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I.INTRODUCTION 

A.A.Salama presented Neutrosophic topological 

spaces by utilizing Smarandache's Neutrosophic 

sets. I.Arokiarani.[2] et al, presented Neutrosophic 

α-closed sets.P. Ishwarya, [8]et.al, presented and 

concentrated about on Neutrosophic semi-open sets 

in Neutrosophic topological spaces. Point of this 

current paper is, we present and research about new 

sort of Neutrosophic mapping is called Neutrosophic 

Regular Weakly Generalized consistent mappings in 

Neutrosophic topological spaces and furthermore 

examined about properties and portrayal 

Neutrosophic contra Regular Weakly Generalized 

closed &open mappings. 

I.   PRELIMINARIES 

 

 In this section, we introduce the basic definition for 

Neutrosophic sets and its operations.  

Definition 2.1 [7]   

Let X be a non-empty fixed set. A Neutrosophic set 

A is an object having the form  

A = {<x, ηA(x), σA(x) ,γA(x) >:x∈X} 

Where ηA(x), σA(x) and γA(x) which represent 

Neutrosophic topological spaces the degree of 

membership function, the degree indeterminacy and 

the degree of non-membership function respectively 

of each element x ∈ X to the set  A.  

Remark 2.2 [7]   

A Neutrosophic set A={<x, ηA(x), σA(x), γA(x) >: 

x∈X} can be identified to an ordered triple  

<ηA, σA, γA> in ⦌-0,1+⦋  on X. 

Remark 2.3[7]   

We shall use the symbol  

A =<x, ηA, σA, γA> for the Neutrosophic  set  A = 

{<x, ηA(x),σA(x),γA(x) >:x∈X}.  

Example 2.4 [7]   

Every Neutrosophic set A is a non-empty set in X is 

obviously on Neutrosophic set having the form A={ 

<x, ηA(x), 1-((ηA(x) + γA(x)), γA(x) >:x∈X}. Since 

our main purpose is to construct the tools for 

developing Neutrosophic set and Neutrosophic 

topology, we must introduce the Neutrosophic set 0N 

and 1N in X as follows:  

0N may be defined as: 

(01) 0N={<x, 0, 0, 1>: x ∈X}  

(02) 0N={<x, 0, 1, 1>: x ∈X}  
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(03) 0N ={<x, 0, 1, 0 >:x∈X}  

(04) 0N={<x, 0, 0, 0>: x ∈X}  

1N may be defined as : 

(11) 1N ={<x, 1, 0, 0>: x∈X}  

(12) 1N ={<x, 1, 0, 1 >: x∈X}  

(13) 1N ={<x, 1, 1, 0 >: x∈X}  

(14) 1N ={<x, 1, 1, 1 >: x∈X}  

Definition 2.5 [7]   

Let A=<ηA, σA,γA> be a Neutrosophic  set on X, 

then the complement of the set A  

AC  defined as  

AC={<x , γA(x) ,1- σA(x), ηA(x) >: x ∈X}  

Definition 2.6 [7]   

Let X be a non-empty set, and Neutrosophic sets A 

and B in the form  

  A ={<x, ηA(x), σA(x), γA(x)>:x∈X} and 

  B ={<x, ηB(x), σB(x), γB(x)>: x∈X}. 

 Then we consider definition for subsets (A⊆B ).  

A⊆B defined as: A⊆B ⟺ηA(x) ≤ ηB(x), σA(x) ≤ 

σB(x) and γA(x) ≥ γB(x) for all  x∈X 

Definition 2.7 [7]   

Let X be a non-empty set, and  A=<x, ηB(x),σA(x), 

γA(x)> , B =<x, ηB(x), σB(x), γB(x)> be two 

Neutrosophic sets. Then  

(i) A∩B defined as :A∩B =<x, ηA(x)⋀ηB(x), 

σA(x)⋀σB(x),γA(x)⋁γB(x)> 

(ii) A∪B defined as :A∪B =<x, ηA(x)⋁ηB(x), 

σA(x)⋁σB(x), γA(x)⋀γB(x)> 

Proposition 2.8 [7] 

 For all A and B are two Neutrosophic sets then the 

following condition are true: 

(i) (A∩B)C=AC∪BC 

(ii) (A∪B)C=AC∩BC.  

