

Neutrosophic (RWG) Continuous Mappings and Contra (RWG) Closed & Open Mappings

R. Suresh ^{*1}, S. Palaniammal^{*2}

¹Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.

² Principal, Sri Krishna Adithya College of Arts and Science, Coimbatore, Tamil Nadu, India . ¹rsuresh6186@gmail.com,²splvlb@yahoo.com

Article Info Volume 83 Page Number: 6051 - 6059 Publication Issue: March - April 2020 Abstract:

topological spaces

Aim of this present paper is, we introduce and investigate about new kind of Neutrosophic mapping is called Neutrosophic Regular Weakly Generalized continuous mappings in Neutrosophic topological spaces and also discussed about properties and characterization Neutrosophic contra Regular Weakly Generalized closed &open mappings .

Keywords: (NS(R)WG open set, (NS(R)WG closed set ,(NS(R)WG continuous mappings,

contra(NS(R)WG closed mappings and contra(NS(R)WG open mappings Neutrosophic

Article History

Article Received: 24 July 2019 Revised: 12 September 2019 Accepted: 15 February 2020 Publication: 01 April 2020

I.INTRODUCTION

A.A.Salama presented Neutrosophic topological spaces by utilizing Smarandache's Neutrosophic sets. I.Arokiarani.[2] et al, presented Neutrosophic α -closed sets.P. Ishwarya, [8]et.al, presented and concentrated about on Neutrosophic semi-open sets in Neutrosophic topological spaces. Point of this current paper is, we present and research about new sort of Neutrosophic mapping is called Neutrosophic Regular Weakly Generalized consistent mappings in Neutrosophic topological spaces and furthermore properties examined about and portrayal Neutrosophic contra Regular Weakly Generalized closed & open mappings.

I. PRELIMINARIES

In this section, we introduce the basic definition for Neutrosophic sets and its operations.

Definition 2.1 [7]

Let X be a non-empty fixed set. A Neutrosophic set A is an object having the form

 $A = \{<\!\!x, \eta_A(x), \sigma_A(x), \gamma_A(x) > : \!x {\in} X\}$

Where $\eta_A(x)$, $\sigma_A(x)$ and $\gamma_A(x)$ which represent Neutrosophic topological spaces the degree of membership function, the degree indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.2 [7]

A Neutrosophic set A={<x, $\eta_A(x)$, $\sigma_A(x)$, $\gamma_A(x) >$: x∈X} can be identified to an ordered triple

 $<\!\!\eta_A,\,\sigma_A,\,\gamma_A\!\!>\!in\, \left]\!\!\!\!]\text{-}0,1\!+\!\left[\!\!\!\!\!\!\!] \text{ on }X.\right.$

Remark 2.3[7]

We shall use the symbol

 $\begin{array}{lll} A = & < x, \ \eta_A, \ \sigma_A, \ \gamma_A > \ for \ the \ Neutrosophic \ set \ A = \\ \{ < \! x, \ \eta_A(x), \! \sigma_A(x), \! \gamma_A(x) > : \! x \in \! X \}. \end{array}$

Example 2.4 [7]

Every Neutrosophic set A is a non-empty set in X is obviously on Neutrosophic set having the form A={ <x, $\eta_A(x)$, 1-(($\eta_A(x) + \gamma_A(x)$), $\gamma_A(x) >:x \in X$ }. Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, we must introduce the Neutrosophic set 0_N and 1_N in X as follows:

0_N may be defined as:

 $\begin{array}{l} (0_1) \ 0_N = \{ < x, \ 0, \ 0, \ 1 > : x \in X \} \\ (0_2) \ 0_N = \{ < x, \ 0, \ 1, \ 1 > : x \in X \} \end{array}$

- $(0_3) \ 0_N = \{ < x, 0, 1, 0 > : x \in X \}$ $(0_4) \ 0_N = \{ < x, 0, 0, 0 > : x \in X \}$
- $1_{\rm N}$ may be defined as :
- (1_1) $1_N = \{ < x, 1, 0, 0 > : x \in X \}$
- (1_2) $1_N = \{ < x, 1, 0, 1 > : x \in X \}$
- (1₃) $1_N = \{ < x, 1, 1, 0 > : x \in X \}$
- (14) $1_N = \{ < x, 1, 1, 1 > : x \in X \}$

Definition 2.5 [7]

