

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

3996 Published by: The Mattingley Publishing Co., Inc.

Efficient Implementation of Digital Standard Cells-

Based True Random Number Generator for Securing

FPGA Designs
Guard Kanda1, Kwangki Ryoo*2

1Research Scholar, Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158,

South Korea.
*2Professor, Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea.

guardkanda@gmail.com1, kkryoo@gmail.com*2

Article Info

Volume 83

Page Number: 3996 - 4007

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 26 March 2020

Abstract

Random numbers are fundamental resources in the field of computing and engineering.

They have a wide scope of application including cryptography and simulation. True

Random Number Generators (TRNGs) are considered to be the most secure based on the

quality of its entropy sources. With the availability of several sources of entropy, ring

oscillator architecture can easily be used as a quality source of entropy for a TRNG due to

the inherent jitters and the simplicity of its design. Since there is still a possibility of a

generator to generate random numbers that do not meet the required security metrics,

hence, it is imperative for a TRNG to be able to quickly regenerate another set of random

bit sequence. For these reasons, this research, proposes a high-speed array-sampling and a

post-processing unit ring oscillator-based TRNG with improved statistical measures and

throughput for securing FPGA devices. The core architecture consists of digital primitive

cells – the ring oscillator, Q-Flip Flop, and the CubeHash algorithm. These are used as the

building blocks for constructing the proposed TRNG architecture. This proposed hardware

architecture reveals an improvement in throughput and the statistical measure of the quality

of generated bits. The architecture was modeled and simulated using Verilog HDL,

Modelsim SE, and Xilinx’s ISim simulation tools. This architecture was designed using

both the Xilinx ISE and Vivado tools. The proposed design was implemented on the

Spartan 6 and Cyclone IV FPGA devices and occupies an area of 3287 LUTs and 1714

Slice registers and had a maximum throughput of 1422 Mbps. Sampled bitstreams’

statistical accuracies were ascertained using NIST’s statistical Test package program.

Keywords: TRNG, Ring Oscillator, Cryptography, FPGA, CubeHash, Hardware Security.

1. Introduction

Internet-of-things (IoT), has gradually developed

into what is arguably the largest technological

platform having huge potential benefits. It has

woven itself into the very fiber of our everyday

life. This is the case owed to the varied

computational capabilities and sizes they exhibit.

They span a range of passively powered wearable

health-care monitoring devices to powerful edge

devices or nodes. These devices or sensors can be

located in homes, cars, farms, factories,

laboratories, and hospitals to increase productivity

and results. These potential benefits they offer

have shown that an estimated 50 billion connected

devices are expected by the year 2020 [1] These

devices such as the ones used in the hospital to

monitor a patient’s vital organs, usually possess

and process a large amount of data that is highly

sensitive and confidential. These make the IoT

platforms a

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

3997 Published by: The Mattingley Publishing Co., Inc.

Random Number
Generator

(RNG)

Deterministic
Random Number

Generator
(DRNG/PRNG)

Non-Deterministic
(TRUE) Random

Number Generator
(TRNG)

Physical-TRNG
(PTRNG)

Non-Pysical
TRNG

(NPTRNG)

Figure 1. Taxonomy of Random Number Generator

breeding ground for adversaries and attackers to

ply their trade. The information-rich data they

possessed by these IoT nodes and sensor have

necessitated that the security and privacy of these

platforms must be treated with a great deal of

attention to mitigate majority, if not all, of the

current and emerging security attacks such as the

IoT based distributed denial-of-service (DDoS)

attacks [2].

A means by which the security and privacy of the

IoT platform can be preserved is through

cryptography. where messages or information is

encoded (locked) with a key (ephemeral keys,

session keys, signatures) and is only decoded

(unlocked) by the intended recipient who has

access to this key. These keys can be generated by

running a Random Number Generator (RNG).

