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Abstract 

The paper propose an automatic framework for the detection of coronary artery calcification 

in intravascular ultrasound (IVUS) images using texture analysis method. The texture 

features used is called Histogram of Equivalent Patterns (HEPs) Features. Experiments was 

conducted using 2175 IVUS images, 530 with calcification plague and 1645 without calci-

fication plague. The images are from dataset B of MICCAI challenge 2011. The classifier 

used is 1-NN classifier. A 2-fold cross-validation process is applied to the IVUS image 

database to evaluate the performance of the proposed framework. The highest accuracy 

obtained is 95.89 %, using a variant of Com-pleted Local Binary Patterns (CLBP) 

descriptors as the features. 

 

Index Terms; Intravascular ultrasound image, image classifi-cation, HEP features, 

Calcification in IVUS image 

 

I. INTRODUCTION 

According to a report by WHO, Cardiovascular 

Disease (CVD) is the leading of non-communicable 

diseases (NCDs) that causes death. It was estimated 

in 2016 that around, 41 million death are caused by 

the NCDs which is equivalent to 71% of all deaths 

globally. Out of this 17.9 million deaths (44 %) are 

due to CVD, 9.0 million deaths (22%) are due to 

cancer, 3.8 million deaths (9%) are due to chronic 

respiratory disease and 1.6 million deaths (4%) are 

due to diabetes [1]. 

Cardiovascular Disease includes numerous 

problems, and of them is Coronary artery disease 

(CAD). Most often Coronary artery disease is 

related to a process called Atherosclerosis, a disease 

of the vessel wall. Atherosclerosis develops when 

plaque started to builds up in the artery wall. This 

buildup narrows the arteries, causing it harder for 

blood to flow through the artery. If the accumulated 

plague is ruptured, the blood will clot inside the 

artery and this can prevent the blood flow, which 

then may lead to heart attack or stroke. 

A number of imaging modalities exist to the assist 

di-agnosing the coronary artery diseases. The most 

commonly used diagnostic tools are X-ray coronary 

angiography and intravascular ultrasound (IVUS) 

images. The main advantage of selective coronary 

angiography is it provides projectional X-ray images 

of contrast filled coronary vessels. This enable the 

vessel lumen to be viewed in detail. However, 

selective coronary angiography offers no 

information about the coronary wall. 

IVUS imaging offers image information 

complementary to that provided by angiography. 

The IVUS imaging generates cross-sectional high 

resolution images (up to 113 m) of the lumen, 

plaque, and vessel wall. This characteristic are 

essential for clinical diagnosis since to date, not 

many modality enabling the accurate morphological 

segmentation of the vessel mem-brane and plague in 
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vivo. The information obtained from the IVUS 

image can be used for diagnostic purposes such as to 

facilitate analysis of arteriosclerotic vascular disease 

[2]. 

Calcium is a powerful reflector of ultrasound. Only 

little of the beam enter or penetrates the calcium. 

Due to that reason, calcium casts a shadow over 

deeper arterial structures. In IVUS image, Coronary 

artery calcification (CAC) appear as a bright 

hyperechoic (echo dense) compared to the adventitia 

and often appear with a corresponding acoustic 

shadowing (Figure 1) [3]. 

The coronary artery calcification is an important 

marker for coronary artery disease. It is known to 

correlate with the degree of atherosclerosis and 

possibly the rate of future cardiac events. The 

presence or absence of calcium are also shown to be 

an important determinant of the Percutaneous 

Coronary Intervention (PCI) success [4]. In addition, 

cal-cium is also a known limitation of successful 

directional atherectomy. Whereas extensive calcium 

is considered con-traindicated, atherectomy is 

feasible with small, focal areas of calcium [5]. 

 

Fig. 1: LEFT: Normal IVUS image 

RIGHT: IVUS Image with Calcification. White 

Arrow indicates the calcification while white   

indicates the corresponding acoustic shadowing [3]. 

II. LITERATURE REVIEW 

Many works is currently in progress to develop 

semi-automatic and automatic detection of Coronary 

artery calcification. Bayesian Classifier [6] and 

Fuzzy k means [7] are used to find calcification 

inside the region between lumen and vessel wall, 

after the detection of lumen and media adventitia 

borders. Another work is described in [8]. The 

proposed method start with a segmentation of 

coronary wall and plaque, followed by 

determination of plaque composition to one of the 

main three classes: soft plaque, hard plaque, or hard 

plaque shadow. 

The following two works exploits the fact that the 

calci-fication regions often represent high intensity 

echo in IVUS images. This fact makes possible to 

segment calcified regions by using gray level 

threshold techniques. Work in [9] used adaptive 

threshold (Otsu method) because of the intensity 

level change from image to image, followed by 

morphological operation and an empirical threshold 

to detect the boundary of the calcification. Similarly 

[10] also uses Otsu thresholding and to eliminate 

wrongly segmented bright regions. Detection of 

acoustic shadow is also being performed. 

