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I INTRODUCTION
Banach [1] proved the existence of fixed point
on a complete metric space (X,d) in 1992. The

mapping f has been considered to be a
contraction and f takes points of X to itself.

Later, several interpretations for the existence of
fixed point with weaker conditions to contraction
mapping were given. Later Kannan type [6],
Chatterjea type [5] and Hardy-Rogers type
mappings were introduced. Zamfirescu [21]
introduced and gave the existence of fixed point
for a generalized contraction mapping in 1972. In
2005, Zead Mustafa et al.[11] introduced the
notion of G -metric spaces and they established
new fixed point results in G -metric spaces. Later,
several authors were established for fixed point
results in this area.

Geno Kadwin Jacob et.[9] introduced the Pata
typeZamfirescu contraction in complete metric
space. In this paper, “define a G -Pata type
Zamfirescu contraction and give fixed point
results in complete G -matric spaces based on G -
Pata type Zamfirescu contraction.

Throughout the paper, © denotes the class of all
increasing functions. i :[0,1] —[0,0) such that
W is continuous at ‘0’ with ¥(0) =0.
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Definition 1.1 [21]: Let (X,d) be a metric
space. A mapping f:X — Xis said to be a
Zamfirescu mapping if, for all x,ye Xand

a,b,c €[0,1], it satisfies the contraction.

d(f(x), f(y)) < max{ad(x, y),g[d (x, f()) +d(y, f(V)],

%[d(x,f(y))+d(y,f(x»}-

In a recent, Pata [7] obtained the following
refinement of the classical Banach contraction
principle.

Let A>0,a>1,5€[0,a] be any constants. For
each £ €[0,1],

d(f(x), f() S (1=)d(x, )+ Ae” P )L+ x|+ ]V,

Where ||x|| =d(x,x,) for arbitrary x, X and

YeO.
In a very recent paper, Jacob et. [9] obtained the

following of the classical Banach contraction
principle.

Let A>0,a>1,8€[0,a] be any constants. For
each £ €[0,1],
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A0 <=M )+ AP ol S0 0 G )

Where
M(,y) = maxfd(r, ), 2 <x>);d(y,f ) dlx.f (y));d(y,f(x))}
and

||x|| =d(x,x,) for arbitrary x, e X and ¥ €®.

The following Lemma is used to prove our results.

Lemma 1.1:[10] If a sequence x, € X'is not G -

Cauchy, then there exist J>0and two
subsequences {x,,}and {x,, } of {x,}such that
m(k) 1s the smallest index for each
m(k)>n(k)>k,

G(xm(k),xn(k),xn(k)) >0 and
G(xm(k)—l’xn(k)’xn(k)) <o
Moreover, Suppose that ’lil_rg G(x,,x,,,,%,,,)=0.
Then we have

1) }}_}1'1010 G(xm(k) > Xn(k)o xn(k)) =0

3) 113010 G(xm(k) > X1 xn(k)fl) =0

I MAIN RESULTS
Existence of fixed point for G-Pata type mappings
In this section, we prove the existence of unique
fixed point for G -Pata type Zamfirescu mappings.
Let (X,G)be a G -metric space. In the sequal, we
write ||x|| =G(x,x,x,), where
X, 1s an arbitrary element in X.
Definition 2.1: Let(X,G)be a complete G -metric
space. A mapping f: X — X is said to be G -Pata

type  Zamfirescu  mapping  if all
x,y,z€ X,¥ e®and every ¢ €[0,1], f
satisfies the inequality

GUF S0 SN <(1-e)M 2+ A P e ol )

for
for

]ﬂ’

Where
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2) llm G(xm(k)—l b xn(k)—l 2 xn(k)_l)
n—>0

4) ,112130 G(xm(k)—l > X(k) xn(k)) =0

G, fh S )+ 6L, f(2), f(2)+ Gz, f 0,/ (2)
3

}

and A>0, a>1,€[0,a] are constants.
Theorem 2.1: Let (X,G) be a complete G -metric
space and let f:X —> Xbe a G-Pata type
Zamfirescu mapping. Then, f has a unique fixed
point in X..

Proof: Let x,be an arbitrary element in X.

Definex,,, = f(x,) and ¢, = G(x,, x, ,x,).

To prove that G(x X,)1s a non increasing

n+1° xn+1 H

sequence, take & =0. Therefore,
et o A RN (AN (648
o x 20 MG )

MM 3 ’

0,0 /0 00 601, F 1, ) 01, £ G0, (1), S )

3
=0
SmﬂX{G(X 1 ),2G(xn’xn+l’xn+l)+G(xnfl’xn’xn)

70 -1 3 )

Glx x 2 )46 x 2 4Gl x 1)

n? "4l gl "

3

}

}

2G(xn ) xn+| ) er—I ) + G(xn—l’xn ) xn)

<max {G(xn ) xn7xn—l )’ 3 ’
G(xn 9 X xn+l) + G(xnfl’xn ) x”) + G(x Y anrl)

n+l? n?ntl?