From Fig. 1, there are at least two main types of

the RNG: Pseudo-Random Number Generator

(PRNG) and the True Random Number Generator

(TRNG). PRNG, also known as Deterministic

Random Number Generator (DRNG) rely on

complex algorithms or mathematical procedures

alongside a seed (an initial value) to generate

random bit sequences. These bit sequences of the

PRNG are completely deterministic and hence

when one uses a “weak” seed for generation, then

the amount of time taken for a bit sequence to be

regenerated is shorter and undesirable. On the

other hand, TRNG uses purely random and non-

deterministic electronic effects as the source of its

randomness as compared to the algorithmic-based

PRNG. The sources of randomness (entropy) for

the Physical-TRNG (PTRNG) include thermal

noise from semiconductors, metastability

(Quantum mechanics), Timing Jitters, and Chaos

circuits whereas that for the Non-Physical-TRNG

(NPTRNG) can include system time, RAM

contents, keyboard loggers, etc. This implies that

the NPTRNGs are software-based whereas the

PTRNGs are hardware-based.

A ring oscillator (RO) is a chain connection of an

odd number of inverter gates in series and having

their final output fed back into the input of the

first inverter gate [3]. This setup causes the output

of the inverter ring to oscillate between the two

voltage levels of high and low [4]. These ring

oscillators are extensively used in hardware and

electronics design because of the simplicity of

their structure, ease of design and the low cost of

implementation associated with it. They are

desired because they present a simpler and

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

3998 Published by: The Mattingley Publishing Co., Inc.

effective method of building TRNGs [5-8]. The

entropy of any state or message as represented in

Equation (1), measures the average amount of

information needed to represent an even taken

from a probability distribution for a random

variable.[9]. From Equation (1), represents the

 state or message out of a total of possible

states or messages. The optional value can be

evaluated to the value . A random

number generator that generates K-bits of binary

sequences has the probability that, an output will

equal to be , As required by every RNG, the

source of entropy in the case of a ring oscillator is

the presence of jitters [10]. According to [11], Due

to the many storage elements arising from the

multiple stages of inverters in a ring oscillator

coupled with the delay component of each stage,

which depends on the capacitance (stray and

junction) and carrier transit times, absolute

frequency stability is therefore not guaranteed.

(1)

The applicability of random numbers ranges from

the field of arts to cryptography and these random

numbers generators (RNGs) are critical

components of a cryptographic ecosystem. Great

cryptography requires quality random numbers.

The random number generator for any

cryptographic application should seem to

adversaries as close to perfect RNG. It is therefore

crucial for a cryptographic application to generate

PRBS which cannot be predicted even by the

toughest adversaries. Generally, such quality true

random number generators have a generic

architecture as shown in Fig. 2. The component

blocks of the generic architecture include the

entropy source, the harvesting technique, the post-

processing block, the total failure test, and the

online tests. The source of entropy is the critical

component of the architecture because this is

where the “the randomness” is generated. As

mentioned earlier, several sources of entropy exist

which determines the class of random number

being generated. The time-continuous signals

obtained from the entropy sources are harvested

(digitized) for form what is termed digitized

analog signals. Since some of these entropy

sources have some form of bias, the post-

processing stage is implemented to reduce or

eventually eliminate some of these weaknesses

that may be present.

This paper, therefore, presents an efficient TRNG

architecture based on the generic TRNG

architecture, by using a vector array-sampling

approach to accumulate and harvest the jitters that

are inherent in the ring oscillator and then finally

using the CubeHash hashing algorithm for

postprocessing. This approach promises results

that pass the statistical test as well as having great

throughput. The remaining portions of this article

are organized as follows: From Section 2, a brief

review of some related works. The TRNG

hardware architecture is discussed in the 3rd

Section. In Section 4, the proposed architecture's

statistical quality matrices, as well as result

analysis, are covered. Recommendations

regarding the trade-off between hardware area and

throughput are discussed briefly in Section 5.

Finally, conclusion and future work are discussed

in Section 6 of the paper.