Work in [11] detect calcification directly by 

applying coarse-to-fine strategy to locate the 

calcification region. The method involved 3 main 

steps. The first is pixel classification using Rayleigh 

Mixture Model (RMM) and followed by the detec-

tion of Angular Location of the calcification using 

Markov Random Field (MRF). The second step is 

the refinement of the detected calcification region by 

five predefined constraints. Lastly Graph Searching 

algorithm is used to detect the final calcification 

border. 

Other than segmenting region of interest, 

calcification is also detected by assessing the overall 
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appearances of the IVUS image. Using this 

approach a unique image pattern is extracted from 

the image and reasoning is made to identify the 

relationship between the perceived patterns and 

possible diagnosis. This work has the advantages of 

not relying on the result of segmentation of other 

regions. One such work is by [12]. The work used 

deep learning together with sev-eral well-known 

classifiers to detect calcification present and 

calcification absents in an IVUS image. 

In this paper we propose a framework for 

calcification detection using 38 texture descriptors 

belonging to Histogram of Equivalent Patterns 

(HEP) Features. A 1-NN classifier were then used as 

classifier to classify the images into one of these two 

classes, image with calcification and images without 

calcification. A 2-fold cross-validation process is 

applied to a database of 2175 IVUS image to 

evaluate the performance of the proposed approach. 

III. METHODOLOGY 

A. Dataset 

In this study, we used IVUS images obtain from 

dataset B of the MICCAI challenge 2011 [13]. All 

together there are 2175 images in the dataset, all 

with present of plagues. Out of this 530 shows sign 

of calcification. The images are obtained from 10 

patients and the imaging system used is a Si5 

(Volcano Corporation), equipped with a 20 MHz 

Eagle Eye monorail catheter. It was extracted from 

in vivo pullbacks of human coronary arteries. These 

images were in gray scale (255 gray levels), PNG 

format and with the size of 384 x 384. Somesamples 

of IVUS images in the dataset are as shown in 

Figure 2. 

 

Fig. 2: Some samples of IVUS images 

B. Calcification Classification 

 

Fig. 3: The framework of the proposed approach 

Based on some studies, in IVUS image, calcification 

regions are usually appear as bright regions in due to 

its high reflection of the ultrasound beam. Because 

of that many had assumed that they can be 

segmented as region of interest (ROI) by 

thresholding. However, this approach is not very 
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accurate and in fact difficult because most often, 

normal tissue, parts of the catheter, and other 

artifacts may, also, appear as bright regions in the 

images. Thus there are possibility that they may be 

wrongly segmented as one of calcification region 

[10]. 

Because of that, rather than performing 

segmentation on the specific calcification region, we 

proposed a classification approach. We implement 

the standard method of classification that is by 

employing a HEPs feature together with 1-NN 

classifier with L1 distance and classify the whole 

image as either a normal IVUS image without 

calcification or an IVUS image with calcification. 1-

NN classifier is chosen because it is one of the most 

commonly used classifier to test texture analysis 

algorithms. Furthermore it can be used without 

additional tuning parameters. Fig. 3 shows the main 

elements of our approach and indicates the 

information flow within the system. Basically it 

involve taking an IVUS image, followed by feature 

extraction using HEP features. Then the image will 

be classified into the two classes mentioned earlier 

using 1-NN classifier. 

C. Histogram of Equivalent Patterns (HEPs) 

Histogram of Equivalent Patterns (HEPs) features 

was first introduced in [14]. HEPs features is a 

family of texture features descriptors which share 

the same basic principles, though they have been 

developed and presented independently in literature. 

There are 38 texture features descriptors which is 

categorized as HEPs feature, which are listed in 

Table I. 

 

 

 

 

 

 

Table I: HEPs Features 

 

The basic principles shared by all HEPs feature are 

they are based on neighborhood of predefined shape 

(rectangular) of fixed size. The rectangular shape is 

moved along theimage by steps of one pixel. In each 

position, one among K predefined class label will be 

assigned to the neighborhood, and the corresponding 

k th component of feature vector h is incremented by 

1=D, where D is the normalizing factor. Therefore 

the feature vector represents the probability of 

occurrence of each class (factor 1=D normalizes the 

feature vector to sum one). 

