

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10501 Published by: The Mattingley Publishing Co., Inc.

Object Oriented Design Metrics for Software

Defect Prediction: An Empirical Study

Mrs. Bhagyashri Sunil Deshpande1, Dr. Binod Kumar2, Dr. Ajay Kumar3
1Resarch Scholar, Department of Computer Science SPPU, Pune, Maharashtra, India.

2SMIEEE, Director, JSPM’s Jayawant Institute of Computer Applications, Pune,

Maharashtra, India.
3Director, JSPM’s Jayawant Technical Campus, Pune, Maharashtra, India.

Article Info

Volume 83

Page Number: 10501 - 10518

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 13 April 2020

Abstract

Reliability of software in respect to defect prediction is a trending

topic of study. It is observed that many effective categorical models rely on

requirement and design phase metrics and few consistent models include

metrics from design phase. It is also noted that most studies show

qualitative advantages by using Early Software Defect Prediction models.

It is necessary to validate software metrics in error prevision for object-

driven methods by means of statistical methods and machine learning. The

quality of the software product in a software organization is assured by the

validation process. Object-oriented metrics play a key role in fault

estimation. This paper discusses the use of Chidamber and Kemerer (CK)

metrics, QMOOD, Size, Complexity and Martin's metrics for the

assessment of software defects. In this study bug/defect is treated as a

dependent variable and the considered metric fit as independent variables.

For defect detection two data analysis techniques, logistic regression and

Decision Tree, are applied, validated and their statistical efficacy and

performance measures are discussed.

Keywords: Software Reliability, Object-Oriented Software Metrics,

Software bug prediction, Machine Learning, Logistic Regression, Decision

Tree.

I.INTRODUCTION

The present development of software is

largely based on an object-oriented

paradigm. Software metrics can best be

used to assess the quality of object-

oriented software. Under the IEEE

software engineering standard, object

design in the software development

environment is becoming more important,

and software measurements are essential

for the quantification of the software

quality in the software engineering

business sector. These metrics help to

check the quality of software

properties such as fault detection. The

significance of these metrics lies in their

ability to predict the software's reliability.

Software performance is generally referred

to in practice as reliability, maintenance

and understanding. The number of faults in

the developed software typically tests

reliability.

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10502 Published by: The Mattingley Publishing Co., Inc.

We find that earlier there were studies

undertaken for detecting defect proneness

[3, 6-8, 10, 11]. In these studies, software

metrics for mathematical models, to

forecast fault inclination,are used [12, 13,

16, 18, 19]. Further, empirical analysis of

the results from machine learning methods

is essential for understanding the effect of

these matrics used for prediction and

model development.The information

obtained from these empirical researches is

believed to be the main support to design

and develop the models. The capability to

assess the process was widely accepted as

an important aspect of quality

management. With their key role in the

design and implementation of computer

information systems, managers are

constantly aiming to improve application

development processes.The software

quality is the principal criteria for a client,

academics software organizations and

researchers. “Quality is not accidental. But

it is a result of a wise and intelligent

effort"[1]. Defects of software can only be

predicted on the basis of historical data

collected in the implementation or data

acquired during design processes in the

software development process. The object-

oriented approach is different from the

traditional approach to programming. It is

used to distinguish information and

control, based on objects, each of which

includes a set of specified data and a set of

fixed predefined operations known as data-

driven methods. The OO approach offers

greater reusability, reliability and

maintainability than the conventional,

functional decomposition-based approach.

Encapsulation is the attribute of OO

System that creates objects which are easy

to integrate into a new design, and which

are essentially conducive to reusability [2].

The significance of various software

metrics for defect prediction has been

investigated in this study. The findings of

building defect prediction models have

been analyzed. The study analyzed that

parameters were selected and filtered for

the model. In conclusion, the results were

compared and the most promising method

for predicting defects were identified and

recommended. The paper starts with an

insight into the related work in the field,

which study the methodologiesand

evaluation of Software Reliability.It

furtherexplains models developed during

research with their results and conclusion

parameters from it. The paper finally

provides with a conclusion and future

scope in the study.

II.RESEARCH OBJECTIVE

Reliable software is essential for business

processes that are complex in nature.

Designing such software is a main

challenge faced in software industry today.

Various techniques have been used for

predicting and estimating the error prone

classes of the software. The primary goal

of the research study is to develop an

assessment model for software reliability

by early defect prediction. Using Machine

Learning (ML) algorithms, this research is

intended to empirically predict the

software defect prone areas or attributes.

III.RELATED WORK

The quality of software has long been

studied. The literature contains a number

of software quality models. In recent

decades, numerous software developers

and researchers have carried out software

quality prediction studies.In this fieldof

detecting the software reliability, neural

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10503 Published by: The Mattingley Publishing Co., Inc.

networks, fuzzy logic, regression tree, etc.

and their techniques were used.

Chidamber and Kemerer [2] discussed

their research work on OO metrics at the

software development cycle at

design stage. The metric calculations were

based on theory and are used by well-

trained OO developersduring

development. Chidamber and Kemerer [2]

emphasize on the main measurement

criteria to improve software quality with a

new suite comprising six design levels

metrics called WMC, DIT, NOC, CBO,

RFC and LCOM.

