

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4052 Published by: The Mattingley Publishing Co., Inc.

Pattern Analysis of the ECA Rule for Complex Event

Processing in IoT Environments

Kwan Hee Han1, Young Joon Ko*2
1Professor, Department of Industrial & Systems Engineering, Gyeongsang National University, 501 Jinju-daero Jinju-

si Gyeongsangnam-do, 52828, Republic of Korea
*2Professor, Lift Engineering Department, Korea Lift College, 120 Unjeong 1-gil Geochang-eup Geochang-gun

Gyeongsangnam-do, 50141, Republic of Korea

hankh@gnu.ac.kr1, yjoonko@klc.ac.kr*2

Article Info

Volume 83

Page Number: 4052 - 4059

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 26 March 2020

Abstract

Background/Objectives: Efficient event processing shortens the processing time of events,

and enhances the quality and availability of information by providing real-time visibility to

organizations. In an era of IoT (Internet of Things).

Methods/Statistical analysis: For handling reactive systems, a kind of ECA (Event-

Condition-Action) languages are mainly used for event processing since they have a

concrete and intuitive foundation. However, existing ECA rules reveal some limitations

when it deals with the processing of complex events such as the tight coupling of event

producers and consumers.

Findings: The objective of this paper is to propose an ECA rule pattern classification to

remedy current limitations of the ECA rule for complex event processing (CEP) effectively

and efficiently, develop a prototype system to show the usefulness of proposed ECA rule

pattern.

Improvements/Applications: Existing ECA rule is further classified into 3 parts, and each

part is patterned to meet the current requirements for handling complex events in real time

enterprise. Finally, event processing rule is executed by assembling the relevant elements

of the 3 parts of the proposed ECA rule pattern.

Keywords: ECA rule, Real-time Enterprise, Complex event processing, Event-driven

architecture, Internet of Things

1. Introduction

In an era of Internet of Things (IoT), huge diverse

amount of data is occurring in real-time, and most

data generated relate to events that have occurred.

Several big data methodologies were developed to

deal with volatile human generated data and the

enormous amount of data generated from

Machine-to-Machine (M2M) interactions based

on IoT platforms [1]. In such a real-time

enterprise environment, various real-time data

streams that are much more unstructured are

created, often in the form of series of event

occurrences. Moreover, the amount of available

event data is rapidly expanding because of the

decreasing costs and increasing speed of

computers and internet.

To provide M2M-based services in real-time, most

organizations have had to handle a growing

volume of heterogeneous business events and

transactions continuously. Efficient event

processing shortens the processing time of events,

and enhances the quality and availability of

information by providing real-time visibility to

organizations. Flexibility gained from event

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4053 Published by: The Mattingley Publishing Co., Inc.

processing ensures a proactive response, which

results in appropriate problem-solving. Bruns et al.

addressed that complex event processing can be

used as the linchpin technology for intelligent

M2M system, and provided an event-driven

architecture that is adapted to the IoT environment

[2].

An event is an occurrence within a particular

system or domain; it is anything that happened or

is considered as having happened in certain

environment [3]. The area of event processing is

emerging recently driven primarily by the greater

need of business enterprises to react quickly for

better visibility into what is happening in their

organization [4]. In particular, complex event

processing (CEP) is a set of methods and tools for

reacting to complex events, which are events that

could only happen if lots of other events happen

[5]. CEP also effectively supports the reducing

latency for an individual business activity, as it

enables to extract useful events from raw data

streams in the business transactions [6]. In other

words, a complex event is an event that combines,

represents or denotes a set of other events that

should be handled to respond effectively. Events

in the real world occur simultaneously from a

variety of sources and various events are

considered to be a single event by combining

events. Therefore, the development of an efficient

CEP system is urgently needed in IoT

environments. Event processing programming

language is categorized into 2 styles as follows: (1)

stream-oriented programming, and, (2) rule-

oriented programming. The stream-oriented

programming is based on the data flow

programming, in which the vertices are processing

elements, and the arcs represent data flowing

between these vertices. Rule-oriented languages

are further divided into sub-types: active rules,

production rules, and logic programming [3].