2. Related Work

Numerous random number generators have been

designed and proposed based on either pure digital

electronics or a mixture of digital and analog

electronics. A typical example is that proposed by

[12]. This design relied on a blend of both the

analog and digital electronics components to

amplify and sample white noise. The main

drawback of this design was related to the stage of

amplification. This stage consumed more power to

be able to raise the level of noise a few orders of

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

3999 Published by: The Mattingley Publishing Co., Inc.

Source of
Entropy

Harvesting
Technique

Post-
Processing

Total
Failure Test

Online Tests

Raw
Random

Bitstreams

Internal
Random

Bitstreams

Error
Flags

Error
Flags

Figure 2. TRNG Generic Architecture

magnitude in order to allow digitization. The Intel

random number generator [13] shown in Fig. 3

implemented a similar concept whereby the

Johnson noise (thermal noise) from resistors is

amplified in order to drive a voltage-controlled

oscillator that is in turn sampled by a high-speed

oscillator and then post-processed digitally with

the von Neumann algorithm. A purely digital

electronics-based architecture was proposed by

[14]. In this architecture, the outputs of Linear

feedback shift registers (LFSR) and cellular

automata are randomly sampled to obtain and

measure the randomness that is associated with

the jitters in the ring oscillators. For this

architecture, due to the complexity of the

harvesting scheme implemented, the harvested

samples were difficult to verify although this

proposed architecture had no amplification stage

or step and the source of entropy was obviously

limited to the two ring oscillators implemented.

Not all, a simple architecture was proposed by [15]

which was based on metastability of circuits but

had the disadvantage of combining a large number

of such circuit in order to pass statistical tests.

Also, two novel hardware random number

generator architectures were presented by [16]

that also relied on the metastability of latches. The

first of these was the RNG with the capability of

nullifying direct current (DC) for the operations

that require extremely low power consumption. In

addition to the DC-nulling RNG, a finite impulse

response (FIR)-based RNG that implements the

predictive whitening filter to be able to separate

non-random components from the generated bits

sequences was proposed. The RO-based TRNG

was proposed by [6]. This architecture relied on a

design that was similar in several ways to the

Linear Feedback Shift Generator (LFSR) in which

the registers are replaced with inverters. The

positions of the feedbacks are labeled with switch

values making them open if 0 or low and closed if

1 or high. The authors also proposed the use of

self-controlled LFSR as the post-processing unit.

3. Proposed Architecture

As depicted in Fig. 2, the proposed TRNG

comprise of the three key components that are

required for a TRNG. Because this is a purely

digital TRNG, we do not use amplifiers to enable

the harvesting or sampling of the randomness. The

various components are presented in detail in the

sub-sections that follow. Fig. 4 shows the block

diagram of the proposed TRNG. The block

diagram consists of 4 multi-mode ring oscillator

architectures as the main source of entropy. These

individual ring oscillators are XORed to form a

single source of entropy signal which is sampled

by an array of sampling units. The resulting

bitstreams from the multisampling are then passed

through a cryptographic hash algorithm for post-

processing to increase the rate as well as the

quality of bits generated.

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4000 Published by: The Mattingley Publishing Co., Inc.