Fernandez et. al. [14] has defined the HEP 

descriptor as inEquation 1 and Equation 2 as 

follows: 

Definition 1: 

A texture descriptor HEP is defined as a function F 

that receives an image I and return a feature vector 

h. I is an M xN matrix representing the pixel 
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intensities of an image quantize to G grey levels. Im;n 

is the grey-scale intensity at pixel (m; n). 

h = F (I) 

Definition 2: 

the k  th element of h is expressed as follow: 

 mmax nmax 

m=mmin n=nmin 

where: 

– m and n = represent row and column-wise pixel 

indices, 

– xm;n = the grey scale values of a set of pixels 

defining a generic neighborhood  m;n around (m; n), 

– = a vector of parameters computed from the whole 

image 

– D = normalizing factor 

– f = a generic function that returns an integer 

between 0 and K 1. 

hk = (1=D) X X  [f(xm;n; )  k] 

–   = defined as Equation 3 

(x) =1x = 0 (3) 

otherwise 

The list the 38 HEP feature descriptors is in Table I. 

Some of the HEP features will be briefly explained 

in the following subsection. For detail description of 

other descriptors, kindly refer to [14]. 

1) Binary gradient contour: Binary gradient 

contour (BGC)is a family of descriptor based on 

pairwise comparisonof adjacent pixels belonging to 

one or more closed path traced along the periphery 

of the 3x3 neighborhood. There are there type of 

BGC, depending on the closed path selected. They 

are called BGC1, BGC2 and BGC3. Improved 

Binary gradient contour1 is an extension of BGC1. 

With IBGC1, a central pixel is introduced and the 

comparison is conducted between the central pixels 

and average gray scale value. 

2) Texture spectrum: Texture spectrum, 

introduced by He and Wang [16] characterize local 

texture information in all 

eight directions. The method is said as the precursor 

for a set of more recent method such as Local 

Binary Pattern (LBP). In Texture spectrum , each 

peripheral pixel in the3x3 neighborhood is assigned 

a value 0, 1, or 2 if its grey level intensity is less, 

equal or greater that the central pixel respectively. 

Texture spectrum is an advancement of the method 

Texture spectrum , whereby they are made to be 

more robust to the presence of noise by introducing 

a threshold value above zero. 

3) Local Ternary Pattern:  Local Ternary Pattern 

(LTP) 

[17] is a hybrid between texture spectrum and local 

binary patterns. The main similarity between the 

methods is the used of thresholding. However unlike 

LBP, LTP does not threshold the pixels into 0 and 1, 

rather it uses a threshold constant to threshold pixels 

into three values, just like texture spectrum. 

Improved LTP (ILTP) [18] is the improved version 

of LTP, which is designed to make the method more 

robust to the presence of noise. In ILTP each pixel 

in the neighborhood is thresholded at the average 

gray scale value. 

4) Completed Local Binary Pattern: Completed 

Local Bi-nary Pattern (CLBP) is introduced by [19] 

and it is an extension of LBP. In CLBP, a local 

region is represented by its center pixel and a Local 

Difference Sign-Magnitude Transform (LDSMT). 

The center pixel is simply coded by a binary code 

after global thresholding, and the binary map is 

named as CLBP Center (CLBP C). 

The LDSMT decomposes the image local structure 

into two complementary components: the difference 

signs (CLBP S) or the original LBP and the 

difference magnitudes (CLBP M). All the three code 
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maps, CLBP C, CLBP S and CLBP M, are in binary 

format so that they can be readily combined to form 

the final CLBP histogram. All approaches of CLBP 

applied in this experiment are based on different 

combination of these three basic descriptors: CLBP 

S, CLBP C and CLBP M. 

For example, CLBP MxC is obtained by calculating 

the 2D joint histogram of CLBP M and CLBP C and 

CLBP SxM is obtained by calculating the 2D joint 

histogram of CLBP M and CLBP S, CLBP SxMxC 

is obtained by calculating the 3D joint histogram of 

CLBP S, CLBP M and CLBP C and CLBP S MxC 

is obtained by first calculating a joint 2D his-togram 

of CLBP C and CLBP M, then converting it into ID 

histogram and then concatenated it with CLBP S to 

generate the final joint histogram. 

IV. EXPERIMENTAL RESULT 

The experiment was conducted using all images in 

the dataset. The classification is a 2-class 

classification: classifying an image as one of two 

types, a normal image (no calcification) or an image 

with calcification. 2-fold cross validation is used by 

randomly selecting half of the images for training 

and the remaining half for testing. 

The experiment is repeated four times, each time 

with a different subdivision of training and test set. 

The mean recognition rate (mean accuracy) over the 

four run, standard deviation, extraction time and 

recognition time for each tex-ture features are 

recorded and will be used to compare the 

performance of each HEPs feature descriptors. The 

extraction time is the time of feature extraction for 

all the test images and the recognition time is the 

time of recognition for all the test images. 