Definition 2.9 [11]   

A Neutrosophic  topology is a non-empty set X is a 

family τN of  Neutrosophic subsets in X satisfying 

the following axioms:  

(i) 0N, 1N ∈τN , 

(ii) G1∩G2∈τN  for any G1, G2∈τN, 

(iii) ∪Gi∈τN for any family {Gi ⎸i∈J  }⊆τN. 

 the pair (X, τN) is called a Neutrosophic topological 

space.  

The element Neutrosophic topological spaces of τN 

are called Neutrosophic open sets. 

A Neutrosophic set  A is closed if and only if AC is 

Neutrosophic open.  

Example 2.10[11]   

Let X={x} and  

A1= {<x, 0.6, 0.6, 0.5>:x∈X}    

A2= {<x, 0.5, 0.7, 0.9>:x∈X}  

A3= {<x, 0.6, 0.7, 0.5>:x∈X}  

A4= {<x, 0.5, 0.6, 0.9>:x∈X}  

Then the family τN={0N, 1N,A1, A2, A3, A4}is called 

a Neutrosophic  topological space on X.  

Definition 2.11[11]   

Let (X, τN) be Neutrosophic topological spaces  and 

A={<x,ηA(x),σA(x),γA(x)>:x∈X} be a Neutrosophic 

set in X. Then the Neutrosophic closure and 

Neutrosophic interior of A are defined by  

Neu-cl(A)=∩{K:K is a Neutrosophic closed set  in 

X and A⊆K}  

Neu-int(A)=∪{G:G is a Neutrosophic open set  in X 

and G⊆A}.  

Definition 2.12  

Let (X, τN) be a Neutrosophic topological space. 

Then A is called 

 (i) Neutrosophic regular Closed set [2] (Neu-RCS 

in short) if A=Neu-Cl(Neu-Int(A)), 

(ii) Neutrosophic α-Closed set[2] (Neu-αCS in 

short) if Neu-Cl(Neu-Int(Neu-Cl(A)))⊆A, 

(iii) Neutrosophic semi Closed set [8] (Neu-SCS in 

short) if Neu-Int(Neu-Cl(A))⊆A , 

(iv) Neutrosophic pre Closed set [12] (Neu-PCS in 

short) if Neu-Cl(Neu-Int(A))⊆A, 

Definition 2.13  

Let (X, τN) be a Neutrosophic topological space. 

Then A is called 

 (i). Neutrosophic regular open set [2](Neu-ROS in 

short) if A=Neu-Int(Neu-Cl(A)), 

(ii). Neutrosophic α-open set [2](Neu-αOS in short) 

if A⊆Neu-Int(Neu-Cl(Neu-Int(A))), 

(iii). Neutrosophic semi open set [8](Neu-SOS in 

short) if A⊆Neu-Cl(Neu-Int(A)), 

(iv).Neutrosophic pre open set [13] (Neu-POS in 

short) if A⊆Neu-Int(Neu-Cl(A)), 



 

March-April 2020 

ISSN: 0193-4120 Page No. 6051 - 6059 

 

 

6053 

 Published by: The Mattingley Publishing Co., Inc. 

Definition 2.14 

Let (X, τN) be a Neutrosophic topological space. 

Then A is called 

 (i).Neutrosophic generalized closed set[4](Neu-

GCS in short) if Neu-cl(A)⊆U whenever A⊆U   

     and U is a Neu-OS in X , 

(ii).Neutrosophic generalized semi closed set[12] 

(Neu-GSCS in short) if Neu-scl(A)⊆U  

     Whenever A⊆U and U is a Neu-OS in X, 

(iii).Neutrosophic α generalized closed set [9](Neu-

αGCS in short) if Neu-αcl(A)⊆U  whenever   

      A⊆U and U is a Neu-OS in X , 

 (iv).Neutrosophic generalized alpha closed set [5] 

(Neu-GαCS in short) if Neu-αcl(A)⊆U    

      whenever A⊆U and U is a Neu-αOS  in X . 

The complements of the above mentioned 

Neutrosophic closed sets are called their respective 

Neutrosophic open sets. 

II.  NEUTROSOPHIC REGULAR WEAKLY 

GENERALIZED CONTINUOUS MAPPINGS  

 

In this chapter we have introduced Neutrosophic 

regular weakly generalized continuous mapping and 

studied some of its properties.  