Active rules, which are also known as event-

condition-action (ECA) rules, are descended from

the discipline of active databases. ECA rules are

executed as follows: when an event occurs,

evaluate conditions and, if they are satisfied,

trigger an action. Event processing systems based

on reactive rules and especially ECA rules, which

execute actions as a response to the sensing of

events, were extensively studied during the 1990s

[7]. ECA languages are a concrete and robust

paradigm for handling reactive systems. Essential

features of an ECA language are reactive and

reasoning capabilities, the possibility to express

complex actions and events, and a declarative

semantics.

In spite of the above-mentioned advantages, there

are some limitations with existing ECA rules for

the handling of complex events: (1) ECA rules

have been usually adopted in a conventional

request-response interaction, which is the basis of

most service-oriented architectures, and is

synchronous in nature. In this paradigm, event

producers and consumers are considered to be the

same. However, event producers and consumers

exist separately in the real world, and they are

independent and interact asynchronously.

Therefore, the decoupling of event producers and

consumers is necessary when applying the ECA

rule for CEP. (2) In IoT environments, there are

multiple event producers, so there must be some

distinctions among event sources in the event part

of the ECA rule. Moreover, the method of event

detection from the event producer must be

specified explicitly. (3) In the condition part of the

ECA rule, temporal constraints must be dealt with

as well as general condition logic checks.

Moreover, the kinds of event occurrences must be

pre-defined for proper condition checking. (4) In

the action part of the ECA rule, if multiple actions

are needed, the processing sequence and execution

method of multiple actions must be specified. (5)

There must be some distinctions among event

sinks in the action part of the ECA rule to deal

with multiple event consumers.

The objective of this paper is to propose an ECA

rule pattern classification to improve the existing

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4054 Published by: The Mattingley Publishing Co., Inc.

limitations of the ECA rule to deal with complex

events in IoT environments in real-time enterprise

environment, and to develop a prototype system

for the efficient processing of huge complex

events.

The rest of the paper is organized as follows:

Section 2 reviews related works on event

processing. Section 3 describes a proposed ECA

rule pattern for CEP. Section 4 describes the

prototype system developed in this study. Finally,

the last section summarizes the results and

suggests directions for future research.

2. RELATED WORKS

Event-driven architecture (EDA) is defined as a

software architecture pattern promoting the

production, detection, consumption of, and

reaction to events. To date, several EDA

architectures have been proposed to deal with

complex events. Well-known EDAs are the works

of Etzion and Niblett [3] and Moxey et al. [4].

Etzion and Niblett proposed an event-processing

network comprised of event producer, event

consumer, event channel and event processing

agent. The architectural components used by

Moxey et al. are event producer, event consumer,

event emitter, event bus, and event handler.

As a commercial system, Esper is a well-known

software package based on the stream-oriented

programming style, which uses script language for

event processing called EPL (Event Processing

Language) similar to SQL [8]. On the other hand,

IBM’s WebSphere business events [9] and

RuleCore’s RuleCore CEP server [10] are

commercial systems based on the rule-oriented

language, especially active rules.

Isazadeh et al. proposed intelligent rule learning

for ECA rules to maintain the efficiency of the

system in dynamic environments, and also

presented a method that uses a combination of

multi flexible fuzzy tree algorithm and neural

network [11]. Decker et al. developed a graphical

language for modeling composite events in

business processes, called BEMN (Business Event

Modeling Notation), which resolves some

requirements. These included event conjunction,

disjunction and inhibition, as well as the

cardinality of events whose graphical expression

can be factored into flow-oriented process

modeling and event rule modeling [12]. Bækgaard

and Godskesen presented a specification language

that can be used to specify real-time triggering

conditions in terms of complex event patterns.

The proposed specification language can be used

to formulate complex, triggering conditions for

active rules in terms of event patterns that involve

sequences, alternations, iterations, and parallel

compositions [13]. Paschke and Kozlenkov

surveyed reaction rule approaches and rule-based

event processing systems and languages of the

past decades [14]. Boubeta-Puig et al. proposed

both a graphical domain-specific modeling

language (DSML) for facilitating CEP domain

definitions by domain experts, and a graphical

DSML for event pattern definition by non-

technological users [15].