In order to determine the overall impact of

class sizes on the validation of OO

metrics, Emam et al[6] used Chidamber

and Kemerer metrics suite and Lorenz and

Kidd sub-set metrics. Their primary

consent in the paper was to estimate the

proneness of class defects. The researchers

have shown that the size of the product

metrics has a confounding effect on fault-

proneness. An observational approach to

determine if there is any adverse effect has

been experimentally tested and justified. It

has eventually carried out a study with a

large C.

In the Chidamber and Kemerer metrics

Gursaran and Roy [13] found that the

property of Weyuker 9 is not satisfied by

any inheritance metric. Inherited metrics

proposed by Brito and Carapuca [5], the

authors showed that a particular class of

structural inheritance metrics, defined on

an abstract of the legacy structure, can

never accomplish Weyuker's 9 property,

building on the metric assumptions and

concatenation definitions given by

Chidamber and Kemerer. An analysis

focused on processes e.g. the number of

modifications, number of newly revised

lines and number of defects, was given by

Jureczko and Madeysky [18]. They

analysed and reported that all of the above

metrics rely on data for changes in

artefacts in the source code. It was

observed that some of the changes may not

have a direct connection with the software

process. Finally, the researchers showed

that system metrics can be an effective

addition to prediction modules that are

usually based on prediction methods. Jin

et.al [29] have suggested, developing a

fault proneness prediction model for Fuzzy

c-means clustering (FCM) for clustering,

and radial base function neural network

(RBFNN) for classification. The analysis

of a prediction of defects by Jureczko and

Madeyski [18] for software projects shows

that they have used 92 versions of open

source projects and 38 proprietaries on the

data repository.The classes of similar

projects have been used in this paper to

classify Hierarchic and K-mean clustering

and Kohonen's neural networks. For each

of the identified classes, two defect

prediction models were created. The

authors have identified two clusters and

compared results obtained by other

researchers. Finally, that concluded to

clusteringbeing suggested and applied for

further use.

Catal [16] reported the survey of 90

research papers in concern with the

research. The numbers of previous

changes in a file showed Graves et al. [7]

to be a strong fault forecast. In particular,

they found that when the number of times

a module is changed, the number of lines

of code in a module is not helpful in

predicting defects. The authors found that

the context of the change provides more

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10504 Published by: The Mattingley Publishing Co., Inc.

useful information than the measurements

of size and structure could be collected.

Moser et al [17] performed a comparative

analysis of the process efficiency and

defect prevention product metrics and

showed a great improvement in the

process metrics.

IV.RESEARCH BACKGROUND

This section encapsulatesrealistic data

collection correlated with assigned

independent and dependent variables.

A. Data Collection

For this research, dataset is collected for

the experimental work, which is

considered from the projects for OO-

deficiency of the Marian Jureczko data

sets [31] available at http://madeyski.e-

informatyka.pl/tools/software -defect-

prediction/ it consists of study of 13 open

source projects of similar kind having total

instances 46,775. Each instance of the

dataset has corresponding metrics sets with

associated bug values. The more the data

sample better the accuracy of the model.

Figure 1: Architecture of Performance

Evaluation During Design Phase of SDLC

B. Dependent and Independent

Variables

In this research bug is dependent variable

and the independent variables are CK

suite(WMC, DIT, NOC, CBO, RFC

LCOM)+Martins metrics(CA, CE)+

LOC+QMOOD Suite(LCOM3, NPM,

DAM, MOA, MFA, CAM)+Extended

CK(IC, CBM, AMC)+McCabe’s(

MAX_CC and AVG-CC).

V.METHODOLOGY ADOPTED

This research work, explores different

metrics for predicting bugs using the ML

techniques Decision Tree (DT) and

Logistic Regression (LR). The entire data-

set splitting is done into two parts, 70:30

ratio as training and test data set. The

training data set is applied for prediction

using ML models. Testing dataset is

applied to validate the prediction model

for software reliability.

A. Metrics Description

The study consisted of 20 independent OO

metrics summarized in table 1.

Table 1: Metrics Description

Suite 1 CK Metric (6 metrics)

WMC Weighted Methods per Class

DIT Depth of Inheritance tree

NOC Number of Children

CBO Coupling Between Objects increased as the methods of one class access

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10505 Published by: The Mattingley Publishing Co., Inc.

services of another.

RFC
Response for Class, number of methods invoked in response to message to the

object.

LCOM
Lack of cohesion in methods, i.e. the number of pairs of methods not sharing a

reference to an instance variable.

Suite 2 Martins metric (2 metrics)

CA Afferent Coupling, how many other classes use the particular class.

CE Efferent Coupling, the no of classes is used by the particular class.

Suite 3 QMOOD (5)

NPM Number of Public Methods

DAM Data Access Metric, ratio of private (protected) attributes to total attributes

MOA
Measure of Aggregation, count of the number of data declarations (class fields)

whose types are user defined classes

MFA
Measure of Functional Abstraction, number of methods inherited by a class

plus number of methods accessible by member methods of the class

CAM

Cohesion Among Methods, summation of no of different types of method

parameters in every method divided by a multiplication of number of different

method parameter types in whole class and number of methods.