Definition 3.1: A mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , 

NSσ)is called an Neutrosophic regular weakly 

generalized continuous (NS(RWG)CTS in short) if 

f-1(A) is a NS(RWG)CS  in (NX
∗ , NSτ) for every 

NSCS  A of (NY
∗ , NSσ). 

 Example 3.2: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
4

10
,

5

10
,

6

10
) , (

4

10
,

5

10
,

6

10
)〉 

 NT2

∗ = 〈s, (
8

10
,

5

10
,

2

10
) , (

8

10
,

5

10
,

2

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗. Then f is a 

NS(RWG)CTS mapping.  

Theorem 3.3: 

 Every NS continuous mapping is a NS(RWG)CTS 

mapping but not conversely.  

Proof:  

Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a NS continuous 

mapping. Let A is a NSCS  in NY
∗ . Since f is a NS 

continuous mapping, f-1(A) is a NSCS  in NX
∗ . Since 

every NSCS  is a NS(RWG)CS ,  

f-1(A) is a NS(RWG)CS  in NX
∗ . Hence f is a 

NS(RWG)CTS mapping. 

 Example 3.4:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
1

10
,

5

10
,

8

10
) , (

2

10
,

5

10
,

8

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

7

10
,

5

10
,

3

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS  A= 〈s, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉is NSCS  

in NY
∗ . Then f-1(A) is NS(RWG)CS  in NX

∗  but not an 

NSCS  in NX
∗ . Therefore f is a NS(RWG)CTS 

mapping but not an NS continuous mapping.  

Remark 3.5:  

The converse of the above theorem is true if NX
∗  is a 

NS(rw)T1/2 space.  

Proof: 

 Let A is a NSCS  in NY
∗ . Then f-1(A) is a 

NS(RWG)CS  in NX
∗ , by hypothesis. Since NX

∗  is a  

NS(rw)T1/2 space, f-1(A) is a NSCS  in NX
∗ . Hence f is 

a NS continuous mapping.  

Theorem 3.6: 

 Every NS(P) continuous mapping is a 

NS(RWG)CTS mapping but not conversely. 

Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a NS(P) 

continuous mapping. Let A is a NSCS in NY
∗ . Then 

by hypothesis f-1(A) is a NS(P)CS in NX
∗ . Since 

every NS(P)CS is a NS(RWG)CS, f-1(A) is a 

NS(RWG)CS in NX
∗ . Hence f is a NS(RWG) 

continuous mapping.  

Example 3.7: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗} and  

 

NT1

∗ = 〈r, (
1

10
,

5

10
,

9

10
) , (

2

10
,

5

10
,

8

10
)〉 

 NT2

∗ = 〈s, (
4

10
,

5

10
,

5

10
) , (

4

10
,

5

10
,

6

10
)〉   
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Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

4

10
)〉 is NSCS in 

NY
∗ . Then f-1(A) is NS(RWG)CS in NX

∗  but not an 

NS(P)CS in NX
∗ . Therefore f is a NS(RWG) 

continuous mapping but not an NS(P) continuous 

mapping. 

Remark 3.8: The converse of the above theorem is 

true if NX
∗  is a NS(RWG)T1/2 space.  

Proof: Let A is a NSCS in NY
∗ . Then f-1(A) is a 

NS(RWG)CS in NX
∗ , by hypothesis. Since NX

∗  is a 

NS(RWG)T1/2 space, f-1(A) is a NS(P)CS in NX
∗ . 

Hence f is a NS(P) continuous mapping.  

Theorem 3.9:  

Every NS(α) continuous mapping is a NS(RWG) 

continuous mapping but not conversely. 

 Proof:  

Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a 

NS(αG)continuous mapping. Let A is a NSCS in NY
∗ . 

Then by hypothesis f-1(A) is a NS(α)CS in NX
∗ . Since 

every NS(α)CS is a NS(RWG)CS, f-1(A) is a 

NS(RWG)CS in NX
∗ . Hence f is a NS(RWG) 

continuous mapping.  