Let $A = \langle \eta_A, \sigma_A, \gamma_A \rangle$ be a Neutrosophic set on X, then the complement of the set A A^C defined as

 A^{C} defined as

 $A^{C} = \{ < x , \gamma_{A}(x) , 1 - \sigma_{A}(x), \eta_{A}(x) >: x \in X \}$

Definition 2.6 [7]

Let X be a non-empty set, and Neutrosophic sets A and B in the form

 $A = \{<\!\!x, \eta_A(x), \sigma A(x), \gamma A(x) \!\!>: \!\!x \! \in \!\! X\} \text{ and }$

 $B = \{<\!\!x, \eta_B(x), \sigma_B(x), \gamma_B(x)\!\!>:\! x \!\in\!\! X\}.$

Then we consider definition for subsets (A \subseteq B).

 $A \subseteq B$ defined as: $A \subseteq B \Leftrightarrow \eta_A(x) \le \eta_B(x), \ \sigma_A(x) \le \sigma_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$

Definition 2.7 [7]

Let X be a non-empty set, and A=<x, $\eta_B(x), \sigma_A(x)$, $\gamma_A(x)>$, B =<x, $\eta_B(x)$, $\sigma_B(x)$, $\gamma_B(x)>$ be two Neutrosophic sets. Then

(i) $A \cap B$ defined as $:A \cap B = \langle x, \eta_A(x) \land \eta_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle$

(ii) AUB defined as :AUB =<x, $\eta_A(x)V\eta_B(x)$, $\sigma_A(x)V\sigma_B(x)$, $\gamma_A(x)\Lambda\gamma_B(x)$ >

Proposition 2.8 [7]

For all A and B are two Neutrosophic sets then the following condition are true:

(i) $(A \cap B)^{C} = A^{C} \cup B^{C}$

(ii) $(A \cup B)^C = A^C \cap B^C$.

Definition 2.9 [11]

A Neutrosophic topology is a non-empty set X is a family τ_N of Neutrosophic subsets in X satisfying the following axioms:

(i) 0_N , $1_N \in \tau_N$,

(ii) $G_1 \cap G_2 \in \tau_N$ for any $G_1, G_2 \in \tau_N$,

(iii) $\cup G_i \in \tau_N$ for any family $\{G_i \mid i \in J \} \subseteq \tau_N$.

the pair (X, τ_N) is called a Neutrosophic topological space.

The element Neutrosophic topological spaces of $\tau_{\rm N}$ are called Neutrosophic open sets.

A Neutrosophic set A is closed if and only if A^{C} is Neutrosophic open.

Example 2.10[11]

Let $X = \{x\}$ and

 $A_1 {=} \{ {<} x, \, 0.6, \, 0.6, \, 0.5 {>} {:} x {\in} X \}$

 $A_{2}{=}\left\{{<}x,\,0.5,\,0.7,\,0.9{>}{:}x{\in}X\right\}$

 $A_{3}{=}\left\{{<}x,\,0.6,\,0.7,\,0.5{>}{:}x{\in}X\right\}$

 $A_4 = \{<\!\!x, 0.5, 0.6, 0.9\!\!>:\!\!x \in \!X\}$

Then the family $\tau_N = \{0_N, 1_N, A_1, A_2, A_3, A_4\}$ is called a Neutrosophic topological space on X.

Definition 2.11[11]

Let (X, τ_N) be Neutrosophic topological spaces and $A=\{<x,\eta_A(x),\sigma_A(x),\gamma_A(x)>:x\in X\}$ be a Neutrosophic set in X. Then the Neutrosophic closure and Neutrosophic interior of A are defined by

Neu-cl(A)= \cap {K:K is a Neutrosophic closed set in X and A \subseteq K}

Neu-int(A)= \cup {G:G is a Neutrosophic open set in X and G \subseteq A}.