Johnson Thermal
Noise
source

Noise
Amplifier

Voltage
Controlled
Oscillator

Bus

Control/Status
Reg

FIFO Digital Corrector

Super Latch

High-Speed
Oscillator

Figure 3. The Architecture of Intel’s Random Number Generator

Enable

RO_9

RO_27
RO_15

RO_51

Multi-Mode RO Array Sampling Unit Postprocessing

clksystem

CubeHash16/32-
512

M
A
T
R
I
X

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

enable

U

τ1 τ2 τ2U

Entropy input

Output

Figure 4. Proposed TRNG Architecture

3.1. Multi-Edge Ring Oscillator

The source of entropy for the proposed

architecture is the Ring Oscillator (RO). The ring

oscillator is employed due to the inherent jitters

that are present and accumulate as a result of their

operation. Conventional ring oscillators have a

single NAND gate and an even number of inverter

gates that pulses a single edge signal to propagate

through the ring oscillator. However, the

architecture proposed by [17] showed a 3-input

node ring oscillator that pulses three different

edges for a single ring oscillator simultaneously

with each edge propagating through the chain as

in a conventional ring oscillator architecture. The

three edges are 120 degrees phase-shifted and

boost the resulting frequency by a factor of three

(3). The accumulated jitters cause the pulse width

between two neighboring edges to increase in

variation with each completed cycle. With time

the two neighboring edges will merge into a single

edge, taking the multi-edge ring oscillator into a

single edge ring oscillator. The time taken to

collapse is the time taken to accumulate the jitters

that are sampled to generate random numbers. The

entropy source implemented includes 4 sets of

ring oscillator chains in the multimode and having

different stages for each ring oscillator chain. The

NAND gate replaces an inverter to allow for easy

control of the ring oscillator. When a value high is

present at the enable input, 3 pulse edges are

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4001 Published by: The Mattingley Publishing Co., Inc.

propagated simultaneously through the ring

oscillator chain. Visibly, the multi-mode ring

oscillator can be regarded as shorter individual

ring oscillators brought together to form a longer

ring oscillator. For the ring oscillator shown in Fig.

5 (b), the 9-stage ring oscillator is 3 separate ring

oscillators of length 3-each- a NAND gate and 2

inverter gates. The 4 sets of ring oscillators

designed for this research begins with one with 9

stages. The subsequent ring oscillators are 2 times

the number of stages of the preceding ring

oscillator less three stages. Therefore, the next

ring oscillator is of length (2x9) – 3 = 15. The

second ring oscillator is then broken into 3 stages

consisting of 4-inverters and a NAND gate to

generate one of the three edges. The remaining

two ring oscillators are of length 27 and 51 based

on the same computation. Because the architecture

in Fig. 5. is not easily simulated, Fig. 6 shows the

operation of the architecture on a Xilinx’s Spartan

6 FPGA board using the ChipScope internal logic

analyzer tool to show the output after the sampler

array unit.

tpulse

Enable

Enable

Edge 1

Edge 2

Edge 3

tpulse

Conventional Ring Oscillator

3-Edge Ring Oscillator

(a)

(b)

Edge 3 Edge 2 Edge 1

Figure 5. The Architecture of Intel’s Random Number Generator

Figure 6. Proposed TRNG Architecture

3.2. Array-Sampling Unit

To increase the rate at which random bits are

generated in the proposed architecture, a simple

array-sampling unit is proposed. The array-

sampler, shown in Fig. 7, is a simple architecture

consisting of three registers (Flip-Flops) and then

a simple clock generator. Each sampling unit is

controlled by three clocks from the K phase clock

signals within the array-sampling unit. A total of

3U registers (Flip-Flops) - where U is the number

of sampling-unit in the array - sample the input

data from the XOR concatenated signal of the

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4002 Published by: The Mattingley Publishing Co., Inc.

M
A
T
R
I
X

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

enable

U

τ1 τ2 τ2U

Entropy input

τ1

τ2

τ2U

3U Samples 3U Samples 3U Samples

Rising edge
sampling point

Falling edge
sampling point

Figure 7. Array Sampling Architecture and Timing Diagram

multi-mode ring oscillator at both edges of the K-

phase clock generator. Due to the very short

period between the clocks of the clock generator –

, – the probability of the data signal being

sampled at the threshold voltage increases and this

introduces a meta-stable state which in turn

increases the entropy of the TRNG. The presence

of this meta-stable condition implies that the

number of ring oscillators used in the entropy

source stage of the TRNG can be reduced [18].

3.3. Post-Processing Unit

The postprocessing unit implemented for this

TRNG architecture is the CubeHash function. To

ensure that the bitstreams from the multi-mode

ring oscillator have good statistical randomness

and a high bit rate, the sampled outputs of the

multi-mode ring oscillator can be fed to a

cryptographically secured hash function. The

CubeHash is a collection of hash functions

proposed and designed by Daniel J. Bernstein [19].