26(x,,x ,,x, ) +G(x,_,x ,x )

n? " n+l? n-1°"n’

26(x ,x, X

n+l?® "ntl

j

<max{G(x,,x,,x, ),

)

)+ G(x;kl ) xn’xn)
3

j

2G(x,,x,

n+l?

X)) +G(x, X, %
<max{G(x ,x,,x, ), ) TO, %,

3
G(x

n+l?

X X,) SG(x,,x,,%, ) SGx,x,x5) = ¢

n+l>n n>"n

Claim(1): {c,}1is bounded
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C =G(x,x ,x)

< G(xn’xn ’ xn+1) + G(X xn+l’x1)+ G(xl’xl’x(])

2G6(x ,x ,x )+ G(x,,x,x)

n® "l
3

xn7x1)+ G(x xn"xl)+ G(x(]"xr1+l’xn+l)

n’

3
+0+

n+l?

<(I-g)max.{G(x,,x ,x,),

)

Glx

n’

+2C1 +A3a'//(5)[1+Han+ '

f
xn 'xn+l xn+l + Hxl H]

"l
3
ZG(IH ) X” ) xl ) t G(x() ) xn+l ) xn+1 )}
3

F6(t %) 42601, 1,5

w2 ]2 "

<(1-¢)max.{C,C,G(x x 3 )+ Gl x,x )+ Glx ,x 3 )+G(x 3 3 )}

(RAH] w2 (RE
20 +heye)ll+]x, I§
<(1-g)max.{C,,C,C +CJ+20Ae y(e)1+3C,+3C )
By the same reason as in [8], it follows that is
{C } bounded. Let limG(x,,x,,x,,)=G. Since

n—>0

S(l—s)max.{G(x”,xme),gg(x ¥k )+ Glx, )

)

+20+Ae"y(e)1 42y

“n

+

+

+

|+

g bk

x”

G(x,,x,,x, ;) 1s non increasing.

G(xn+l7x71+1’xrt) = G(f('xn)7 f(x"), f(xnfl ))
R
Glx ,x )46l x 2 )+G(x X ,xn)}

" nl? n-1>"n

X

n’

+Ae"y(e)[1+

+

+

+

+

+

Y, b

-1

X

ntl

X

ntl

26(x ,x ., x )+G(x ,x x)

"4l
3

an ) + G(X)H ) xn )
3

X

n n

<(1-e)max.{G(x,x ,x ),

Y

Glx ,x

nl?

X )+

ke ¥(e).

Now, as n—> o, we get that G<ke¥(g) and
hence G=0.
Claim(2):The sequence {x,}

Suppose that {x } is not a G -Cauchy sequence,

is a G -Cauchy.

then by lemma 1.1, there exist sub sequences
{x, } and {x, } with n, >m, >k such that
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55 G(xzm 7xmA ’xnl ) = G(f(x)m _1)’f(xmA _1)’f(xnl _1))

ZG(xmk - L ka 7xmA ) + G(xm - 1’ xnk ’ XnA )
<(1-¢)max.{G((x, ~1),(x, ~1)(x, -1) : ,
Glx, -Lx ,x )+G(x ~Lx x )+G(x ~Lx x
("ik g k) (k 3 b I;) (k i k)}+kgllj(g)

Now, as n —> o, we get o <keW¥(&), which is
a contradiction. Therefore {x,} isa G -Cauchy.
Since X is G —complete, there exists x € X such
that x, — x. Now, for all ne N and for £=0,
we obtain
G(f (x), f(x),0) € G(f (x), £ ()2, + G (06,,1,3,.1,%)
G(x, f(x), f(x)+G(x ,x % )

<max{G(x,x,x, ), . 1
Gl f (x), f ()4 G(,%,.1,%,.0) + G, f (1), f (X))}
3
+G(x X %),

As n— o, the above inequality concludes that

G(f (), f(x),x) < gG(f (x), f(x),x).

Hence, x is a fixed point of f .For the
uniqueness of fixed point, suppose that x and y
are fixed points of f . Then

Glx, f(x), f(0)+2G(p+ f(v),
0 -y LV FOATD)

Gl fh SO+ Gyt F9 fO)+ G f ). S o)
3]

)

+hey(e).

Therefore, we get G(x, y,y) <kwy(g) and hence
xX=y.
Therefore f has a unique fixed point in X .
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