Definition 2.12

Let $(X,\,\tau_N)$ be a Neutrosophic topological space. Then A is called

(i) Neutrosophic regular Closed set [2] (Neu-RCS in short) if A=Neu-Cl(Neu-Int(A)),

(ii) Neutrosophic α -Closed set[2] (Neu- α CS in short) if Neu-Cl(Neu-Int(Neu-Cl(A))) \subseteq A,

(iii) Neutrosophic semi Closed set [8] (Neu-SCS in short) if Neu-Int(Neu-Cl(A)) \subseteq A,

(iv) Neutrosophic pre Closed set [12] (Neu-PCS in short) if Neu-Cl(Neu-Int(A)) \subseteq A,

Definition 2.13

Let $(X, \ \tau_N)$ be a Neutrosophic topological space. Then A is called

(i). Neutrosophic regular open set [2](Neu-ROS in short) if A=Neu-Int(Neu-Cl(A)),

(ii). Neutrosophic α-open set [2](Neu-αOS in short) if A⊆Neu-Int(Neu-Cl(Neu-Int(A))),

(iii). Neutrosophic semi open set [8](Neu-SOS in short) if A⊆Neu-Cl(Neu-Int(A)),

(iv).Neutrosophic pre open set [13] (Neu-POS in short) if $A \subseteq$ Neu-Int(Neu-Cl(A)),

Definition 2.14

Let $(X, \ \tau_N)$ be a Neutrosophic topological space. Then A is called

(i).Neutrosophic generalized closed set[4](Neu-GCS in short) if Neu-cl(A) \subseteq U whenever A \subseteq U

and U is a Neu-OS in X,

(ii).Neutrosophic generalized semi closed set[12](Neu-GSCS in short) if Neu-scl(A)⊆U

Whenever $A \subseteq U$ and U is a Neu-OS in X,

(iii).Neutrosophic α generalized closed set [9](NeuaGCS in short) if Neu- α cl(A) \subseteq U whenever

 $A \subseteq U$ and U is a Neu-OS in X ,

(iv).Neutrosophic generalized alpha closed set [5] (Neu-G α CS in short) if Neu- α cl(A) \subseteq U

whenever $A \subseteq U$ and U is a Neu- αOS in X. The complements of the above mentioned Neutrosophic closed sets are called their respective Neutrosophic open sets.

II. NEUTROSOPHIC REGULAR WEAKLY GENERALIZED CONTINUOUS MAPPINGS

In this chapter we have introduced Neutrosophic regular weakly generalized continuous mapping and studied some of its properties.

Definition 3.1: A mapping N_f^* : $(N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ is called an *Neutrosophic regular weakly* generalized continuous (NS(RWG)CTS in short) if $f^{-1}(A)$ is a NS(RWG)CS in (N_X^*, NS_{τ}) for every NSCS A of (N_Y^*, NS_{σ}) .

Example 3.2: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ Then NS = $\{0, n, N^* = 1, n, n\}$ and NS = $\{0, n, N^* = 1, n, n\}$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$. Then f is a NS(RWG)CTS mapping.

Theorem 3.3:

Every NS continuous mapping is a NS(RWG)CTS mapping but not conversely. **Proof:**

Let $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ is a NS continuous mapping. Let A is a NSCS in N_Y^* . Since f is a NS continuous mapping, f⁻¹(A) is a NSCS in N_X^* . Since every NSCS is a NS(RWG)CS,

 $f^{-1}(A)$ is a NS(RWG)CS in N_X^{*}. Hence f is a NS(RWG)CTS mapping.

Example 3.4:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{1}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

The NSS $A = \langle s, (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{3}{10}, \frac{5}{10}, \frac{7}{10}) \rangle$ is NSCS in N_Y^{*}. Then f⁻¹(A) is NS(RWG)CS in N_X^{*} but not an NSCS in N_X^{*}. Therefore f is a NS(RWG)CTS mapping but not an NS continuous mapping.

Remark 3.5:

The converse of the above theorem is true if N_X^* is a NS(rw)T1/2 space.

Proof:

Let A is a NSCS in N_Y^* . Then $f^{-1}(A)$ is a NS(RWG)CS in N_X^* , by hypothesis. Since N_X^* is a NS(rw)_{T1/2} space, $f^{-1}(A)$ is a NSCS in N_X^* . Hence f is a NS continuous mapping.

Theorem 3.6:

Every NS(P) continuous mapping is a NS(RWG)CTS mapping but not conversely.

Proof:

Let N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NS(P) continuous mapping. Let A is a NSCS in N_Y^* . Then by hypothesis $f^{-1}(A)$ is a NS(P)CS in N_X^* . Since every NS(P)CS is a NS(RWG)CS, $f^{-1}(A)$ is a NS(RWG)CS in N_X^* . Hence f is a NS(RWG) continuous mapping.