This set of hash functions was one of NIST’s

SHA-3 competition candidates eliminated in the

second round but is yet to be broken [20]. A key

advantage of this algorithm is its simplicity. This

hash algorithm uses a uniform structure for

processing message digests of lengths of up to 512

bits, using tweakable number of rounds and

message block sizes. Six parameters namely

parameters i, f h, r, b, and m specify the exact

tweak or setup of the CubeHash algorithm. The i-

parameter specifies the number of rounds of the

compression function to be executed to obtain the

initialization vector. This parameter spans the

range of 1 up to ∞ but it is typically 16 whereas

the parameter f denotes the number of rounds to

be computed for the final block of message to be

processed. This value is typically 32 but ranges

from 1 to ∞. The h determines the width of the

message digest in bits and ranges from 8-bits to

512-bits in multiples of 8-bits and is typically

512-bits. The r determines the number of rounds

compressions to be performed per message block.

The r ranges from 1 to ∞. Not all, the parameter b

determines the number of bytes per block message.

Finally, m is the parameter that denotes the length

of the message that can be processed and it is a

string of bits between 0 to bits.

Generally, the CubeHash notation is written as

CubeHashi+r/b+f-h(m) to describe a specific

variant of the algorithm.

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4003 Published by: The Mattingley Publishing Co., Inc.

X

Y SWP

SWP

SWP

SWP X’

Y’

State[1023:512]

State[511:0]

Addition Mod 232 Exclusive-OR

Swap

<<<11<<<7

<<<11
<<<7 7x Rotation

11x Rotation

ro
un

d
fu

nc
tio

n

Figure 8. CubeHash Compression Function

Figure 9. Simulation of the Computation of the Initialization Vector

Figure 10. Simulation of the Computation of a Hash of a Message

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4004 Published by: The Mattingley Publishing Co., Inc.

The variant of CubeHash implemented in this

research is the CubeHash160+16/64+32-512.To

initialize the internal state of the CubeHash, 10r

rounds are performed. Afterward, the first block of

data to be hashed, b-byte in size, is XORed into

the first b-bytes of the internal state. In the end, r-

round(s) of the compression function is performed

to obtain the message hash. The width of the

internal state is 1024-bits and this forms the core

of the algorithm’s implementation. The round

compression function, shown in Fig. 8, operates

on the 1024-bit internal state organized as 32 long

words, each being 32-bits wide. The State is

divided into two halves, each of size 512 bits and

labeled as X and Y. This division is performed

because the compression function only performs

10 simple operations on half of the internal state

which is (512-bits) during each of the 10

compression rounds. At the end of each

compression round the outputs X’ and Y’ are

obtained from their respective X and Y halves. The

X’ and Y’ outputs are fed back to X and Y if

multiple rounds of the compression are required.

The compression function consists of 2 addition

modulo , 2 XOR operations, 2 rotation

operations and 4 swapping operations as shown in

Fig. 8. The precomputed initialization vector (IV)

is 0xd6cfc79f1f19d0ae788ebcff0100c111ae16a87

3eb31b9b80625a344d07f2fe269f7245d7aaa6f126f

d54233a7447386c59e65d1c33c6ecb09b82faea211

166f8fc1addc5343afe5ee724b803565179e24f7ff6

04687a9b653e0c307b06405f8623e77acf75b428f1

4c22fe6290a39c63e581e2dfd52b75937eb14d8522

588b3. Fig. 9 is the simulation for the

initialization vector and shows the setting or

tweaking values used for the first three register x0,

x1, x2. For test purposes, a randomly generated

message of length 512-bit long;

0x79530200785302007b5302007a5302007d5302

007c5302007f5302007e530200815302008053020

0835302008253020085530200845302008753020

086530200 is passed through the CubeHash, using

the initialization vector as the one shown in Fig.

10. The resulting hash that is generated for this

message equals to 0x6982fd925343aecb53178826

54a9173f169decafeab719691fdc1ea399bd28f982

3a00fd57922b126f3cf8fa40fa58f54126955750322

deee9fa2443336b31a0. Fig. 11, on the other hand,

shows the internal logic capture of the

postprocessing using in operation on the Spartan 6

test board. The logic analyzer shows the

postprocessing of the first 512-bit generated by

the proposed entropy and sampler array units. The

first 512-bits generated is shown in the red

rectangle in Fig. 11 in little-endian format.

