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Abstract :In this paper, we investigate about deep Q-learning for 

autonomous motion planning of mobile robot in indoor environment. 

Additionally, the proposed method utilizes an RPLidar sensor to deal 

with training issue. The deep Q-learning is adopted in this work, which 

is the combination between Q-learning and deep neural network. We 

propose a neural network model to learn the Q-function in order to solve 

the planning task, the proposed model is implemented in a simulation 

environment by using gazebo robot simulation. Our propose studies a 

new approach on motion planning for mobile robot. The new approach 

based on the deep Q-learning, which is start-of-art for robotic 

application. The approach does not based on a model of environment to 

navigation robot toward a given goal, therefore, it is independent with 

the scale of environment. As a result, the planning time is able to be real 

time to execute. Our model can directly map the range finder sensor 

data to a motion action such as the angular velocity, the result in section 

3 points out our model well execute on a static indoor environment and 

successfully learn to reach a goal after some thousand training episodes. 

The research achieves two improvements. Firstly, the motion planning 

task is able to be real time planning comparing with the previous 

research. Secondly, the proposed model help robot reach to a given goal 

without the model of map. 

Keywords: Navigation, Obstacle avoidance, Deep Q-learning, 

RPLidar ,Deep neural network 

________________________________________________________________________________

I. Introduction 

Recently, the autonomous robot plays an 

importance role in both industry and human 

daily life. It is able to adopt in many 

applications such as logistic industry, search 

and rescue person, and take care of the elderly 

person. Therefore, the investigation of 

developing the autonomous system is 

mandatory to concrete fourth industrial 

revolution which is the most concerned of 

many governments. For accomplish the fully 

autonomous ability, the robot must possess the 

motion planning capability, that provides for 

robot executing by itself in order to achieve a 

given goal without any command from a 

human. In order to deal with this issue, there 

has been many researchers proposed many 
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approaches, nevertheless, the reinforcement 

learning approach achieves the success than the 

other approaches. 

Indeed, the reinforcement learning approach 

benefits many advantages for an autonomous 

system. Firstly, the RL approach is able to 

facilitate robot perform reliably in an unseen 

environment where the robot has never either 

execution or training [1], [2]. This property is 

extremely crucial because of its reliability in 

unknown environment, which is difficult to 

achieve by the other recent methods. Secondly, 

the robot can perform real-time on onboard 

resource [3] since the RL method is model free 

that does not influent by the size of 

environment. The recent methods are based on 

the model based approach which creates a 

motion planner based on environment model. 

Consequently, when the scale of environment 

increases, the model of environment also 

increases that turn the model become more 

complicated, as a result the computation time 

take a long time to perform. 

However, the traditional RL approach can only 

solve the simple problems which have limited 

input and output, and easily estimate the Q 

function from empirical data. In our research, 

the input data come from sensor, thus 

calculating Q function from empirical data is 

infeasible due to the various sensor data. To 

deal with this issue, an approach is call deep Q-

learning is proposed to estimate the Q function 

by adopting a deep neural network. The deep 

neural network act as an approximate function 

that estimate Q function and the network is 

trained by temporal difference between the 

target network and the trainable network. 

Consequently, in this paper, we develop a new 

approach for robot motion planning depending 

on the deep Q-learning. We solve the training 

issue for RL by using range finder sensor that is 

RPLidar. The training issue for RL such that 

the difference between the training 

environment and the running environment 

which can lead to bad performance. 

Subsequently, we build a deep neural network 

model to accomplish obstacle avoidance 

capability and perform well at both training 

environment and unknown environment. The 

remaining of paper is constructed as follow. In 

section 2, we give an overview of related work. 

In Section 3, the proposed method and the way 

to solve motion planning problem, the section 4 

is the experiment and result. The last section is 

conclusion and future work. 

II. Related work

In a decade ago, the motion planning task used 

to solve by using the motion planner which 

plans the robot action form on the environment 

model [4]-[6]. Those approaches plan the 

motion depending on a model of the 

environment which provides a state transition 

probability, and then adopt a searching 

algorithm to find the optimal path from the start 

point to destination. K. Sertac et al [4] 

introduced a new motion planning algorithm 

based on the RRT* algorithm, however, the 

new algorithm that is called anytime RRT* that 

solve the running time problem of traditional 

RRT* and easily converge to the optimal 

solution. The main idea of anytime RRT* is to 

execute a trajectories and generate a branch-

and-bound tree in order to be adaptive in 

running time. The result shows that the new 

algorithm is faster than both RRT and RRT*.  