Example 3.7: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and

$$N_{T_{1}}^{*} = \langle r, \left(\frac{1}{10}, \frac{5}{10}, \frac{9}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$$
$$N_{T_{2}}^{*} = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

The NSS A= $\langle s, (\frac{5}{10}, \frac{5}{10}, \frac{4}{10}), (\frac{6}{10}, \frac{5}{10}, \frac{4}{10}) \rangle$ is NSCS in N^{*}_Y. Then f⁻¹(A) is NS(RWG)CS in N^{*}_X but not an NS(P)CS in N^{*}_X. Therefore f is a NS(RWG) continuous mapping but not an NS(P) continuous mapping.

Remark 3.8: The converse of the above theorem is true if N_X^* is a NS(RWG)T1/2 space.

Proof: Let A is a NSCS in N_Y^* . Then $f^{-1}(A)$ is a NS(RWG)CS in N_X^* , by hypothesis. Since N_X^* is a NS(RWG)T_{1/2} space, $f^{-1}(A)$ is a NS(P)CS in N_X^* . Hence f is a NS(P) continuous mapping.

Theorem 3.9:

Every $NS(\alpha)$ continuous mapping is a NS(RWG) continuous mapping but not conversely.

Proof:

Let N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a $NS(\alpha G)$ continuous mapping. Let A is a NSCS in N_Y^* . Then by hypothesis $f^{-1}(A)$ is a $NS(\alpha)CS$ in N_X^* . Since every $NS(\alpha)CS$ is a NS(RWG)CS, $f^{-1}(A)$ is a NS(RWG)CS in N_X^* . Hence f is a NS(RWG) continuous mapping.

Example 3.10:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$

Then $\tau = \{0_{\text{NS}}, N_{T_1}^*, 1_{\text{NS}}\}$ and $\sigma = \{0_{\text{NS}}, N_{T_2}^*, 1_{\text{NS}}\}$ are NSTs on N_X^* and N_Y^* respectively. Define a mapping $N_f^*: (N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

The NSS A = $\langle s, \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right), \left(\frac{1}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$ is a NSCS in N_v^{*}.

Then $f^{-1}(A)$ is a NS(RWG)CS in N_X^* but not an NS(α)CS in N_X^* .

Theorem 3.11: Every $NS(\alpha G)$ continuous mapping is a NS(RWG) continuous mapping but not conversely.

Proof: Let N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NS(α G)continuous mapping. Let A is a NSCS in N_Y^* . Then by hypothesis f⁻¹(A) is a NS(α)GCS in N_X^* . Since every NS(α)GCS is a NS(RWG)CS,

 $f^{-1}(A)$ is a NS(RWG)CS in N_X^{*}. Hence f is a NS(RWG) continuous mapping.

Example 3.12: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

The NSS A= $\langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ is NSCS in N_v^{*}.

Then $f^{-1}(A)$ is NS(RWG)CS in N_X^{*} but not NS(α)GCS in N_X^{*}.

Theorem 3.13:

Every NS(R) continuous mapping is a NS(RWG) continuous mapping but not conversely.

Proof:

Let A is a NSCS in N_Y^* . Then $f^{-1}(A)$ is a NS(R)CS in N_X^* . Since every NS(R)CS is a NS(RWG)CS, $f^{-1}(A)$ is a NS(RWG)CS in N_X^* . Hence f is a NS(RWG) continuous mapping.

Example 3.14: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and

 $N_{T_{1}}^{*} = \langle r, \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ $N_{T_{2}}^{*} = \langle s, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^* =, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

The NSS A= $\langle s, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$ is a NSCS in N_Y^{*}. Then f⁻¹(A) is NS(RWG)CS in N_X^{*} but not NS(R)CS in N_X^{*}.

Proposition 3.15: NS(RWG) continuous mapping and NS(S) continuous mapping are independent to each other.

Example 3.16:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ $N_{T_2}^* = \langle S, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, N_{T_2}^*$ $\mathbf{1}_{NS}$ } are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_{f}^{*}(r_{1}^{*}) = s_{1}^{*}$ and $N_{f}^{*}(r_{2}^{*}) = s_{2}^{*}$.

The NSS A= $\langle s, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ is a NSCS in N_Y.

Then $f^{-1}(A)$ is a NS(RWG)CS in N_X^* but not an NS(S)C in N_X^* .