Example 3.10:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and 

 NT1

∗ = 〈r, (
4

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉 

 NT2

∗ = 〈s, (
7

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

1

10
)〉   

Then τ = {0NS, NT1

∗ , 1NS } and σ = {0NS, NT2

∗ , 1NS } 

are NSTs on NX
∗  and NY

∗  respectively. Define a 

mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by  Nf

∗(𝑟1
∗) =

𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A = 〈s, (
3

10
,

5

10
,

7

10
) , (

1

10
,

5

10
,

8

10
)〉is a NSCS 

in NY
∗ .  

Then f-1(A) is a NS(RWG)CS in NX
∗  but not an 

NS(α)CS in NX
∗ .  

Theorem 3.11: Every NS(αG)continuous mapping 

is a NS(RWG) continuous mapping but not 

conversely.  

Proof: Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a 

NS(αG)continuous mapping. Let A is a NSCS in NY
∗ . 

Then by hypothesis f-1(A) is a NS(α)GCS in NX
∗ . 

Since every NS(α)GCS is a NS(RWG)CS,  

f-1(A) is a NS(RWG)CS in NX
∗ . Hence f is a 

NS(RWG) continuous mapping.  

Example 3.12: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and 

NT1

∗ = 〈r, (
5

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

4

10
)〉 

 NT2

∗ = 〈s, (
6

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉   

  

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉    is NSCS 

in NY
∗ .  

Then f-1(A) is NS(RWG)CS in NX
∗  but not 

NS(α)GCS in NX
∗ .  

Theorem 3.13: 

 Every NS(R) continuous mapping is a NS(RWG) 

continuous mapping but not conversely.  

Proof:  

Let A is a NSCS in NY
∗ . Then f-1(A) is a NS(R)CS in 

NX
∗ . Since every NS(R)CS is a NS(RWG)CS, f-1(A) 

is a NS(RWG)CS in NX
∗ . Hence f is a NS(RWG) 

continuous mapping. 

 Example 3.14: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
7

10
,

5

10
,

3

10
) , (

7

10
,

5

10
,

2

10
)〉 

 NT2

∗ = 〈s, (
8

10
,

5

10
,

2

10
) , (

8

10
,

5

10
,

2

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ =, 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
2

10
,

5

10
,

8

10
) , (

2

10
,

5

10
,

8

10
)〉 is a NSCS 

in NY
∗ . Then f-1(A) is NS(RWG)CS in NX

∗  but not 

NS(R)CS in NX
∗ .  

Proposition 3.15: NS(RWG) continuous mapping 

and NS(S) continuous mapping are independent to 

each other.  
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Example 3.16:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
8

10
,

5

10
,

2

10
) , (

8

10
,

5

10
,

2

10
)〉 

 NT2

∗ = 〈s, (
2

10
,

5

10
,

8

10
) , (

2

10
,

5

10
,

7

10
)〉   

 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

2

10
)〉 is a NSCS 

in NY
∗ . 

 Then f-1(A) is a NS(RWG)CS in NX
∗  but not an 

NS(S)C in NX
∗ . 

 Example 3.17:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
5

10
,

5

10
,

5

10
) , (

2

10
,

5

10
,

6

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

2

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
5

10
,

5

10
,

5

10
) , (

2

10
,

5

10
,

6

10
)〉 is a NSCS 

in NY
∗ .  

Then f-1(A) is a NS(S)C in NX
∗  but not an 

NS(RWG)CS in NX
∗ . 

 Proposition 3.18:  

NS(RWG) continuous mapping and NS(GS) 

continuous mapping are independent to each other.  

Example 3.19: 

 Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
7

10
,

5

10
,

3

10
) , (

9

10
,

5

10
,

1

10
)〉 

 NT2

∗ = 〈s, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

7

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

3

10
)〉 is an 

NSCS in NY
∗ .  

Then f-1(A) is an NS(RWG)CS in NX
∗  but not an 

NS(GS)C in NX
∗ ..  

Example 3.20:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
5

10
,

5

10
,

5

10
) , (

4

10
,

5

10
,

6

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

4

10
)〉   

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

The NSS A= 〈s, (
5

10
,

5

10
,

5

10
) , (

4

10
,

5

10
,

6

10
)〉 is a NSCS 

in NY
∗ .  

Then f-1(A) is NS(GS)C in NX
∗  but not an 

NS(RWG)CS in NX
∗ . 