The most traditional researches about motion 

planning are to focus on the static environment, 

however, in [5] proposed an approach to plan a 

robot in dynamic environment where the 

obstacle is not stationary. A new potential field 

method, is developed, which considers not only 

the relative position of robot respect to goal and 

surrounding obstacles but also the velocity of 

robot in order to be well suited for dynamic 
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environment. A virtual force is determined as a 

negative gradient of velocity that adjusts the 

velocity of robot to smoothly execute. The 

result shows that the new potential field is quite 

effective to adapt on dynamic motion planning. 

Though the searching algorithm is quite 

successful to cope with the motion planning 

task, however, there is a considered issue such 

that the running time is too expensive, when the 

model of environment is extensive. Therefore, 

another approach is investigated that is model 

free for motion planning [7], [8]. The model 

free utilizes an approximate function to directly 

map the input data from sensor to the best 

action to execute. Lei Tai et al [7] developed a 

deep network for a mobile robot moving 

toward to a goal without the environment of 

model. The robot accomplishes the obstacle 

avoidance ability in an unknown environment 

through a depth camera putting rigid on top of 

robot. The neural network takes a raw image as 

input, after that predict a discrete action as the 

output. The result points out that the robot 

successfully achieves the obstacle avoidance in 

real world environment with the real-time 

planning. As a result, in this research we 

investigate the model-free approach for motion 

planning. 

III. Methodology 

3.1 Reinforcement learning 

 

Figure 1. Reinforcement learning diagram 

The reinforcement learning method is an 

machine learning categorize (Figure. 1), that an 

agent learns a policy to couple the state input s 

to the most appropriate output action a in an 

environment in order to maximize the 

accumulate reward function Q(s, a). Typically, 

the Q-function is calculated from the 

experiment data which means the agent 

interacts with the environment under a random 

policy until the number of sample data is 

sufficiently huge to create a Q-table. The Q-

function is determined as follow: 

Qπ st , at = E[Rt+1 + γRt+2 + γ2Rt+3 +

⋯|st , at] (1) 

,where the 𝜋  is the policy which the agent 

execute to generate data in Q-table, typically 

the policy is the random policy to estimate the 

Q value of a pair state-action. The 𝑠𝑡𝑎𝑛𝑑𝑎𝑡  are 

the state and action at time t, respectively. The 

value of Q-function is calculated by summing 

the total expectation reward from time step t+1 

until time step T when the episode is 

terminated under the condition of state 𝑠𝑡  and 

action 𝑎𝑡 . 𝛾 is the discount factor which 

influence to future accumulate reward value, 

the value of 𝛾 is within the interval from 0 to 1. 

Hence, if the discount factor equals 0, the Q-

value just takes immediate reward into account. 

On the other hand, if the discount factor equals 

1, the Q-function takes the all future reward 

into account. Nevertheless, in practice, the 

discount reward usually is chosen 𝛾 = 0.99 to 

be trade-off between immediate reward and 

future reward. 

Following the equation (1) and the Q-table, the 

calculating Q-value is still intractable, thus a 

trick is adopted to calculate Q-value that is 

called Bellman equation. The equation (1) can 

be rewritten: 

 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 =

𝐸[𝑅𝑡+1 +  𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 |𝑠𝑡 , 𝑎𝑡](2) 

the equation (2) is able to solve by using 

dynamic programming. Indeed, the Q-value at 
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time step t can be computed by calculating the 

Q-value at time step t+1, that is the 

fundamental attribute of dynamic 

programming problem. 

After achieving a Q-table and all the value of 

pair state-action, the agent executes a greedy 

policy instead of the random policy to 

maximize the accumulate reward. 

𝜋𝜀 = max𝑎 𝑄 𝑠, 𝑎  (3) 

the greedy policy always choose the action at 

time step t which is the maximum Q-value of a 

pair state-action. In case of Q-table, in each 

row of table, choose the highest value and then 

refer to the appropriate action, whenever the 

agent is transition to this state, it performs the 

chosen action to follow the greedy policy.  

3.2 Proposed Method 

As mentioned in previous section, the 

traditional RL uses a Q-function that depend 

on a Q-table in order to estimate the 

accumulate reward of pair of state-action, 

however, this approach is not efficient and 

become infeasible when the number of pair 

state-action is extremely huge. In this case, 

building a Q-table for calculating a Q-function 

take a long time and the numerous data sample, 

thus an approximate function is used to 

estimate the Q-function instead using Q-table. 