 

 

 

 

 

Table II: Performance of the HEP Features 

 

The results is as Table II. Based on the Table II, the 

mean accuracy obtained from all descriptors are 

between 83.62% to 95.89%. From the result, the 

following observation can be made. First The top 

performer descriptors with mean accuracy above 

94% are obtained through the use of Improved 

binary gradient contour 1 (IBCG1), Completed local 

binary patterns MxC (CLBP MxC), Completed local 

binary pattern S MxC (CLBP S MxC), Completed 

local binary patterns SxM (CLBP SxM), Completed 

local binary patterns SxMxC (CLBP SxMxC), 

Improved local ternary patterns (ILTP), Tex-ture 

spectrum (TSO) and Texture spectrum (TSdelta). 

Basically we can say the best descriptors in this 

experiment are a variant of Completed Local Binary 

Pattern (CLBP), Texture Spectrum (TS), Local 

Ternary Pattern (LTP) and Improved Binary 

Gradient Contour (IBGC). 

Second, ILTP obtained better result than LTP with a 

mean accuracy of 94.23% and 93.58% respectively. 

This is as expected as ILTP is the improved variant 

of LTP. Similar ob-servation can be made with BGC 

variant. IBGC1 outperformed BCG1 with a mean 
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accuracy 94.55% and 93.50% respectively. For 

Texture Spectrum variant the result is not as we 

expected. TSO performed better with 95.31% than 

TSdelta with 94.26%. 

Third, normal LBP (or CLBP S) obtained higher 

recogni-tion rate as compared to CLBP M with a 

mean accuracy of 92.85% and 89.02% respectively. 

This re-confirm the finding made in [19] that the 

sign component (CLBP S) preserves more image 

local structural information than the magnitude 

component (CLBP M), thus enable the CLBP S 

operator to obtain better result than CLBP M for 

texture classification. 

The result also show that the fusion of CLBP 

features improves the recognition rate. For example 

CLBP MxC and CLBP SxM show better result as 

compared to the result of CLBP S and CLBP M 

individually. The fusion of three CLBP features 

namely CLPB S MxC and CLBP SxMxC also show 

better result than the CLBP with the fusion of only 

two CLBP features. This is because each CLBP 

component contains complementary features, thus 

by fusion them together either jointly or in 

concatenation, better recognition was obtained. The 

result also shows that CLB SxMxC obtained slightly 

higher mean accuracy as compared to CLBP S MxC, 

however it should be noted that the dimension of the 

CLBP SxMxC is larger, which resulted in a longer 

time required for feature extraction and 

classification. 

If we compare LTP and Texture spectrum with 

CLBP we can see that the result of ILTP and TS is 

better when compared to individual element of 

CLBP i.e. CLBP S and CLBP M. This is because 

ILTP and Texture Spectrum is designed to be more 

robust to noise as compared to CLBP M and CLBP 

S. In addition, in ILTP and Texture Spectrum, the 

local difference is quantized into three difference 

level, while for each component CLBP it is 

quantized into only two levels. 

If we compared the fusion of CLBP, then the result 

of CLBP is better. Both CLBP S MxC and CLBP 

SxMxC show better performance as compared to 

IBGC1 and ILTP descriptors. Thereason is as 

mentioned earlier, i.e. fusion CLBP will have 

complementary features which will make the 

descriptors more robust for texture classification. 

As for Texture Spectrum, CLBP SxMxC perform 

better, however CLBP S MxC show slightly less 

mean accuracy as compared to TSO with a mean 

accuracy of 95.11% and 95.31% respectively. It is 

worth pointing out that although mean accuracy for 

CLBP S MxC is lower but the standard deviation for 

CLBP S MxC is lower compared to TSO. A lower 

standard deviation indicates that the data points to 

be closer to the mean or expected value, while a 

higher standard deviation indicates that the data 

points are more spread out over a wider range of 

value. This show that CLBP S MxC mean accuracy 

is more consistent and does not vary a lot as 

compared to the TSO descriptors. 

The extraction time and the recognition time for all 

descrip-tors are acceptable. All the best performers 

descriptors requires less than 160s of extraction time 

to extract the features with the exception of CLBP 

SxMxC, which takes 191s of extraction time. 

Similarly, the highest recognition time is CLBP 

SxMxC. This is because the feature vector for CLBP 

SxMxC is larger, thus it use more extraction and 

recognition time as comparedto other features which 

is of lower dimension. 

Table III: Comparison with other methods 
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Table III show the performance comparison of the 

proposed approach and other methods. From the 

table we can see that the method performed 

reasonably well with a highest accuracy of 95.89 

V. CONCLUSION 

In this paper we classify IVUS images into two 

classes, an IVUS image with Calcification presence 

or an IVUS image without Calcification presence. 

We used 38 features from HEP features descriptors 

and compared their mean accuracy, recognition time 

and extraction time. The result demonstrates IVUS 

images can be classified into two separate classes 

using HEP features. The result also show that CLBP 

SxMxC obtained the highest mean accuracy as 

compared to other methods. Future work will be 

evaluating the method with a data set and with more 

variation of IVUS image classes. classification. 
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