In the application area of event processing to

BPM (Business Process Management), Rajsiri et

al. proposed an BPMN-based integration method

of the event-driven approach and business process

modeling approach by developing a cloud-based

event-driven business process editor and simulator

[16]. Dunkel et al. presented a reference

architecture for event-driven traffic management

systems, which enables the analysis and

processing of complex event streams in real-time

[17]. For transforming the streaming model,

framework of streaming model transformations

was proposed by integrating complex event

processing, incremental model query and reactive

event-oriented transformation methods [18].

3. ECA RULE PATTERN FOR CEP

The ECA rule was intensively studied to support

automated rule triggering in response to the

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4055 Published by: The Mattingley Publishing Co., Inc.

occurrence and state change of events in an area

of an active database. The basic ECA structure is

“on event if condition, do action”.

To remedy the above-mentioned limitations in

Section 1, the existing ECA rule is patterned in

this paper. To do this, the existing ECA rule is

separated into 3 parts as follows: (1) E (Event)-

part: To remedy the first and second problems of

the current limitations, the event source is

categorized and the method of event detection

from event source is specified in this part. (2) C

(Condition)-part: To remedy the third problems of

the current limitations, the kinds of event

occurrence and event condition including

temporal constraints are specified. (3) A (Action)-

part): To remedy the fourth and fifth problems of

the current limitations, the event destination is

categorized, and multiplicities of action as well as

action type are specified.

A. Specification of event source and event

detection (E-part)

In the E-part, various event sources are classified

by their attributes, and method of event detection

from event sources is also specified according to

the role of event processing system as depicted in

the left part of Table 1. Event sources are

classified to 4 types as database, e-mail, file and

smart device according to the characteristics of

data storage media. In the database type, new

record insertion of database table is treated as new

event occurrence. For example, in the CRM

(Customer Relationship Management) system,

when new customer is registered in the database,

‘customer registration event’ is occurred. In the e-

mail type, the arrival of new mail in a certain

account is treated as new event occurrence. For

example, e-mail for maintenance request from a

customer is a new event occurrence in the

computer manufacturer. In the file type, new line

insertion or data input in a cell of spreadsheet

software is treated as new event occurrence.

Examples of file type are notepad and MS Excel.

In the smart device type, the generation of signal

from a smart device is treated as new event

occurrence.

According to the role of event processing system

in the event detection, a detection method is

further classified to either push or full type. In a

push type, event source takes an active part to

notify event occurrence to event processing

system by API (Application programming

Interface) or external procedure of DBMS. In a

pull type, event processing system detects event

occurrence from event source by periodic polling.

Pull type is further classified to 2 sub-types: (1)

occurrence count, and (2) occurrence time.

Occurrence count method detects event

occurrence by using the changes of occurrence

number between current polling and last visit time

to event source system. If there is a difference in

occurrence number, it is considered that new event

is occurred. Occurrence time method detects event

occurrence by using event occurrence time stamp

between current polling and last visit time to event

source system. If there is a new time stamp in

current visit time, this event is treated as new

occurrence.

B. Specification of event occurrences and event

condition check (C-part)

In the C-part, event occurrences are classified by

multiplicity of event occurrences, and event

condition checks are specified according to the

existence of temporal constraints, as depicted in

the middle part of Table 1. Event occurrence is

further classified into single and multiple

occurrence sub-types according to the number of

events for condition checks.

In condition checks for action execution, the

normal event condition check compares the

attribute value of an event to a reference value.

When there are temporal constraints for event

processing, the timing condition checks are

applied. The timing condition check compares the

attribute value to a reference value during the

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4056 Published by: The Mattingley Publishing Co., Inc.

specified time period, and is further classified into

2 sub-types: (1) value by value comparison, and (2)

last value comparison. In (1), whenever an event

occurs within the pre-defined time periods, the

attribute value of the new event occurrence is

compared continually. For example, in a bridge

management system (BMS) which monitors the

bridge status continuously, if the wind velocity is

greater than 50 m/sec just once during 5 minutes,

the bridge has to be closed. In this case, value by

value comparison during 5 minutes is used. In (2),

after the specified time period, the last average

value of the event is compared to a reference

value only once. For example, in a BMS, if the

average flow velocity is greater than 20m/sec at

the end of every 5 minutes, the bridge has to be

closed. In this case, the last value comparison

after every 5 minutes is used.