Suite 4 Extended CK suite (4 metrics)

LCOM3 Lack of cohesion in methods 3

IC
Inheritance coupling, Number of parent classes (the number of inherited

methods and variables) with which a given class is associated

CBM
total number of new/reddened methods to which all the inherited methods are

coupled

AMC Average methods per class

Suite 5

LOC Lines of code

Suite 6 McCabe’s Cyclomatic Complexity (2 metrics)

MAX CC maximum McCabe's cyclomatic complexity

AVG CC Average McCabe's cyclomatic complexity

defect/ bug: Defects found in post-release bug-tracking systems.

B. Metrics and Model

Assumption

Aim is to quantify the impact of OO

design metric on software quality i.e.

Reliability by building Predictive models.

In this study we want to show how all

considered metrics are significantly

contributing in model building. For

software bug prediction there are certain

assumptions about metrics that are

described below.

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10506 Published by: The Mattingley Publishing Co., Inc.

a. The model is built by OO

metrics.

b. The analyzed model

consists of 20 OO metrics: WMC,

DIT, CBO, RFC, COM, CA, CE,

NPM, COM3, LOC, DAM, MOA,

MFA, CAM, IC, CBM, AMC,

MAX-CC and AVG CC.

c. In the absence of metric

value it is considered to be zero.

d. Dependent variable is 0 or 1

as bug value for every instance.

Figure 2: Framework for Modeling and

Assessment

VI.MACHINE LEARNING

TECHNIQUES

Machine learning is a kind of artificial

intelligence that enables computers to

learn without explicit programming.

Machine learning is based on software

development programs which can grow

and learn in the context of new data.

Because of better results researchers will

be using machine learning which can also

deals with complex data as well.

A. Logistic

regression analysis:

Logistic Regression is a classification

algorithm. It is used to predict a binary

outcome (0=Not Bug, 1=Bug). The

logistic regression is a predictive analysis

similar to the linear regression models.

Logistic Regression plays vital role in

describing data and relationship between

one dependent (binary variable) and one or

more independent variables (continuous-

level/ interval / ratio scale). In simple

words, by applying data to a logit

equation, it estimates the likelihood of an

event occurring. glm (formula = bugs ~.,

family = binomial(logit), data = bugtrain1)

Generalized linear model (GLM) –output

variables with error distribution models

other than normal distribution are allowed

by this multipurpose extensive linear

regression model. The general linear

model is a regression model for statistical

analysis. d (y , y) = 0 ,d (y , μ) > 0 ∀ y ≠

μ For mapping of predicted values to

probabilities there is a use of Sigmoid

function. This function maps the value

between 0 and 1 of any real value. In

machine learning generally we make use

of sigmoid to map predictions to

probabilities.

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10507 Published by: The Mattingley Publishing Co., Inc.

𝑓(𝑥) =
1

𝑒−𝑥

----------------(1)

For logistic regression it is

σ(Z) = σ (β₀ + β₁X) ---------------------------

-----------------(2)

We have expected that our results will give

values between 0 and 1.

Z = β₀ + β₁X -----------------------------------

----------------(3)

hθ(x) = sigmoid(Z)

i.e. hθ(x) =
1

1+𝑒−(𝛽0+𝛽1𝑥)

--------------- (4)

B. Decision Tree:

A decision tree is a decision support and a

popular tool in machine learning. Decision

tree can be a type of supervised learning

algorithm with a pre-defined output

variable that isnormally utilized in

classification problems.It works for the

input and output variables both categorical

and continuous.This technique, based on

most significant splitter / differentiator

in input variables, the population or

sample is split into two or more

homogeneous sets (or sub-populations).

Decision Tree Analysis (0=Not

Bug,1=Bug)

VII. PROPOSED ALGORITHM AND

FRAMEWORK

Algorithm for Model Development

1. Input: A set of datasets

VDS(validated Combined Dataset)

2. a set of metrics (MT =

MT1, MT2, MT3,…,MTn);

3. A set of classifiers (CL1,

CL2, CL3…, CLz).

4. Output: Proposed model

based on error (RMSE).

Algorithm steps:

1. Select datasets of similar

kind of project.

2. Combine all the datasets to

form validated dataset

VDS=∑D1+D2+D3….Dm.

3. Identify and remove Near

Zero variance metric.

4. Check the missing values in

each metrics. Replace by measures

of central tendency.

5. Check the outliers and treat.

6. Split data into Train and

Test (70:30).

7. Apply different classifiers

CL1,CL2,...,CLz) using Train

Dataset & Validate using Test

Dataset

8. Build Model with

significant metrics MT1 …MTn

9. Generate Confusion matrix

10. Apply Performance

Measure calculate, Accuracy,

Recall, AUC, ROC for each

classifier on VDS

11. Select foremost Classifier

with Maximum Accuracy and

minimum RMSE.

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10508 Published by: The Mattingley Publishing Co., Inc.

VIII. STATISTICAL EFFICACY

MEASURES

In this study, the distribution mean,

median, and interquartile ranges of each

metric are studied. The distribution of a

metric determines the applicability of

following regression analysis techniques.

Descriptive statistics of metrics on related

data is represented in Table 2.

Table 2: Descriptive Statistics of Metrics

Metric Min 1st Qu Median Mean 3rd Qu. Max.