We rewrite the equation (1): 

𝑄𝜋 𝑠𝑡 , 𝑎𝑡| 𝜃 = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +

⋯|𝑠𝑡 , 𝑎𝑡]      (4) 

here𝜃 is the set of parameter of neural network 

such that 𝜃 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} , and the 

policy is arbitrary policy because the deep Q-

network is generated randomly. Adopted the 

Bellman equation in the equation (4), the new 

equation is: 

𝑄𝜋 𝑠𝑡 , 𝑎𝑡| 𝜃 =

𝐸[𝑅𝑡+1 +  𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1| 𝜃 |𝑠𝑡 , 𝑎𝑡]  (5) 

the deep Q-network is able to be trained by 

adopting the supervised machine learning 

approach. To reduce the number of pair state-

action as the input for deep neural network, the 

input of network incorporates only the state 

and the output of network is a set of Q-value, 

each output is corresponding to a pair of input 

state and an action 𝑎 ∈ {𝑎1, … , 𝑎𝑛}  with n is 

the number of action. 

Based on the deep Q-learning approach, we 

proposed a deep neural network model to 

address the motion planning issue for mobile 

robot. The method utilizes an RPLidar sensor 

which is low-cost range finder sensor to 

collection observation data surrounding the 

robot. The observation data includes both the 

sensor data and the relative distance between 

robot and the destination. The purpose of deep 

Q-learning is to make a decision control in real 

time and avoid the obstacle while moving or 

exploring the environment. In order to 

accomplish those goals, the neural network is 

trained to be satisfied the equation: 

𝑄𝜋 𝑠𝑡 , 𝑎𝑡| 𝜃 =

max𝜋𝐸[𝑡′=𝑡𝑇𝛾𝑡′−𝑡𝑅𝑡′|𝑠𝑡, 𝑎𝑡](6) 

, where 𝑠𝑡  and 𝑎 are the state of robot from the 

RPLidar sensor and the action at the time t, 

respectively. The action 𝑎  is chosen from a 

deep neural network, in which 𝑠𝑡  is input and 

𝜃𝑖  are the parameters of the neural network. 

Subsequently, 𝛾  is the discount factor for 

future reward, and 𝑟𝑡 ′  is the intermediate 

reward at time 𝑡 ′ after performing an action 𝑎. 

In our approach, the discount factor is 𝛾 =

0.99 as many RL practices. Since our purpose 

is motion planning, thus we keep the velocity 

of robot is stable 𝜗 = 0.3𝑚/𝑠  in order to 

simplify the robot action. Therefore, for action 

decision is the angle of the robot 𝜑 = [0, 𝜋], 

the angle is from 0 to 𝜋 with the interval 𝜋/2, 

as a result, the robot action possesses 5 actions 
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corresponding to 5 angles of robot’s head. We 

define an immediate reward function for each 

pair of state-action that is: 

𝑟 𝑠, 𝑎 =

 
 
 

 
 1 𝑖𝑓𝑑𝑐𝑢𝑟𝑟 > 𝑑𝑔𝑜𝑎𝑙

0 𝑖𝑓𝑑𝑐𝑢𝑟𝑟 < 𝑑𝑔𝑜𝑎𝑙
200 𝑖𝑓𝑑𝑔𝑜𝑎𝑙 < 0.02

−200 𝑖𝑓𝑎𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ℎ𝑎𝑝𝑝𝑒𝑛

  (7) 

where𝑟 𝑠, 𝑎  is the immediate reward the robot 

receive when the robot is at the state s 

performing action a. 𝑑𝑔𝑜𝑎𝑙 is the distance 

between the robot and the goal after executing 

an action, and 𝑑𝑐𝑢𝑟𝑟  is the distance between the 

robot and the goal before executing  an action. 

As can be seen from the equation (7), the robot 

will receive the highest reward if it reaches to 

the goal. On the other hand, if it hits to any 

obstacle, it will take a negative reward to 

punish those actions leading a collision. The 

robot will receive a little bit reward, if it moves 

close to the goal. 

In order to learn the Q-function, we operate a 

deep neural network (as shown in Figure 2.) to 

estimate the Q-function, the input of network is 

the range finder data from RPLidar 𝑠𝑡 =

 𝜔𝑖 0 ≤ 𝑖 ≤ 180} , where 𝜔𝑖  is the distance 

from robot to obstacle corresponding angle 𝑖. 