Theorem 3.21: 

 If the mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a 

NS(RWG) continuous then the inverse image of 

each NSOS in NY
∗  is a NS(RWG)OS in NX

∗ .  

Proof:  

Let A is a NSOS in NY
∗ . This implies Ac is NSCS in 

NY
∗ . Since f is NS(RWG) continuous, f-1(AC) is 

NS(RWG)CS in NX
∗ . Since f-1(AC) = (f-1(A))C, f-1(A) 

is a NS(RWG)OS in NX
∗ .  

Theorem 3.22: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a NS(RWG) 

continuous mapping and  Ng
∗: (NY

∗ , NSσ)→ (NZ
∗ , NSδ) 

is NS continuous, then  Ng
∗ o  Nf

∗ : (NX
∗ , NSτ) → (NZ

∗ , 

NSδ) is a NS(RWG) continuous.  

Proof: 

 Let A is a NSCS in NZ
∗ . Then g-1(A) is a NSCS in 

NY
∗ , by hypothesis. Since f is a NS(RWG) 

continuous mapping, f-1(g-1(A)) is a NS(RWG)CS in 

NX
∗ . Hence  Ng

∗ o  Nf
∗ is a NS(RWG) continuous 

mapping. 

III.  NEUTROSOPHIC CONTRA REGULAR 

WEAKLY GENERALIZED OPEN MAPPINGS 

 

In this section we introduce Neutrosophic contra 

regular weakly generalized open mappings. We 

investigate some of their properties.  



 

March-April 2020 

ISSN: 0193-4120 Page No. 6051 - 6059 

 

 

6056 

 Published by: The Mattingley Publishing Co., Inc. 

Definition 4.1: A mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , 

NSσ)from an NSTS (NX
∗ , NSτ) into an NSTS (NY

∗ , 

NSσ)is called an Neutrosophic contra regular weakly 

generalized open mapping (NSc(RW)GOM in short) 

if f(A) is a NS(RWG)CS  in NY
∗  for every NSOS A 

in NX
∗ .  

Example 4.2: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and 

NT1

∗ = 〈r, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 

 NT2

∗ = 〈s, (
4

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

5

10
)〉 

 Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

Then f is a NSc(RW)GOM.  

Theorem 4.3:  

Every NScOM is a NSc(RW)GOM but not 

conversely.  

Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NScOM. Let A 

is a NSOS in NX
∗ . Then f (A) is a NSCS  in NY

∗ . Since 

every NSCS  is a NS(RWG)CS , f(A) is a 

NSc(RWG)CS in NY
∗ . Hence f is a  NSc(RW)GOM. 

Example 4.4:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

3

10
)〉 

 NT2

∗ = 〈s, (
4

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

5

10
)〉 

Then NSτ= {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. Define a 

mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by  Nf

∗(𝑟1
∗) =

𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

Then f is NSc(RW)GOM but not an NScOM since 

 NSS A= 〈r, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

3

10
)〉 is a NSOS in 

NX
∗   

but f(A) = 〈s, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

3

10
)〉is not an 

NSCS  in NY
∗ , since cl(f(A)) = 1NS ≠ f(A).  

Theorem 4.5: 

 Every NSc(𝛼)OM is a  NSc(RW)GOM but not 

conversely.  

Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NScαOM. Let 

A is a NSOS in NX
∗ . Then f(A) is a NSαCS in NY

∗ . 

Since every NSαCS is a  NS(RWG)CS , f(A) is a  

NS(WG)CS in NY
∗ . Hence f is a NSc(RW)GOM.  

Example 4.6: 

 Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

Then f is NSc(RW)GOM but not an NS(α)CM since 

NSS A= 〈r, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉 is a NSOS in X 

but f(A) =〈r, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉  is not an 

NSαCS in NY
∗ , since cl(int(cl(f(A)))) = 1NS ⊈ f(A).  

Theorem 4.7: Every NSc(P)OM is a 

NSc(RW)GOM but not conversely.  

Proof: Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a 

NSc(P)OM. Let A is a NSOS in NX
∗ . Then f(A) is a 

NS(P)CS in NY
∗ . Since every NS(P)CS is a 

NS(RWG)CS , f(A) is a NS(RWG)CS  in NY
∗ . Hence 

f is a NSc(RW)GOM.  