WMC 0 2 4 6.33 7 212

DIT 0 1 2 2.49 3 9

NOC 0 0 0 0.49 0 467

CBO 0 4 9 13.41 17 860

RFC 0 7 16 25.19 31 428

LCOM 0 1 1 41.75 10 11323

CA 0 0 1 3.54 2 860

CE 0 2 7 10.10 15 133

NPM 0 2 2 4.55 4 212

LCOM3 0 0.85 1 1.26 2 2

LOC 0 28 76 210.70 196 13175

DAM 0 0 0 0.29 0.6 1

MOA 0 0 0 0.29 0 158

MFA 0 0 0.75 0.50 0.89 1

CAM 0 0.37 0.57 0.53 0.67 1

IC 0 0 0 0.77 1 6

CBM 0 0 0 1.40 2 33

AMC 0 7.5 17.33 30.81 37.29 3492

MAX.CC. 0 1 1 3.70 4 252

AVG.CC. 0 0.5 1 1.343 1.6 30.5

IX.MODEL BUILDING

The Framework for modelling and

assessment is shown in figure 2. It

present,Architecture of Data Validation,

Metric selection, Classifier selection,block

diagrams of Data Pre-processing and

Accuracy calculation using the proposed

model. The model is build using all metric

by considering the formula of logistic

regression.

Pred bug=1/1+e^- [(2.92E-02)*WMC + (-

1.52E-01)*DIT + (1.76E-02)*CBO + (-

1.62E-03)*RFC + (-6.96E-04)*LCOM +

(-1.09E-02)*CA + (2.06E-02)*CE + (-

2.61E-05)LOC + (4.19E-01)*LCOM3 +

1.38E-02*NPM + (-7.27E-02)*DAM +

(7.45E-02)*MOA+ (8.25E-01)*MFA + (-

1.30E+00)*CAM + (-3.04E-02)*IC +

(5.86E-02)*CBM +(6.58E-03)*AMC + (-

8.75E-03)*MAX_CC+(3.78E-02)*AVG-

CC]-------------------- (5)

Derived from this glm (formula = bugs ~.,

family = binomial (logit), data =

bugtrain1)

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10509 Published by: The Mattingley Publishing Co., Inc.

Table 3: Coefficient table output

Coefficients Estimate Std. Error z value Pr(>|z|) Signifi-cant

Rate

(Intercept) -1.83E+00 7.10E-02 -25.768 < 2e-16 ***

WMC 2.92E-02 6.33E-03 4.612 3.99E-06 ***

DIT -1.52E-01 1.86E-02 -8.17 3.10E-16 ***

CBO 1.76E-02 1.36E-02 1.295 0.1953

RFC -1.62E-03 1.12E-03 -1.45 0.1471

LCOM -6.96E-04 8.25E-05 -8.434 < 2e-16 ***

CA -1.09E-02 1.35E-02 -0.802 0.4223

CE 2.06E-02 1.36E-02 1.509 0.1313

NPM 1.38E-02 5.39E-03 2.552 0.0107 *

LCOM3 4.19E-01 2.88E-02 14.553 < 2e-16 ***

LOC -2.61E-05 6.59E-05 -0.397 0.6916

DAM -7.27E-02 4.40E-02 -1.653 0.0983 .

MOA 7.45E-02 1.42E-02 5.245 1.56E-07 ***

MFA 8.25E-01 6.24E-02 13.22 < 2e-16 ***

CAM -1.30E+00 6.89E-02 -18.851 < 2e-16 ***

IC -3.04E-02 2.79E-02 -1.092 0.275

CBM 5.86E-02 8.21E-03 7.14 9.35E-13 ***

AMC 6.58E-03 4.58E-04 14.371 < 2e-16 ***

MAX.CC. -8.75E-03 3.62E-03 -2.417 0.0157 *

AVG.CC. 3.78E-02 1.51E-02 2.5 0.0124 *

[Signif.codes:0 ‘***’0.001‘**’ 0.01 ‘*’

0.05 ‘.’ 0.1 ‘’ 1] the table 3 defines the

relation between the regression

coefficients and values of intercept,

standard error, z-value and p-value. On

various parameters for each coefficient:

the intercept and other independent

variables. (*** – high importance, * –

medium importance, and dot – next level

of importance). In this context for

significant variables estimate, Std. Error,

Z-value, Pr (>|z|) can be observed from

table 3. It can be seen that WMC, DIT,

LCOM, LCOM3, MOA, MFA, CAM,

CBM, AMC, shown as *** as highest

significance rate.* least significanceis

NPM, MAX_CC and AVG-CC and lastly

seen as. (dot) dam very low significant

whereas CBO, RFC, CA, CE, LOC, IC has

no significance in model building.

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10510 Published by: The Mattingley Publishing Co., Inc.

X. PERFORMANCE MEASURES AND

DISCUSSION

Experiments were conducted in R tool for

Machine learning techniques and build the

model using Logistic Regression, Decision

Tree. Further to assess the performance of

a logistic regression model, we must study

few measures.

A. Experimental analysis of

Logistic Regression

1] Null and Residual Deviance

Instatistical hypothesis testing deviance is

a quality-of-fit measurement for a model

that is regularly used.Where model-fitting

is achieved by maximum likelihoodby a

generality of the impression of using the

sum of squares of residuals in ordinary

least squares to cases, it plays an vital role

in exponential dispersion models and

generalized linear models.