C. Specification of event destinations and action

types (A-part)

In the A-part, event destinations are classified by

their attributes, and number of action needed

action is specified. Moreover, the content of

action is also classified as depicted in the right

part of Table 1.

Table 1. Proposed ECA Rule Pattern

Event destination includes an application system,

a workflow and a display as well as a database, a

file and an e-mail that are previously defined in

the event source specification. The display sub-

type is further classified into mobile display and

others. Number of action needed is classified into

single and multiple action sub-types. Multiple

actions are further classified into parallel or

sequential action based on the required execution

sequence among multiple actions. The content of

action is classified into computation, update,

notification and invocation.

Computation is further classified into the simple

or complex sub-type. The simple sub-type is one

of the four fundamental arithmetic operations. The

complex sub-type is a combination of simple sub-

types. Update action changes the existing content

to a new one. Notification sends a message of

process results to other systems or devices.

Invocation sub-type runs other systems

automatically as a result of the event processing.

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4057 Published by: The Mattingley Publishing Co., Inc.

4. DEVELOPMENT OF AN CEP SYSTEM

BASED ON THE PROPOSED ECA RULE

PATTERN

A prototype of the complex event processing

system called CEpro was developed in this study

based on the proposed ECA rule pattern. CEpro is

responsible for event processing logic, which is

defined by specifying each element of the 3 parts

of the proposed ECA rule pattern, as explained in

Section 3. Event producers, event consumers, and

CEpro are independent from each other.

The CEpro consists of 4 modules: (1) the graphic

modeler module specifies each element of the

ECA rule pattern by graph structure. Nodes stand

for event definition, event detection, event

condition check, event action and start/stop of

event processing. Graphic model is saved in XML

format, which consists of 6 elements: Event-

Define, Event-Detection, Event-Condition, Event-

Action, Join-Split (node branch/merge

information) and Flow (transition information). (2)

the executor module processes event processing

logic by interpreting XML format model file. (3)

the scenario manager loads, saves, and retrieves

multiple event processing scenarios defined in the

graphic modeler. (4) the monitor module shows

the current status of event processing when the

executor is running.

Figure 1. BM&M system and CEpro

Test scenario 1 is for a bridge monitoring and

maintenance (BM&M) system, which monitors

the bridge status in real-time, and takes proper

actions for maintenance of the bridge. The

relationship between the BM&M system and

CEpro is shown in Figure 1.

For continual maintenance of a bridge, flow

velocity beneath the bridge, wind velocity around

the bridge, and vibration width of the bridge are

sensed continuously, and recorded in specific cells

in an Excel file.

If a sensor event is detected, it is transferred to

CEpro by the API of the BM&M system. In

CEpro, an event condition check is carried out as

follows: For example, if {(‘flow-velocity’ >= 30

after 120s) or (‘wind velocity’ >= 70 after 180s) or

(‘vibration_width’ >=5 during 60s)}, then

{(record the exception occurrence time to the

Excel file within the BM&M system) and (notify

the exception message to the manager by smart

phone)}.

The ECA rule pattern of this scenario is

summarized in Table 2.

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4058 Published by: The Mattingley Publishing Co., Inc.

Table 2. ECA rule pattern of test scenario 1

Test scenario 2 is a DGPS (Differential GPS)-

based location monitoring and tracking (DLM&T)

system. In this system, a DGPS module is

installed in wheelchairs used by the elderly or

infirm. The current location of the wheelchair is

detected by the DGPS module and this location

signal is transmitted to the smart phone of the

guardian of the individual through the installed

CEpro App.

Therefore, if the current location deviates from the

registered area by more than 200m, a warning

signal is displayed on the guardian’s smart phone.

In another situation, if the location signal is not

displayed for 5 minutes, due to a possible accident,

a warning signal is also transmitted to the

guardian’s smart phone.

The relationship between the DLM&T system and

CEpro is shown in Figure 2, and the ECA rule

pattern of this scenario is summarized in Table 3.

Figure 2. DLM&T system and CEPro

Table 3: ECA rule pattern of test scenario 2

March - April 2020

ISSN: 0193-4120 Page No. 4052 - 4059

4059 Published by: The Mattingley Publishing Co., Inc.

4. Conclusion

Currently, event processing systems have become

one of the core elements for realizing real-time

enterprise (RTE) through the monitoring and

pattern recognition of incoming complex events.