Example 4.8: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
1

10
,

5

10
,

9

10
) , (

6

10
,

5

10
,

3

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 

 Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗. 

 Then f is NSc(RW)GOM but not an NS(P)CM 

since NSS  A= 〈r, (
1

10
,

5

10
,

9

10
) , (

6

10
,

5

10
,

3

10
)〉 is a 

NSOS in NX
∗  but f(A) = 〈s, (

1

10
,

5

10
,

9

10
) , (

6

10
,

5

10
,

3

10
)〉 

is not an NS(P)CS in NY
∗ , since cl(int(f(A))) = 0NS 

⊈f(A).  

Theorem 4.9:  

Every NSc(αG)OM is a NSc(RW)GOM but not 

conversely.  
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Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NSc(αG)CM. 

Let A is a NSOS in NX
∗ . Then f(A) is a  NS(αG)CS 

in NY
∗ . Since every NS(αG)CS is a NS(RWG)CS , 

f(A) is a NS(RWG)CS  in NY
∗ . Hence f is a 

NSc(RW)GOM.  

Example 4.10: 

 Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
6

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉 

 NT2

∗ = 〈s, (
7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉 

Then NT1

∗  = {0NS, NT1

∗ , 1NS } and NT2

∗  = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

Then f is NSc(RW)GOM but not an NS(αG)CM 

since NSS A= 〈r, (
6

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉   is a 

NSOS in NX
∗  but f(A) = 〈s, (

6

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉 

is not an NS(αG)CS in NY
∗ , since NSαcl(f(A)) = 1NS 

⊈ NT2

∗ .  

IV.  NEUTROSOPHIC CONTRA REGULAR 

WEAKLY GENERALIZED CLOSED MAPPINGS  

 

In this section we introduce Neutrosophic contra 

regular weakly generalized closed mappings and 

investigate some of their properties.  

Definition 5.1: 

 A mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)from an 

NSTS (NX
∗ , NSτ) into an NSTS (NY

∗ , NSσ)is called an 

Neutrosophic contra regular weakly generalized 

closed mapping (NSc(RWG)CM in short) if f(A) is 

a NSRWGOS in NY
∗  for every NSCS  A in NX

∗ .  

Example 5.2: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

2

10
)〉 

 NT2

∗ = 〈s, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗. Then f is a  

NSc(RWG)CM.  

Theorem 5.3: 

 Every NScCM is a NSc(RWG)CM but not 

conversely.  

Proof: Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a 

NScCM. Let A is a NSCS  in NX
∗ . Then f (A) is a 

NSOS in NY
∗ . Implies (f(A))Cis NSCS  in NY

∗ . Since 

every NSCS  is a  NS(RWG)CS , (f(A))C is a 

NS(RWG)CS  in NY
∗ . Hence f(A) is NSRWGOS in 

NY
∗ . Hence f is a NSc(RW)GOM.  

Example 5.4: 

 Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

3

10
)〉 

 NT2

∗ = 〈s, (
4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively.  

Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗.  

Then f is NSc(RWG)CM but not an NSCM since 

NSS  A= 〈r, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 is a NSCS  in 

NX
∗  but f(A) =〈s, (

2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 is not an 

NSCS  in NY
∗ , since cl(f(A)) = NT2

∗ C ≠ f(A).  

Theorem 5.5:  

Every NSc(α)CM is a  NSc(RWG)CM but not 

conversely.  

Proof:  

Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NSc(α)CM. Let 

A is a NSCS in NX
∗ . Then f (A) is a NS(α)OS in NY

∗ . 

This implies (f(A))C is a  NSαCS in NY
∗ . Since every 

NSαCS is a NS(RWG)CS , (f(A))C is a 

NS(RWG)CS  in NY
∗ . i.e f(A) is a  NSRWGOS in 

NY
∗ . Hence f is a NSc(RW)GOM.  

Example 5.6: Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and 

NT1

∗ = 〈r, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 

 Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. Define a 
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mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by  Nf

∗(𝑟1
∗) =

𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗. Then f is NSc(RWG)CM but 

not an NS(α)CM since NSS A= 

〈r, (
4

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉 is a NSCS  in NX

∗  but 

f(A) = 〈s, (
4

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉 is not an NSαCS 

in NY
∗ , since cl(int(cl(f(A)))) = NT2

∗  C ⊈ f(A).  