Example 3.17:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ $N_{T_2}^* = \langle S, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, N_{T_2}^*$ 1_{NS} } are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_{f}^{*}(r_{1}^{*}) = s_{1}^{*}$ and $N_{f}^{*}(r_{2}^{*}) = s_{2}^{*}$.

The NSS A= $\langle s, (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{2}{10}, \frac{5}{10}, \frac{6}{10}) \rangle$ is a NSCS

in N_{v}^{*} .

Then $f^{-1}(A)$ is a NS(S)C in N_X^* but not an NS(RWG)CS in N_X^* .

Proposition 3.18:

NS(RWG) continuous mapping and NS(GS) continuous mapping are independent to each other.

Example 3.19:

Let
$$N_X^* = \{r_1^*, r_2^*\}$$
, $N_Y^* = \{s_1^*, s_2^*\}$ and
 $N_{T_1}^* = \langle r, \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$
 $N_{T_2}^* = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, N_{T_2}^*$ 1_{NS} } are NSTs on N_X^* and N_Y^* respectively.

Define a mapping N_f^* : $(N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})by$ $N_{f}^{*}(r_{1}^{*}) = s_{1}^{*}$ and $N_{f}^{*}(r_{2}^{*}) = s_{2}^{*}$.

The NSS A= $\langle s, (\frac{6}{10}, \frac{5}{10}, \frac{4}{10}), (\frac{7}{10}, \frac{5}{10}, \frac{3}{10}) \rangle$ is an NSCS in N_{Y}^{*} .

Then $f^{-1}(A)$ is an NS(RWG)CS in N_X^{*} but not an NS(GS)C in N_x^* ..

Example 3.20:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right) \rangle$ Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, N_{T_2}^*$

 1_{NS} } are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_{f}^{*}(r_{1}^{*}) = s_{1}^{*}$ and $N_{f}^{*}(r_{2}^{*}) = s_{2}^{*}$.

The NSS A= $\langle s, (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}, \frac{6}{10}) \rangle$ is a NSCS in N_{y}^{*} .

Then $f^{-1}(A)$ is NS(GS)C in N^{*}_X but not an NS(RWG)CS in N_x^{*}.

Theorem 3.21:

If the mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ is a NS(RWG) continuous then the inverse image of each NSOS in N_{Y}^{*} is a NS(RWG)OS in N_{X}^{*} .

Proof:

Let A is a NSOS in N_{Y}^{*} . This implies Ac is NSCS in N_{Y}^{*} . Since f is NS(RWG) continuous, $f^{-1}(A^{C})$ is NS(RWG)CS in N_x^{*}. Since $f^{-1}(A^{C}) = (f^{-1}(A))^{C}$, $f^{-1}(A)$ is a NS(RWG)OS in N_X^* .

Theorem 3.22:

Let $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ is a NS(RWG) continuous mapping and N_g^* : $(N_Y^*, NS_{\sigma}) \rightarrow (N_Z^*, NS_{\delta})$ is NS continuous, then $N_g^* \circ N_f^* : (N_X^*, NS_\tau) \to (N_Z^*, NS_\tau)$ NS_{δ}) is a NS(RWG) continuous.

Proof:

Let A is a NSCS in N_Z^* . Then $g^{-1}(A)$ is a NSCS in N_{v}^{*} , by hypothesis. Since f is a NS(RWG) continuous mapping, $f^{-1}(g^{-1}(A))$ is a NS(RWG)CS in N_X^* . Hence N_g^* o N_f^* is a NS(RWG) continuous mapping.

III. NEUTROSOPHIC CONTRA REGULAR WEAKLY GENERALIZED OPEN MAPPINGS

In this section we introduce Neutrosophic contra regular weakly generalized open mappings. We investigate some of their properties.

Definition 4.1: A mapping $N_f^*: (N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ from an NSTS (N_X^*, NS_τ) into an NSTS (N_Y^*, NS_σ) is called an Neutrosophic contra regular weakly generalized open mapping (NSc(RW)GOM in short) if f(A) is a NS(RWG)CS in N_Y^* for every NSOS A in N_X^* .

Example 4.2: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is a NSc(RW)GOM.