4. Discussion of Results

The proposed architecture was implemented using

Verilog HDL with Xilinx’s ISE and Vivado Tools.

The Modelsim SE 10.6d and Xilinx’s ISIM were

also used for the functional and timing

simulations of the proposed architecture. The

design was again tested on Altera’s DE2-115

Cyclone IV board. A total of 1GiB of True random

number samples were generated continuously at

50MHz and 25 MHz clock frequencies. A simple

architecture comprising of a MicroBlaze

microcontroller system fitted with a UART

module is used to write the generated samples to

the PC for analysis and examination of their

statistical properties using the statistical test suite

by NIST- NIST’s SP 800-22 [21]. Results from

this test are tabulated in Table. 1 and shows the p-

value alongside the success rate of the generated

samples. The results prove the right operation of

the proposed architectures and its suitability for

use in other systems that require the use of true

random numbers. The hardware overhead for the

proposed architecture’s implementation on

Xilinx’s Spartan 6 and Altera’s Cyclone IV FPGA

devices are recorded in Table 2 and Table 3

respectively. From Equation (2), the maximum

throughput of the design is determined to be 1422

Mbps considering that the bits are sampled at 512

bits into the CubeHash core using a total of 18

clock cycles and a minimum of 553 Mbps if the

bits are sampled into the CubeHash core 32-bits at

a time, which requires a total of 48 clock cycles.

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4005 Published by: The Mattingley Publishing Co., Inc.

Figure 11. Simulation of the Computation of a Hash of a Message

Table 1: Results Comparison Between Designs

NIST Test Package
CubeHash @ 50 MHz

P-Value Success Rate
Frequency 0.9005 98/100

Block Frequency 0.6961 99/100
Cumulative Sums (Forward) 0.1216 99/100
Cumulative Sums (Reverse) 0.2083 98/100

Runs 0.0688 98/100
Longest Run 0.1507 98/100

Rank 0.6937 98/100
FFT 0.2070 98/100

Overlapping 0.6038 99/100
Universal 0.0248 99/100

Approximate Entropy 0.9992 99/100
Serial (m = 16, n= 1024) 0.7599 99/100

Linear Complexity 0.9022 98/100

Table 2: Hardware Results from FPGA Implementation (Spartan 6)

Architecture
Slice Registers Slice LUTs

Fully utilized LUT-FF
pairs

Max
Operating

Freq
(MHz).

Used % Utilization #Used % Utilization #Used %Utilization

Multi-Mode RO 107 0 233 0 0 0 -
Multi Array

Sampler
10 0 15 0 10 66 812

CubeHash 1035 1 2325 10 1050 33 155
TRNG 1714 3 3287 17 1138 29 120

Table 3: Hardware Results from FPGA Implementation (Cyclone IV)

Architecture Total Logic Elements Combinational Functions Dedicated Logic Registers

Multi-Mode
RO

6 6 0

Multi-Array
Sampler

15 15 15

CubeHash 3960 3444 1591
TRNG 3029 2994 1156

 (2)

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4006 Published by: The Mattingley Publishing Co., Inc.

5. Recommendations

Compared to other light-weight TRNG, the

proposed TRNG has a high throughput. This is as

a result of the postprocessing unit; CubeHash. The

disadvantage of the CubeHash is the area of

hardware it occupies. This is, therefore, a tradeoff

between throughput and size (hardware area).

Several options for the post-processing unit are

available. Some of the recommended options for

use in place of the CubeHash to reduce the area

overhead while decreasing the throughput are the

shrink-generator or the linear feedback shift

register (LFSR) which are both cryptographic

post-processing methods and the Parity filter or

the debiasing Von Neumann algorithm [22] which

are typical algorithmic post-processing methods

6. Conclusion and Future Work

In the paper, digital standard cells -based TRNG

architecture that is able to accumulate jitters to use

as a source of randomness has been proposed.