The deep Q-network is constructed by an input 

layer where the rangefinder data is fed into, 

subsequently, two full-connected hidden layers 

with ReLU activation function is operated to 

learn the pattern from input layer, each 

hiddenlayer own 124 neural units. Finally, the 

output layer own 18 neural units, correspond to 

18 actions in  

 

Figure 2. The proposed deep neural network 

for motion planning 

 

Figure 3. The simulation environment 

 

Figure 4. The accumulated reward of robot 

𝜑 = [0, 𝜋]. The suitable action for a state 𝑠𝑡  is 

derived from neural network by forward 

propagation process, and the action which has 

the highest value from output layer is picked 

up in order to send to robot.   

On the other hand, we use the experience 

replay buffer and a target network [4] to train 

our deep neural network. The target network 

has the similar network parameter with the 
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trainable network at initialization time, and 

then updating the target network parameter as 

follow: 

𝜃 ′ = 𝜏𝜃 ′ + (1 − 𝜏)𝜃(8) 

, where  𝜃 ′ is the target network parameter, 𝜃 is 

the trainable network parameter, and 𝜏 ≪ 1.  

Lastly, for training the deep neural network the 

trainable network is trained by using the 

temporal difference between the trainable 

network and the target network. The Q-

network is trained based on the mean square 

error (MSE) as follow: 

𝐿𝑗  𝜃𝑖 = 𝐸𝑠,𝑎,𝑟,𝑠′[ 𝑦𝑗 − 𝑄 𝑠, 𝑎; 𝜃  
2

](9) 

, where 𝑦𝑗 = 𝑟 𝑠, 𝑎 + max𝑎 ′ 𝑄 𝑠′, 𝑎′; 𝜃 ′  with 

𝑄 𝑠′, 𝑎′; 𝜃 ′  is the prediction from Q target-

network, action 𝑎′  is an action that maximize 

the Q-value at the state 𝑠′. 𝑄(𝑠, 𝑎; 𝜃𝑖)is the Q-

value of predecessor state 𝑠 from Q-network. 

IV. Result and Discussion 

For the experiment, we use the turtlebot2 

simulation [10] to implement the neural 

network model for motion planning. The 

simulation runs on ROS and gazebo simulator, 

which provides a bunch of tool box for testing 

the robotic system. The environment is set up 

such that the robot executes in a small square 

room with four cylinders as four state obstacles 

in Figure. 3. The robot is equipped a RPLIDAR 

sensor on its top and the sensing range of 

RPLIDAR sensor is between 0.12 meter to 3.5 

meters. The robot plan to move toward a goal 

which is determined as a small red square, the 

goal is randomly located after the robot 

reaching the goal. To easily train the robot, we 

determine the episode, which is the time from 

robot initialization until it hits into an obstacle 

or after 200 move steps . 

The parameter of neural network is chosen 

based on the empirical implementation such 

that learning rate 𝑙 = 0.0001, the parameter of 

each layer is generated depending on [11], the 

parameter is randomly generated from a 

normalize distribution 𝑁(0,
2

𝑓𝑎𝑛 _𝑖𝑛
), with fan_in 

is the number of input hidden unit of 

predecessor hidden layer. The batch_size for 

training is 32 data samples for each gradient 

descent execution. The planning time for an 

execution is approximate 300ms, that is well 

suited for robotic application in real world. As 

shown in Figure. 4, the chart shows the 

accumulated reward of robot during along 

10000 episodes, from the first episode until the 

3000
th

 episode the reward is quite low due to 

the robot early hitting the obstacle. .However, 

from the 6000
th

 episode the reward line cliff 

dramatically because the robot learned a policy 

to move toward goal and avoid the static 

obstacle. 

V. Conclusion 

In this work, we study a model free approach 

for motion planning for mobile robot. The 

proposed method adopts the deep 

reinforcement learning to solve the collision 

issue in indoor environment while planning the 

motion for the robot to reach a given goal. The 

experiment shows the method is able to be real-

time planning which is crucial for many robot 

applications. Additionally, the robot is able to 

reach the goal after particular episodes. 

However, the method still has some drawbacks 

as the training time is too long and the model is 

offline which cannot improve during execution 

time. In the future work, we will investigate 

more to solve all the drawbacks and develop a 

navigation system to adopt on a real robot. 
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