Theorem 4.3:

Every NScOM is a NSc(RW)GOM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ is a NSCOM. Let A is a NSOS in N_X^* . Then f (A) is a NSCS in N_Y^* . Since every NSCS is a NS(RWG)CS , f(A) is a NSc(RWG)CS in N_Y^* . Hence f is a NSc(RW)GOM. Example 4.4:

Let
$$N_X^* = \{r_1^*, r_2^*\}$$
, $N_Y^* = \{s_1^*, s_2^*\}$ and
 $N_{T_1}^* = \langle r, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$
 $N_{T_2}^* = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively. Define a mapping $N_f^*: (N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is NSc(RW)GOM but not an NScOM since NSS A= $\langle r, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ is a NSOS in N^{*}_X

but $f(A) = \langle s, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ is not an NSCS in N_Y^{*}, since $cl(f(A)) = 1_{NS} \neq f(A)$.

Theorem 4.5:

Every NSc(α)OM is a NSc(RW)GOM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NSc α OM. Let A is a NSOS in N_X^* . Then f(A) is a NS α CS in N_Y^* . Since every NS α CS is a NS(RWG)CS, f(A) is a NS(WG)CS in N_Y^* . Hence f is a NSc(RW)GOM.

Example 4.6:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is NSc(RW)GOM but not an NS(α)CM since NSS A= $\langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ is a NSOS in X but f(A) = $\langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ is not an NS α CS in N^{*}_Y, since cl(int(cl(f(A)))) = 1_{NS} $\not\subseteq$ f(A).

Theorem 4.7: Every NSc(P)OM is a NSc(RW)GOM but not conversely.

Proof: Let N_f^* : $(N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ is a NSc(P)OM. Let A is a NSOS in N_X^* . Then f(A) is a NS(P)CS in N_Y^* . Since every NS(P)CS is a NS(RWG)CS, f(A) is a NS(RWG)CS in N_Y^* . Hence f is a NSc(RW)GOM.

Example 4.8: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and

$$N_{T_1}^* = \langle r, \left(\frac{1}{10}, \frac{5}{10}, \frac{9}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$$
$$N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is NSc(RW)GOM but not an NS(P)CM since NSS $A = \langle r, \left(\frac{1}{10}, \frac{5}{10}, \frac{9}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ is a NSOS in N^{*}_X but $f(A) = \langle s, \left(\frac{1}{10}, \frac{5}{10}, \frac{9}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ is not an NS(P)CS in N^{*}_Y, since $cl(int(f(A))) = 0_{NS} \not\subseteq f(A)$.

Theorem 4.9:

Every NSc(α G)OM is a NSc(RW)GOM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ is a NSc(α G)CM. Let A is a NSOS in N_X^* . Then f(A) is a NS(α G)CS in N_Y^* . Since every NS(α G)CS is a NS(RWG)CS , f(A) is a NS(RWG)CS in N_Y^* . Hence f is a NSc(RW)GOM.

Example 4.10:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right) \rangle$ Then $N_{T_2}^* = \langle 0, u, N_{T_2}^* = 1, u, v \rangle$ and $N_{T_2}^*$

Then $N_{T_1}^* = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $N_{T_2}^* = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is NSc(RW)GOM but not an NS(α G)CM since NSS A= $\langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ is a NSOS in N_X^{*} but f(A) = $\langle s, \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ is not an NS(α G)CS in N_Y^{*}, since NS α cl(f(A)) = 1_{NS} $\nsubseteq N_{T_2}^*$.

IV. NEUTROSOPHIC CONTRA REGULAR WEAKLY GENERALIZED CLOSED MAPPINGS

In this section we introduce Neutrosophic contra regular weakly generalized closed mappings and investigate some of their properties.

Definition 5.1:

A mapping N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ from an NSTS (N_X^*, NS_τ) into an NSTS (N_Y^*, NS_σ) is called an Neutrosophic contra regular weakly generalized closed mapping (NSc(RWG)CM in short) if f(A) is a NSRWGOS in N_Y^* for every NSCS A in N_X^* .

Example 5.2: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$. Then f is a NSc(RWG)CM.

Theorem 5.3:

Every NScCM is a NSc(RWG)CM but not conversely.

Proof: Let N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NScCM. Let A is a NSCS in N_X^* . Then f (A) is a NSOS in N_Y^* . Implies $(f(A))^C$ is NSCS in N_Y^* . Since every NSCS is a NS(RWG)CS , $(f(A))^C$ is a NS(RWG)CS in N_Y^* . Hence f(A) is NSRWGOS in N_Y^* . Hence f is a NSc(RW)GOM.