This proposed architecture is completely digital as

it employs the ring oscillator to exploit the

embedded entropy to generate random numbers.

The design uses a simple yet effective digital

sampler to sample the bits that are generated from

the ring oscillator arrays that were implemented.

The final sample bits are then fed to the post-

processing unit of choice. For this architecture, the

CubeHash cryptographic hash function was used

to improve upon the raw sampled bits generated

for the statistical tests. The design was

implemented on the Spartan-6 FPGA device by

Xilinx and also on the Cyclone IV DE2-115 Altera

board with a maximum throughput of 1422 Mbps.

The statistical test suit from NIST shows that the

design architecture passes all the tests and of high

quality. With the growing adoption of IoT systems

in this era, it has become imperative that the

security-related aspects of these systems be met

by designers. There is an inherent challenge of

obtaining a suitable solution to integrate these

TRNG into low-end area constrained devices such

as edge and sensor nodes. For future work, we

will seek to explore various post-processing

algorithms or architectures that will drastically

reduce the hardware overhead while keeping the

required throughput. Not all, the proposed

architecture will be included in the design of an

ECIES architecture being developed [23] to

generate True Random Numbers (TRNG) for the

generation of shared keys.

References

[1] Majzoobi M, Kharaya A, Koushanfar F, and

Devadas S. Automated design, implementation,

and evaluation of arbiter-based PUF on FPGA

using programmable delay lines. In IACR

Cryptology ePrint Archive. 2014: 639, [cited

2020 Feb 17] Available from:

https://eprint.iacr.org/2014/639.pdf

[2] Rührmair U, Sölter J, Sehnke F, Xu X, Mahmoud

A, Stoyanova V, Dror G, Schmidhuber J,

Burleson W, and Devadas S. PUF modeling

attacks on simulated and silicon data, IEEE

Transaction on Information. Forensics Security.

2013 Nov;8(11):1876–1891. DOI:

10.1109/TIFS.2013.2279798

[3] CMOS Inverter Ring Oscillators [Internet] [place

unknown; publisher Analog Devices]; [updated

2019 Sept 25; cited 2020 Feb 17]. Available from:

https://wiki.analog.com/university/courses/alm1k/

alm-lab-ring-osc

[4] Ring Oscillators [Internet] [place unknown;

publisher T.U. Wien]; [cited 2020 Feb 17].

Available from:

http://www.iue.tuwien.ac.at/phd/entner/node35.ht

ml

[5] Schulz RA, Random Number Generator Circuit

Feb. 1990. [Internet], [place unknown; publisher

Google Patent]; [cited 2020 Feb 17]. Available

from:

https://patents.google.com/patent/US4905176A/e

n

[6] Golić JDJ, New methods for digital generation

and postprocessing of random data. In, IEEE

Transactions on Computers, 2006 Oct;

55(10):1217- 1229. DOI: 10.1109/TC.2006.164

[7] Wu J, O'Neill M, Ultra-lightweight true random

number generators. In Electronics Letters. 2010

March - April 2020

ISSN: 0193-4120 Page No. 3996 - 4007

4007 Published by: The Mattingley Publishing Co., Inc.

Jul 12;46(14):988-990. DOI:

10.1049/el.2010.0893

[8] Güler Ü, Ergün S, Dündar G, A digital IC random

number generator with logic gates only. In IEEE

International Conference on Electronics, Circuits,

and Systems, ICECS. 2010 Dec 12-15; 239- 242.