The unit deviance d(y, μ) --------------------

-----------------(6)

is a bivariate function that satisfies the

following conditions:

D(y,y)=0 and D(y,µ)= ∑ d(yi,µi) . The

(total) deviance for a model M0 with

estimates

μ= E [Y/θ0] -------------------------------------

-------------(7)based on a dataset y, may be

constructed by its likelihood.

Null Deviance: - Deviance is a fitness

measure of a model. Higher numbers

usually explain the poor fit. The null

deviance indicates how well a model

predicts the response variable, which

contains only the intercept (great mean)

while the residual one with independent

variables is included.

From the model summary, the response

bug variable is affected by WMC, DIT,

NOC, CBO, RFC LCOM, CA, CE, LOC,

LCOM3, NPM, DAM, MOA, MFA,

CAM, IC, CBM, AMC, MAX_CC and

AVG-CC variables.The legend of

the correlated coefficients (* * * – high

priority, * – medium importance and dot –

next level importance) realizes the rank of

the variable. Rerunning the model with

these significant independent variables

will impact the model performance and

accuracy.

Reduced Model of Logistic Regression is

built with significant Variable:

glm (formula = bugs ~ wmc + dit + lcom +

npm + lcom3 + dam + moa + mfa + cam +

cbm + amc + max.cc. + avg.cc., family =

binomial(logit), data = bugtrain1) ---- (8)

It is observed that the Null deviance and

degree of freedom of full and reduced

model is 38197 on 32743 degrees of

freedom and Residual deviance as 34429

on 32724 degrees of freedom for full

model and 35037 on 32730 degrees of

freedom. Deviance is a measure of

goodness of fit of a model. Higher

numbers always indicate bad fit. The null

deviance shows how well the response

variable is predicted by a model that

includes only the intercept (grand mean)

whereas residual with inclusion of

independent variables.

The reduced model only the significant

variables that are seen by degree of

freedom (i.e 32743-32730=13). Model

only with significant variables increases

the deviance to 35037 from 34429; it’s a

significant increase in devianceIf you have

a very small Null Deviance, the Null

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Exponential_dispersion_model
https://en.wikipedia.org/wiki/Generalized_linear_model

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10511 Published by: The Mattingley Publishing Co., Inc.

Model explains the data fairly well. With

your Residual Deviance, too.

2] AIC (Akaike Information Criteria) –

 The analogous metric of adjusted R² in

logistic regression is AIC. AIC is the

fitness measure which penalizes the

number of model coefficients in the

sample.

Table 4 : AIC Values of LR Model

Model AIC:

Logistic Full Model 34469

Logistic Reduced Model 35065

In full model of logistic regression all

metrics are contributing to the model

development where as in reduced model

only significant variables. Significant

variables are derived from P-values for

regression coefficients. Each regression

coefficient in reduced model is statistically

significant(P-value<0.05). As reduced

model has AIC value high as compared

with AIC value of full model observed in

table 4, hence Full model is better than

reduced model.

3] Confusion Matrix

The confusion matrix is a contingency

table of 2X2 dimension, a binary

classification problem with two possible

classes Positive and negative. In this study

classes having bug and not bug, the

consideration is that the not bug is positive

case and the bug is negative case

4] Model Evaluation

The classification model performance

evaluation is done by performance metrics

on the basis of confusion matrix. A binary

classifier can make two possible errors:

false positives (FP) and false negatives

(FN). In addition, a correctly classified

buggy class is a true positive (TP) and a

correctly classified non-buggy class is a

true negative (TN). We have evaluated

results of binary classification results

given as follows:

1. Total no of instances = properly

classified instances + wrongly classified

instance------------------------------ (9)

2. properly classified instance = TP

+TN

3. wrongly classified instance =

FP+FN

4. Accuracy: How often the classifier

is correct.accuracy = (TP + TN)/ (TP +

TN + FP + FN)----(10) i.e accuracy

= properly classified instances / no of

instances.

5. Misclassification Rate: How often

is it wrong. Misclassification

rate=1-Accuracy i.e Error Rate

=(FP + FN)/(TP + TN + FP + FN) ------

--------------(11)

6. True Positive Rate(Sensitivity

/Recall): when its actually yes and how

often does it predicts

yesSensitivity=TP/FN+TP----------------

------------------(12)

7. False Positive Rate: when its

actually No and how often does it

predicts yes: FP/FP+TN------------------

------(13)

8. Specificity : When it’s actually No,

how often does it predict No :

Specificity =TN/TN+FP -----------------

(14)

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10512 Published by: The Mattingley Publishing Co., Inc.

9. Precision : When it predicts yes,

how often is it correct

Precision = TP/TP+FP---------------------

--------------(15)

10. Prevalence: how often does the yes

condition actually occur in our sample.

Prevalence = FN+TP/(TP + TN + FP +

FN)---------(16)

i] LR Train Data

As per the values in Table 5 accuracy is

calculated with properly classified

instances by dividing total no of instances

whose rows correspond to the observed

values and the predicted values by the

classification model are shown at the

columns

Table 5 : Confusion Matrix for Train Data

n=32744 Pred-N Pred-Y

Actual-N 22944 7230

Actual-Y 959 1611

The model classifies the classes with

overall 74.99% accuracy and

misclassification with 25.01%.