Example 5.4:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping $N_f^*: (N_X^*, NS_\tau) \to (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$.

Then f is NSc(RWG)CM but not an NSCM since NSS A= $\langle r, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$ is a NSCS in N^{*}_X but f(A) = $\langle s, \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$ is not an NSCS in N^{*}_Y, since cl(f(A)) = N^{*}_{T2} $^{C} \neq$ f(A).

Theorem 5.5:

Every $NSc(\alpha)CM$ is a NSc(RWG)CM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NSc(α)CM. Let A is a NSCS in N_X^* . Then f (A) is a NS(α)OS in N_Y^* . This implies $(f(A))^C$ is a NS α CS in N_Y^* . Since every NS α CS is a NS(RWG)CS , $(f(A))^C$ is a NS(RWG)CS in N_Y^* . i.e f(A) is a NSRWGOS in N_Y^* . Hence f is a NSc(RW)GOM.

Example 5.6: Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{2}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively. Define a

mapping N_{f}^{*} : $(N_{X}^{*}, NS_{\tau}) \rightarrow (N_{Y}^{*}, NS_{\sigma})$ by $N_{f}^{*}(r_{1}^{*}) = s_{1}^{*}$ and $N_{f}^{*}(r_{2}^{*}) = s_{2}^{*}$. Then f is NSc(RWG)CM but not an NS(α)CM since NSS A= $\langle r, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$ is a NSCS in N_{X}^{*} but $f(A) = \langle s, \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle$ is not an NS α CS in N_{Y}^{*} , since cl(int(cl(f(A)))) = $N_{T_{2}}^{*} \ \subseteq f(A)$.

Theorem 5.7:

Every NSc(P)CM is a NSc(RWG)CM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NSc(P)CM. Let A is a NSCS in N_X^* . Then f (A) is a NS(P)OS in N_Y^* . This implies $(f(A))^C$ is a NS(P)CS in N_Y^* . Since every NS(P)CS is a NS(RWG)CS , (f(A))c is a NS(RWG)CS in N_Y^* . i.e f(A) is a NSRWGOS in N_Y^* . Hence f is a NSc(RWG)CM.

Example 5.8:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{1}{10}, \frac{5}{10}, \frac{9}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively. Define a mapping $N_f^*: (N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ by $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$. Then f is NSc(RWG)CM but not an NS(P)CM since NSS A= $\langle r, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ is a NSCS in N_X^* but $f(A) = \langle s, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ is not an NS(P)CS in N_Y^* , since $cl(int(f(A))) = N_{T_2}^*C \not\subseteq f(A)$.

Theorem 5.9:

Every $NSc(\alpha G)CM$ is a NSc(RWG)CM but not conversely.

Proof:

Let $N_f^*: (N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ is a NSc(α G)CM. Let A is a NSCS in N_X^* . Then f (A) is a NS(α)GOS in N_Y^* . This implies (f(A))c is a NS(α G)CS in N_Y^* . Since every NS(α G)CS is a NS(RWG)CS , (f(A))^C is a NS(RWG)CS in N_Y^* . Hence f(A) is a NSc(RWG)CM.

Example 5.10:

Let $N_X^* = \{r_1^*, r_2^*\}$, $N_Y^* = \{s_1^*, s_2^*\}$ and $N_{T_1}^* = \langle r, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{6}{10}\right) \rangle$ $N_{T_2}^* = \langle s, \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{4}{10}\right) \rangle$

Then $NS_{\tau} = \{0_{NS}, N_{T_1}^*, 1_{NS}\}$ and $NS_{\sigma} = \{0_{NS}, N_{T_2}^*, 1_{NS}\}$ are NSTs on N_X^* and N_Y^* respectively.

Define a mapping N_f^* : $(N_X^*, NS_\tau) \rightarrow (N_Y^*, NS_\sigma)$ by $N_f^*(r_1^*) = s_1^*$ and $N_f^*(r_2^*) = s_2^*$ Then f is NSc(RWG)CM but not an NS(α G)CM since NSS $A = \langle r, \left(\frac{3}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ A is a NSCS in N_X^* but $f(A) = \langle s, \left(\frac{3}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \rangle$ is not an NS(α G)CS in N_Y^* , since NS α cl(f(A)) = $1_{NS} \not\subseteq N_{T_2}^*$.