Theorem 5.7:  

Every NSc(P)CM is a NSc(RWG)CM but not 

conversely.  

Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NSc(P)CM. Let 

A is a NSCS  in NX
∗ . Then f (A) is a NS(P)OS in NY

∗ . 

This implies (f(A))Cis a NS(P)CS in NY
∗ . Since every 

NS(P)CS is a NS(RWG)CS , (f(A))c is a 

NS(RWG)CS  in NY
∗ . i.e f(A) is a NSRWGOS in NY

∗ . 

Hence f is a NSc(RWG)CM.  

Example 5.8: 

 Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and  

NT1

∗ = 〈r, (
1

10
,

5

10
,

9

10
) , (

6

10
,

5

10
,

3

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. Define a 

mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by NX

∗ ={r1
∗, r2

∗} 

, NY
∗ ={s1

∗, s2
∗}. Then f is NSc(RWG)CM but not an 

NS(P)CM since NSS  A= 

〈r, (
9

10
,

5

10
,

1

10
) , (

3

10
,

5

10
,

6

10
)〉 is a NSCS  in NX

∗  but 

f(A) = 〈s, (
9

10
,

5

10
,

1

10
) , (

3

10
,

5

10
,

6

10
)〉  is not an 

NS(P)CS in NY
∗ , since cl(int(f(A))) = NT2

∗ C ⊈f(A). 

Theorem 5.9:  

Every NSc(αG)CM is a NSc(RWG)CM but not 

conversely.  

Proof: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ) is a NSc(αG)CM. 

Let A is a NSCS  in NX
∗ . Then f (A) is a NS(α)GOS 

in NY
∗ . This implies (f(A))c is a NS(αG)CS in NY

∗ . 

Since every NS(αG)CS is a NS(RWG)CS , (f(A))C 

is a NS(RWG)CS  in NY
∗ . Hence f(A) is a  

NSc(RWG)CM.  

Example 5.10:  

Let NX
∗ ={𝑟1

∗, 𝑟2
∗} , NY

∗ ={𝑠1
∗, 𝑠2

∗}and 

NT1

∗ = 〈r, (
5

10
,

5

10
,

5

10
) , (

4

10
,

5

10
,

6

10
)〉 

 NT2

∗ = 〈s, (
5

10
,

5

10
,

5

10
) , (

6

10
,

5

10
,

4

10
)〉 

Then NSτ = {0NS, NT1

∗ , 1NS } and NSσ = {0NS, NT2

∗ , 

1NS } are NSTs on NX
∗  and NY

∗  respectively. 

 Define a mapping  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)by 

 Nf
∗(𝑟1

∗) = 𝑠1
∗ and  Nf

∗(𝑟2
∗) = 𝑠2

∗Then f is 

NSc(RWG)CM but not an NS(αG)CM since NSS 

A= 〈r, (
3

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 A is a NSCS  in NX

∗  

but f(A) = 〈s, (
3

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is not an 

NS(αG)CS in NY
∗ , since NSαcl(f(A)) = 1NS ⊈ NT2

∗ .  

Theorem 5.14: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a 

NSc(RWG)CM. Then for every NSS  A of NX
∗ , 

f(cl(A)) is a NSc(RWG)CS in NY
∗ .  

Proof: Let A be any NSS  in NX
∗ . Then cl(A) is a 

NSCS  in NX
∗ . By hypothesis, f(cl(A)) is a  

NSRWGOS in NY
∗ . Hence f(cl(A)) is a 

NSc(RWG)CS in NY
∗   

Theorem 5.15: 

 Let  Nf
∗: (NX

∗ , NSτ) → (NY
∗ , NSσ)is a NSc(RWG)CM 

where NY
∗  is a NS(rw)T1/2 space. Then f is a NSOM.  

Proof: Let f is a NSc(RWG)CM. Then for every 

NSCS  A of NX
∗ , f(A) is a NSRWGOS in NY

∗ . This 

implies (f(A))C NS(RWG)CS  in NY
∗  is Since NY

∗  is a 

NS(rw)T1/2 space, (f(A))C is a NSCS  in NY
∗ . i.e f(A) 

is a NSOS in NY
∗ . Hence f is a NSOM.   
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