Table 6: Performance Measures of LR

Train Data

Accuracy 74.99%

Misclassification

Rate:
25.01%

Sensitivity 95.99%

Specificity 18.22%

PosPred Value 76.04%

NegPred Value 62.68%

Prevalence 73.00%

CI (0.7452, 0.7546) 95%

Area under the curve: 0.6936

Model also shows the positive predicted

value as 76.04% and negative predicted

value 62.68%. Model shows the 95.99%

sensitivity and the specificity with 18.22%.

The model also shows the 73% prevalence

in the sample data. The different

parameters observed and noted in the table

are scaled in the graphical format in Figure

5.

5] Receiver Operating Characteristic

(ROC)

Précises the model’s performance by

assessing the trade-offs between true

positive rate (sensitivity) and false positive

rate (1- specificity). To plot ROC, it is

recommended to assume p > 0.5 since we

are more concerned about success rate.

ROC explains the predictive power for all

possible values of p > 0.5.

Figure 3 : Graph for Measures on Train

Data

Figure4: ROC Curve for Train Data

The area under curve (AUC), referred to as

index of accuracy (A), is a perfect

0

50

100 74.99
95.99

18.22

76.04
62.68 73

Train Data

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10513 Published by: The Mattingley Publishing Co., Inc.

performance metric for ROC curve. Here

is the sample ROC, higher area under

curve means better prediction power of the

model.The ROC of a perfect predictive

model has TP (True positive) equals 1 and

FP (False positive) equals 0. This curve

will touch the top corner of the graph.

ROC curve shows that AUC for train data

is 0.6936

ii] Test Data

As per the confusion matrix of test model,

during testing of model it can be seen that

overall 75 % accuracy in classifying the

classes and it misses to classify by 25%.

Table 7: Confusion Matrix Test Data

n= 14031 Pred N Pred Y

Actual N 9818 3083

Actual Y 425 705

Table 8 : Performance Measures of Test

Data

Accuracy 75.00%

Misclassification rate 25.00%

Sensitivity 95.85%

Specificity 18.61%

PosPred Value 76.10%

NegPred Value 62.39%

Prevalence 73.00%

CI (0.7427, 0.7571) 95%

Area under the curve: 0.6936

The model Correctly predicts the 76.10%

positive prediction condition and there is

62.39% of negative prediction status. The

sensitivity is 95.85% whereas specificity is

18.61%. The prevalence is observed as

73%.

Figure 5 : Graph for Measures on Test

Data

The graphical presentation of all the

measures accuracy, specificity, prevalence,

sensitivity positive predicted value and

negative predicted value can on the graph

in figure 6. There is 95% confidence

interval ranges between 0.7452 and 0.7546

occurs in the considered data sample. The

area under curve for test data is 0.6925.

Hence model working good in both data

sets. By using these measures, the

selection of the best model is determined.

The model build on train data is tested and

validated by test data which is graphically

shown in figure 7. The graph shows the

comparative analysis of both. There are

perfect.Balancing results are observed

through the various measures. It shows

that the model fits well on the considered

data.

Figure 6 : ROC Curve for Test Data

0
20
40
60
80

100 75
95.85

18.61

76.1
62.39 73

Test Data

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10514 Published by: The Mattingley Publishing Co., Inc.

Table No 9 : Comparative Analysis of

Performance measures of Logistic

regression

Model
Train

data

Test

data

 Accuracy 74.99 75.00

Logistic

Regression

Misclassification 25.01 25.00

Sensitivity 95.99 95.85

Specificity 18.22 18.61

PosPred Value 76.04 76.10

NegPred Value 62.68 62.39

 Prevalence 73.00 73.00

Figure 7 : Graph for Comparison Train &

Test

With the choice of logistic regression, it is

evident that the accuracy for this model is

evaluated as 75% and error rate as 25%.

The model accuracy improvement can be

done with other classification models.

B. Experimental analysis of

Decision Tree

Let’s use the combined dataset and apply

decision tree method to predict whether a

class is buggy or not. The attributes are

available to predict the Model. Below the

data is split as training and test data, which

will be used for building the model and

predictions. Let’s predict on fitted data and

calculate misclassification percentage.

Table 10 : Confusion Matrix for Train

Data

n= 32744 Pred N Pred Y

Actual N 23423 7887

Actual Y 480 954

Model trained by train data set shows

Overall 74.45% accuracy and it

misclassify the classes by 25.55%. The

model sensitivity is 97.99% and model

specificity is 10.79%.

Table11 : Performance Measures of DT

Train Data

Accuracy 74.45%

Misclassification Rate 25.55%

Sensitivity 97.99%

Specificity 10.79%

PosPred Value 74.81%

NegPred Value 66.53%

Prevalence 73.00%

CI (0.7397, 0.7492) 95%

AUC 0.6152379

Figure 8 : Graph for Measures on Train

Data

The positive predicted value is 74.81% and

negative predicted value is 66.53.

Prevalence can be seen that the 73% The

Model shows the confidence interval of

95% in the range of 0.7397 and 0.7492

condition for the sample data used. The

74.99 73
95.99

18.22

76.04 62.68 73

75 73

95.85

18.61

76.1
62.39

73

0

50

100

150

200

250
Comparision Train and Test Data

Train Test

0
20
40
60
80

100 74.45
97.99

10.79

74.81 66.53 73

Train Data

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10515 Published by: The Mattingley Publishing Co., Inc.

positive predicted value is 74.81% and

negative predicted value is 66.53%.