DOI: 10.1109/ICECS.2010.5724498

[9] Shannon, CE, A Mathematical Theory of

Communication. The Bell System Technical

Journal. 1948 Jul; 27(3):379-423. DOI:

10.1002/j.1538-7305.1948.tb01338.x

[10] Abidi AA, Phase Noise and Jitter in CMOS

Ring Oscillators. In IEEE Journal of Solid-State

Circuits. 2006 Jul. 24;41(8): 1803-1816. DOI:

10.1109/JSSC.2006.876206

[11] McNeill JA, Jitter in ring oscillators. In IEEE

Journal of Solid-State Circuits. 1997 Jun.; 32(6):

870-879. DOI: 10.1109/4.585289

[12] Bagini V, Bucci M, A Design of Reliable True

Random Number Generator for Cryptographic

Applications. In: Koç ÇK, Paar C. (eds)

Cryptographic Hardware and Embedded Systems.

CHES 1999. Lecture Notes in Computer

Science.,2002 Feb. 08;1717: 204-218. DOI:

10.1007/3-540-48059-5_18

[13] Jun B, Kocher P, The Intel Random Number

Generator. Intel Corporation, 1999 Apr.22 1999.

[cited 2020 Feb 17] Available from:

https://www.rambus.com/wp-

content/uploads/2015/08/IntelRNG.pdf

[14] Tkacik TE, A Hardware Random Number

Generator. In: Kaliski B.S., Koç.K., Paar C. (eds)

Cryptographic Hardware and Embedded Systems

- CHES 2002. CHES 2002. Lecture Notes in

Computer Science. 2003 Feb. 17;2523: 450-453.

DOI: 10.1007/3-540-36400-5_32

[15] Epstein M, Hars L, Krasinski R, Rosner M,

Zheng H, Design and Implementation of a True

Random Number Generator Based on Digital

Circuit Artifacts In: Walter C.D., Koç Ç.K., Paar

C. (eds) Cryptographic Hardware and Embedded

Systems - CHES 2003. CHES 2003. Lecture

Notes in Computer Science. 2003; 2779:152-165.

DOI: 10.1007/978-3-540-45238-6_13

[16] Holleman J, Otis B, Bridges S, Mitros A,

Diorio C, A 2.92μW Hardware Random Number

Generator. In Proceedings of the 32nd European

Solid-State Circuits Conference, Montreux, 2006;

134-137. DOI: 10.1109/ESSCIR.2006.307549

[17] Yang K, Fick D, Henry MB, Lee Y, Blaauw D,

Sylvester D, 16.3 A 23Mb/s 23pJ/b fully

synthesized true-random-number generator in

28nm and 65nm CMOS. In IEEE International

Solid-State Circuits Conference Digest of

Technical Papers (ISSCC). 2014 Mar. 06; 280-

281. DOI: 10.1109/ISSCC.2014.6757434

[18] Güler Ü, Ergün S, Dündar G, A digital IC

random number generator with logic gates only.

In IEEE International Conference on Electronics,

Circuits, and Systems, ICECS. 2011 Mar. 07;

239- 242. DOI: 10.1109/ICECS.2010.5724498

[19] Bernstein DJ, CubeHash specification (2.B.1).

[cited 2020 Feb 17] Available from

http://cubehash.cr.yp.to/submission/spec.pdf

[20] National Institute of Standards and Technology,

Announcing request for candidate algorithm

nominations for a new cryptographic hash

algorithm (SHA-3) family. Federal Register. 2007

Feb. 11; 72 (212): 66212-66220

[21] Bassham LE, Rukhin AL, Soto J, Nechvatal JR,

Smid ME, Leigh SD, Levenson M, Vangel M,

Heckert NA, Banks DL, A statistical test suite for

random and pseudorandom number generators for

cryptographic applications. National Institute of

Standards and Technology (NIST). 2010 Sept.16.

[22] VON Neumann, J. Various techniques used in

connection with random digits. In Monte Carlo

Method (Washington, D.C.: U.S. Government

Printing Office, 1951), A. Householder, G.

Forsythe, and H. Germond, Eds., National Bureau

of Standards Applied Mathematics Series, 12, pp.

36–38

[23] Kanda G, Ryoo K. Securing Ubiquitous

Hardware Devices with Elliptic Curve Integrated

Encryption Scheme. Journal of Advanced

Research in Dynamical and Control Systems.

2018 Dec;10(14): 314-324.