Theorem 5.14:

 $\begin{array}{rcl} Let & N_f^* \colon & (N_X^*, & NS_\tau) & \to & (N_Y^*, & NS_\sigma) is & a \\ NSc(RWG)CM. & Then for every NSS & A & of & N_X^*, \\ f(cl(A)) & is & a & NSc(RWG)CS & in & N_Y^*. \end{array}$

Proof: Let A be any NSS in N_X^* . Then cl(A) is a NSCS in N_X^* . By hypothesis, f(cl(A)) is a NSRWGOS in N_Y^* . Hence f(cl(A)) is a NSc(RWG)CS in N_Y^*

Theorem 5.15:

Let $N_f^*: (N_X^*, NS_{\tau}) \rightarrow (N_Y^*, NS_{\sigma})$ is a NSc(RWG)CM where N_Y^* is a NS(rw)T_{1/2} space. Then f is a NSOM.

Proof: Let f is a NSc(RWG)CM. Then for every NSCS A of N_X^* , f(A) is a NSRWGOS in N_Y^* . This implies $(f(A))^C$ NS(RWG)CS in N_Y^* is Since N_Y^* is a NS(rw)T_{1/2} space, $(f(A))^C$ is a NSCS in N_Y^* . i.e f(A) is a NSOS in N_Y^* . Hence f is a NSOM.

REFERENCES

- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986),87-95.
- I.Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala,On Some New Notions and Functions In Neutrosophic Topological Spaces,Neutrosophic Sets and Systems, Vol. 16, 2017,(16-19)
- V. Banu priya S.Chandrasekar: Neutrosophic αgs Continuity and Neutrosophic αgs Irresolute Maps, *Neutrosophic Sets and Systems*, vol. 28, 2019, pp. 162-170. DOI: 10.5281/zenodo.3382531
- 4) R .Dhavaseelan and S.Jafari, Generalized Neutrosophic closed sets, New trends in

Neutrosophic theory and applications Volume II-261-273,(2018).

- 5) R. Dhavaseelan, S. Jafari and md. Hanif page, Neutrosophic generalized α-contra- continuity, creat. math. inform. 27 (2018), no. 2, 133 – 139
- 6) Florentin Smarandache .Neutrosophic and NeutrosophicLogic, First International Confer On Neutrosophic ,Neutrosophic Logic, Set. Probability, and Statistics University of New Gallup. NM 87301, USA (2002). Mexico. smarand@unm.edu
- Floretin Smaradache, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, Journal of Defense Wesourses Management. 1(2010), 107-115.
- Ishwarya, P and Bageerathi, K., On Neutrosophic semi open sets in Neutrosophic topological spaces, International Jour. of Math. Trends and Tech. 2016, 214-223.
- D.Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March 2018.
- 10) A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Journal computer Sci. Engineering, Vol.(ii) No.(7)(2012).
- 11) A.A.Salama and S.A.Alblowi, Neutrosophic set and Neutrosophic topological space, ISOR J.mathematics, Vol.(iii) ,Issue(4),(2012).pp-31-35.
- 12) V.K.Shanthi ,S.Chandrasekar, K.SafinaBegam, Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, International Journal of Research in Advent Technology, Vol.6, No.7, July 2018, 1739-1743
- 13) V. Venkateswara Wao, Y. Srinivasa Wao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, Vol.10 No.10, pp 449- 458, 2017
- 14) C.Maheswari, M.Sathyabama,
 S.Chandrasekar,Neutrosophic generalized b-closed
 Sets In Neutrosophic Topological Spaces,Journal of
 physics Conf. Series 1139 (2018) 012065.
 doi:10.1088/1742-6596/1139/1/012065
- 15) T. Rajesh Kannan , S. Chandrasekar, Neutrosophic
 ωα Closed Sets in Neutrosophic Topological

Spaces, Journal of Computer and Mathematical Sciences, Vol.9(10),1400-1408 October 2018.

- 16) T.Rajesh Kannan, S.Chandrasekar, Neutrosophic α-Continuity Multifunction In Neutrosophic Topological Spaces, The International journal of analytical and experimental modal analysis ,Volume XI, Issue IX, September/2019 ISSN NO: 0886- 9367 PP.1360-1368.
- 17) R. Suresh ,S. Palaniammal , Neutrosophic Regular Weakly Generalized open and Closed Sets, Neutrosophic Sets and Systems(Communicated)