Figure 9 : ROC curve for train data

As per the developed model of decision

tree the Confusion Matrix for Test Data is

generated as:

Table 12: Confusion Matrix for Test Data

n=14031 Pred N Pred Y

Actual N 10041 3363

Actual Y 202 425

The confusion matrix as above is for test

data with 14031 total observations. It

shows the overall measures for the total

test data with the 95% confidence interval

in the range of 0.7386 to 0.7531 and 73%

prevalence.

The model is tested and validated on test

data set. It shows overall 74.59%

accurately classify the classes and overall

25.41% wrongly classify the classes by

model.

Table 13 : Performance Measures of

DecisionTree Test Data

Accuracy 74.59%

Misclassification

Rate
25.41%

Sensitivity 98.03%

Specificity 11.22%

PosPred Value 74.91%

NegPred Value 67.78%

Prevalence 73.00%

CI (0.7386, 0.7531) 95%

AUC 0.609539

Positive predicted value is the 74.91% and

negative predicted condition is 67.78%.

The sensitivity is 98.03% and the

specificity is

Figure 10 : Graph for Measures on Test

Data

11.22% with the 73% prevalence actually

occurs in sample data used.

Figure 11 : ROC curve for test data

Table 14: Comparative study of

Performance Measure for Decision Tree

Models
Train

data

Test

data

Decision

Tree

Accuracy: 74.45% 74.59%

Misclassification

Rate:
25.01% 25.41%

Sensitivity 97.99% 98.03%

Specificity 10.79% 11.22%

0
20
40
60
80

100 74.59

98.03

11.22

74.91 67.78 73

Test Data

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10516 Published by: The Mattingley Publishing Co., Inc.

PosPred Value 74.81% 74.91%

NegPred Value 66.53% 67.78%

Prevalence 73.00% 73.00%

The evaluation process is implemented

using two real testing/debugging datasets.

Experimental results are collected based

on accuracy, precision, recall, measures.

Results reveal that the Machine Learning

techniques are efficient approaches to

predict the future software bugs..

Figure 12 :Comparison Train and Test

Data

The comparison results shows that the

Logistic Regression classifier has the little

better results over the Decision Tree.

Moreover, experimental results showed

that using Machine Learning approach

provides a better performance for the

prediction model

XI.CONCLUSION

The objective of this study is to inspect

and assess the relationship between object-

oriented metrics and defect prediction in

terms of bug by computing the accuracy of

the proposed model on combined datasets.

The performance of Logistic regression

and Decision Tree Machine Learning

techniques has been estimated. The

experiment for bug prediction using

combined dataset of 13 software. We have

empirically proved that defects predicted

using mentioned ML techniques signifies

that the actual and the predicted values are

very close for all the data being taken into

consideration in predicting reliability in

terms of the various statistical efficacy

measures applied. Two techniques the

Logistic regression and Decision Tree

shows the promising results with the

accuracy of 75% and 74.5% respectively.

XII.FUTURE WORK

As a future work there is inclusion of other

Machine Learning techniques to provide

an extensive comparison among them.

Furthermore, study of software metrics in

the learning process is one possible

approach to increase the accuracy of the

prediction model in terms of software

reliability.

REFERENCES

[1] Dr. Linda H. Rosenberg, Lawrence E.

Hyatt “Software Quality Metrics for

Object-Oriented Environments”

[2] Shyam R. Chidamber, Chris F.

Kemerer “A Metrics Suite For Object

Oriented Design” M.I.T. Sloan School

of Management , Revised December

1993.

[3] SanjeevPunia, “A Review of Software

Quality Metrics for Object-Oriented

Design ” International Journal of

Advanced Research in Computer

Science and Software Engineering ,

Volume 6, Issue 8, August 2016

ISSN: 2277 128X, www.ijarcsse.com

[4] R. A. Khan, K. Mustafa and S. I.

Ahson “An Empirical Validation of

Object Oriented Design Quality

Metrics” J. King Saud Univ., Vol. 19,

Comp. & Info. Sci., pp. 1-16, Riyadh

(1427H./2007)

74.45%
97.99%

10.79%

74.81%
66.53%

73.00%

74.59%

98.03%

11.22%

74.91%
67.78%

73.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

Comparison Train and Test Data

Train data Test data

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10517 Published by: The Mattingley Publishing Co., Inc.