In this paper, by assembling subsets of ECA rule

pattern, event processing rule is declared clearly

to process heterogeneous complex events

effectively and efficiently. A prototype CEP

system was developed, and its operability was

validated by using 2 test scenarios. In these

scenarios, multiple events were detected, event

conditions were checked, and the corresponding

multiple actions were performed properly.

The ECA rule pattern in this paper is useful to

practitioners and software developers who are

implementing or developing a CEP system.

However, improving and stabilizing the required

functionalities for CEP, and a validity check of the

proposed ECA rule pattern for complex event

processing requires further research before

implementing the proposed system in a real

environment, since the developed system is just a

prototype.

References

[1] I. Flouris, N. Giatrakos, A. Deliagiannakis, M.

Garofalakis, M. Kamp, et al. M. Mock, Issues in

complex event processing: status and prospects in

the Big Data era,, Journal of Systems and Software,

2017; 127(1):217-36,.

[2] R. Bruns, J. Dunkel, H. Masbruch, S. Stipkovic,

Intelligent M2M: complex event processing for

machine-to-machine communication, Expert

Systems with Applications, 2015;42(3):1235-46.

[3] O. Etzion, P. Niblett, Event processing in action,

Stamford: Manning Publications Co; 2011.

[4] C. Moxey, H. Lalanne, G. Sharon, M. Peters, M.

Edwards, O. Etzion, et al. M. Ibrahim, A conceptual

model for event processing systems, IBM Red guide;

2010.

[5] D. Luckham, The power of events: An introduction to

complex event processing in distributed enterprise

systems, Berlin, Springer Verlag; 2008.

[6] I. Zappia, F. Paganelli, D. Parlanti, A lightweight and

extensible Complex Event Processing system for

sense and respond applications, Expert Systems

with Applications, 2012; 39(12): 10408-19,

[7] A. Paschke, ECA-RuleML: An approach combining

ECA Rules with temporal interval-based KR

event/action logics and transactional update logics,

IBIS, Technische Universität München, 2005. 30 p.

Report No.: Technical Report 11/05.

[8] EsperTech[Internet], c2006, product overview

technical data sheet; 2006[cited 2020 fab 07].

Available from: www.espertech.com/data-sheets/.

[9] J. Hoskins, Achieving business agility with IBM BPM

and SOA connectivity, Gulf Breeze, FL, Maximum

Press; 2010.

[10] M. Seiriö, M. Berndtsson, Design and

implementation of an ECA rule markup language,

Lecture Notes in Computer Science, 2005; 3791:98-

112.

[11] A. Isazadeh, W. Pedrycz, F. Mahan, ECA rule

learning in dynamic environments, Expert Systems

with Applications, 2014; 41(17):7847-57.

[12] G. Decker, A. Grosskopf, A. Barros. A graphical

notation for modeling complex events in business

processes, 11th IEEE International Conference on

Enterprise Distributed Object Computing

Conference, 2007; 27-36, Annapolis, MD.

[13] L. Bækgaard, C. Godskesen, Real-time event control

in active databases, Journal of Systems and

Software, 1998; 42(3): 263-71.

[14] A. Paschke, A. Kozlenkov, Rule-based event

processing and reaction rules, Lecture Notes in

Computer Science, 2009; 5858: 53-66.

[15] J. Boubeta-Puig, G. Ortiz, L. Medina-Bulo,

ModeL4CEP: Graphical domain-specific modeling

languages for CEP domains and event patterns,

Expert Systems with Applications, 2015;

42(21):8095-8110.

[16] V. Rajsiri, N. Fleury, G. Crosmarie, J. P. Event-based

business process editor and simulator, Lecture Notes

in Business Information Processing, 2011; 66: 707-

18.

[17] J. Dunkel, A. Fernández, R. Ortiz, S. Ossowski,

Event-driven architecture for decision support in

traffic management systems, Expert Systems with

Applications, 2011; 38(6): 6530-39.

[18] I. Dávid, I. Ráth, D. Varró, Foundations for

streaming model transformations by complex event

processing, Software & Systems Modeling, 2018;

17:135-62.

