10 : Confusion Matrix for Train 

Data 

n= 32744 Pred N Pred Y   

Actual N 23423 7887 

Actual Y   480 954 

Model trained by train data set shows 

Overall 74.45% accuracy and it 

misclassify the classes by 25.55%.  The 

model sensitivity is 97.99% and model 

specificity is 10.79%. 

 

Table11 : Performance Measures of DT 

Train Data 

Accuracy 74.45% 

Misclassification Rate 25.55% 

Sensitivity 97.99% 

Specificity 10.79% 

PosPred Value 74.81% 

NegPred Value 66.53% 

Prevalence 73.00% 

CI (0.7397, 0.7492) 95% 

AUC 0.6152379 

 

Figure 8 : Graph for Measures on Train 

Data 

The positive predicted value is 74.81% and 

negative predicted value is 66.53. 

Prevalence can be seen that the 73% The 

Model shows the confidence interval of 

95% in the range of 0.7397 and 0.7492 

condition for the sample data used. The 
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positive predicted value is 74.81% and 

negative predicted value is 66.53%.  

 

Figure 9 : ROC curve for train data 

As per the developed model of decision  

tree the Confusion Matrix for Test Data is 

generated as: 

Table 12: Confusion Matrix for Test Data 

n=14031 Pred N Pred Y 

Actual N 10041 3363 

Actual Y 202 425 

The confusion matrix as above is for test 

data with 14031 total observations. It 

shows the overall measures for the total 

test data with the 95% confidence interval 

in the range of 0.7386 to 0.7531 and 73% 

prevalence. 

The model is tested and validated on test 

data set. It shows overall 74.59% 

accurately classify the classes and overall 

25.41% wrongly classify the classes by 

model. 

Table 13 : Performance Measures of 

DecisionTree Test Data 

Accuracy 74.59% 

Misclassification 

Rate 
25.41% 

Sensitivity 98.03% 

Specificity 11.22% 

PosPred Value 74.91% 

NegPred Value 67.78% 

Prevalence 73.00% 

CI (0.7386, 0.7531) 95% 

AUC 0.609539 

Positive predicted value is the 74.91% and 

negative predicted condition is 67.78%. 

The sensitivity is 98.03% and the 

specificity is  

 

Figure 10 : Graph for Measures on Test 

Data 

11.22% with the 73% prevalence actually 

occurs in sample data used. 

 

Figure 11 : ROC curve for test data 

Table 14: Comparative study of 

Performance Measure for Decision Tree 

Models 
Train 

data 

Test 

data 

Decision 

Tree 

Accuracy: 74.45% 74.59% 

Misclassification 

Rate: 
25.01% 25.41% 

Sensitivity 97.99% 98.03% 

Specificity 10.79% 11.22% 
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PosPred Value 74.81% 74.91% 

NegPred Value 66.53% 67.78% 

Prevalence 73.00% 73.00% 

The evaluation process is implemented 

using two real testing/debugging datasets. 

Experimental results are collected based 

on accuracy, precision, recall, measures. 

Results reveal that the Machine Learning 

techniques are efficient approaches to 

predict the future software bugs.. 

 

Figure 12 :Comparison Train and Test 

Data 

The comparison results shows that the 

Logistic Regression classifier has the little 

better results over the Decision Tree. 

Moreover, experimental results showed 

that using Machine Learning approach 

provides a better performance for the 

prediction model 

XI.CONCLUSION 

The objective of this study is to inspect 

and assess the relationship between object-

oriented metrics and defect prediction in 

terms of bug by computing the accuracy of 

the proposed model on combined datasets. 

The performance of Logistic regression 

and Decision Tree Machine Learning 

techniques has been estimated. The 

experiment for bug prediction using 

combined dataset of 13 software. We have 

empirically proved that defects predicted 

using mentioned ML techniques signifies 

that the actual and the predicted values are 

very close for all the data being taken into 

consideration in predicting reliability in 

terms of the various statistical efficacy 

measures applied. Two techniques the 

Logistic regression and Decision Tree 

shows the promising results with the 

accuracy of 75% and 74.5% respectively. 

XII.FUTURE WORK 

As a future work there is inclusion of other 

Machine Learning techniques to provide 

an extensive comparison among them. 

Furthermore, study of software metrics in 

the learning process is one possible 

approach to increase the accuracy of the 

prediction model in terms of software 

reliability. 
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