[5] Fernando Brito e Abreu,

WalcelioMelo “ Evaluating the Impact

of Object-Oriented Design on

Software Quality”

https://www.researchgate.net/

publication/2818243

[6] Surbhi Gaur, Savleen Kaur, Inderpreet

Kaur “Validation of Software Quality

Models using Machine Learning: An

Empirical Study” International Journal

of Computer Applications (0975 –

8887, 08th National Conference on

Next generation Computing

Technologies & Applications

(NGCTA - 2013)

[7] “Evaluating the Impact of Object-

Oriented Design on Software Quality”

[8] The Software Design Metrics tool for

the UML

[9] Dinesh Verma and Shishir Kumar ,

“An Improved Approach for

Reduction of Defect Density Using

Optimal Module Sizes, Hindawi

Publishing Corporation Advances in

Software Engineering Volume 2014,

Article ID 803530, 7 pages

http://dx.doi.org/10.1155/2014/803530

[10] KamrunNaharNeela*, Syed Ali Asif,

Amit Seal Ami, AlimUlGias

“Modeling Software Defects as

Anomalies: A Case Study on Promise

Repository” Journal of Software

Volume 12, Number 10, October 2017

[11] Johny Antony P & Harsh Dev

“Estimating Reliability Of Software

System Using Object-Oriented

Metrics” International Journal of

Computer Science Engineering and

Information Technology Research

(IJCSEITR) ISSN 2249-6831 Vol. 3,

Issue 2, Jun 2013, 283-294 © TJPRC

Pvt. Ltd.

[12] Marian Jureczko, “Significance of

Different Software Metrics in Defect

Prediction”

[13] DharmendraLal Gupta, And

KavitaSaxena, Software bug

prediction using object-oriented

metrics Sadhana Vol. 42, No. 5, May

2017, pp. 655–669 Indian Academy

of Sciences DOI 10.1007/s12046-017-

0629-5

[14] AnkushVesra, Rahul “ A Study of

Various Static and Dynamic Metrics

for Open Source Software”

International Journal of Computer

Applications (0975 – 8887) Volume

122 – No.10, July 2015.

[15] Hemlata Sharma, Anuradha Chug

“Dynamic Metrics are Superior than

Static Metrics in

[16] Maintainability Prediction : An

Empirical Case Study” 978-1-4673-

7231-2/15/$31.00 ©2015 IEEE

[17] Shamsul Huda, Sultan Alyahya,

MdMohsin Ali, Shafiq Ahmad, “A

Framework for Software Defect

Prediction and Metric Selection” IEEE

Access Digital Object Identifier

10.1109/ACCESS.2017.2785445

[18] N.Kalaivani1, Dr.R.Beena ” Overview

of Software Defect Prediction using

Machine Learning Algorithms”

International Journal of Pure and

Applied Mathematics Volume 118 No.

20 2018, 3863-3873 ISSN:1314-3395

(on-line version) url:

http://www.ijpam.eu

[19] Manjula. C.M. Prasad, Lilly Florence,

and Arti Arya A Study on Software

Metrics based Software Defect

Prediction using Data Mining and

Machine Learning Techniques”

International Journal of Database

Theory and Application Vol.8, No.3

(2015), pp.179-190

http://dx.doi.org/10.14257/ijdta.2015.8

.3.15

[20] AynurAbdurazik and XiaochenShen

“ATool for Measuring Java OO

Couplings”

[21] Shweta Sharma, Dr S. Srinivasan “ A

review of Coupling and Cohesion

metrics in Object Oriented

March - April 2020

ISSN: 0193-4120 Page No. 10501 - 10518

10518 Published by: The Mattingley Publishing Co., Inc.

Environment” International Journal of

Computer Science & Engineering

Technology (IJCSET)

[22] Mustafa Ghanem Saeed, Kamaran

Hama Ali Faraj “ Three Levels

Quality Analysis Tool for Object

Oriented Programming” (IJACSA)

International Journal of Advanced

Computer Science and Applications,

Vol. 9, No. 11, 2018

[23] Mohammad Ibraigheeth (Abu-

Ayyash), Syed Abdullah Fadzli

“Software Reliability Prediction In

Various Software Development

Stages” Journal of Theoretical and

Applied Information Technology 15th

April 2018. Vol.96. No 7 ISSN: 1992-

8645 www.jatit.org E-ISSN: 1817-

3195

[24] Yeresime Suresh, JayadeepPati,

Santanu Ku Rath 2nd International

Conference on Communication,

Computing & Security [ICCCS-2012]

www.sciencedirect.com Procedia

Technology 6 (2012) 420 – 427.

[25] MuktamyeeSarker “An overview of

Object Oriented Design Metrics”

[26] Sheena Nanda “Evaluation of Feature

Selection Technique for Software

Maintenance Prediction”

[27] GurpreetKour “Validating Software

Evolution of Agile Projects Using

Lehman Laws”

[28] Dalila et al “Towards a New

Framework of Software Reliability

Measurement Based on Software

Metrics” The 8th International

Conference on Ambient Systems,

Networks and Technologies (ANT

2017) www.sciencedirect.com

[29] Nidhi Gupta1, Dr. Rahul Kumar

“Reliability Measurement of Object

Oriented Design: Complexity

Perspective” International Advanced

Research Journal in Science,

Engineering and Technology Vol. 2,

Issue 4, April 2015. ISSN (Online)

2393-8021 ISSN 2394-1588

[30] Le Hoang Son, et al “Empirical Study

of Software Defect Prediction:A

Systematic Mapping” Symmetry

MDPI

[31] http://madeyski.e-

informatyka.pl/tools/software-defect-

prediction/

[32] Yeresime et al Statistical and

Machine Learning Methods for

Software Fault Prediction Using CK

Metric Suite: A Comparative

Analysis” Hindawi Publishing

Corporation ISRN Soware

Engineering Volume 2014, Article ID

1083, 15 pages

http://dx.doi.org/10.1155/2014/2510s

