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Abstract 

Identification of pulsars in radio astronomy is a tough task because the radio telescopes 

detecting most of the radiations are noise. Selecting proper radiations emitted by pulsars 

is a cognitively demanding process. In this paper, the Support Vector Machine-based 

classifier is implemented to identify pulsar stars from noise by classifying pulsar 

candidates from non-pulsar candidates. The support vector machine concept is explained 

with the classification of data. The algorithm is implemented using four statistics values 

of the two input features. The statistics are mean, standard deviation, excess kurtosis, and 

skewness. The input features are integrated profile and DM-SNR curve. The two class 

Support Vector Machine algorithm is trained using 17,897 observations. Average 

predicting accuracy obtained is 97.54%. 

 

Keywords – pulsars, radio astronomy, support vector machine, candidates. 

I. INTRODUCTION  

Pulsars are some kind of neutron stars that are 

formed after the disintegration of massive stars. 

These pulsars emit radiations that can be 

detected on earth. Their study is very imperative 

in astronomy as it provides means for 

understanding the different characteristics of 

gravitation, cosmological evolution and the 

composition of interplanetary medium etc. 

Hence their identification is very important and 

mostly difficult because there are a large number 

of pulsars like signals detected by radio 

telescopes. Compared to these false signals, the 

genuine signals that are actually emitted by 

pulsars are very few. Conventional approach for 

their identification was manual by a human 

observer which is time consuming and cognitive 

demanding [1]-[4]. 

 Pulsar candidate identification with Machine 

Learning [ML] algorithms is proposed in [5].  

ML is a discipline of Artificial Intelligence (AI) 

that specializes in algorithms that learn through 

data which is fed to them. Unlike conventional 

methods, ML algorithms use computational 

methods to learn information from data. The 

more the data, more trained the algorithm is and 

better is the performance. In ML, there are two 

main types namely supervised learning and 
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unsupervised learning. Supervised learning deals 

mainly with two types of problems which are 

Classification and Regression. Classification in 

particular contains algorithms such as Support 

Vector Machine (SVM), Discriminant Analysis, 

Naïve Bayes and K-Nearest Neighbor. The 

classification algorithm classifies data points into 

either two classes or more than two classes. 

SVM is used efficiently when there is binary 

classification [6]. 

SVM is mainly an extension of the Support 

Vector Classifier (SVC), which is itself an 

extension of the Maximal Margin Classifier 

(MMC). The drawback of the MVC for which 

data points need to be split separately was 

crossed by the SVC. And further, the SVC 

constraint that cannot construct a nonlinear 

boundary for linear segmented data was 

eliminated by the SVM [7].  

In the SVM, the hyperplane is a flat decision 

boundary that can or may not pass through the 

origin and is the dimension of (P-1) for P 

dimensional space. For example, a hyperplane is 

a line in two dimensional spaces. And suppose if 

a point is not on the hyperplane, it will be on the 

positive or negative side of the hyperplane. So, 

for a dataset with N observations and P features, 

our goal is to train the classifier using training 

data to properly classify test data based on the 

hyperplane using its feature measurements [8]. 

Although the hyperplane accurately 

categorizes the data points into two parts, there 

exist numerous numbers of hyperplanes. All 

possible hyperplanes can be achieved either by 

moving at a small distance or by rotating at a 

small angle without touching any data points. 

So in all these possibilities a hyperplane must be 

chosen. The selected hyperplane is known as the 

maximal margin hyperplane with the shortest 

distance from all the data points. At least that 

means that the data point with the least vertical 

distance from the hyperplane is also known as 

the margin, and furthermore, you mean the 

largest margin or the maximum margin. Then the 

test data is classified according to whose 

maximum margin is based on which side of the 

hyperplane. Therefore, classification is known 

as maximum margin classifier (MMC). The 

data points that lie on the margin are known as 

Support Vectors. They are called support vectors 

in the sense that slight change in their position 

causes the hyperplane to change and also the 

classifier. Change in position of data points other 

than support vectors do not affect the hyperplane 

and a very small number of data points decide 

the position of the hyperplane [9]. 

When the data points are not linearly 

separable, the hyperplane does not perfectly 

separate the data points into two halves. In such 

cases, addition of a single data point leads to 

large change in the hyperplane and the classifier 

would become overfit to the data. Such classifier 

might not be desirable for classification. The 

solution is obtained by using SVC. In SVC, 

some specific data points are allowed to violate 

the margin and sometimes the hyperplane too. 

The margin is known as soft margin and is based 

on the fact that it is worthwhile to misclassify a 

few training data points in order to correctly 

classify remaining other data points. The 

numbers of data points that can violate the 

margin are bounded by a tuning factor C and it is 

often chosen by cross validation. For SVC, 

support vectors are the data points that either lie 

on the margin or the points that violate the 

margin. The fact that a very few data points 

affect the classification makes SVC a very robust 

classifier. For classification ofdata points with 

nonlinear decision boundaries, the feature space 

is enlarged using functions of the input variables 

such as quadratic and cubic terms. That is, the 

SVC can be fitted using 2P features. The 

solution to SVC is obtained by taking inner 

products of data points instead of taking the data 
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points themselves. The inner products are further 

taken over by generalization of the inner 

products using function known as Kernel 

function. The kernel function is used to quantify 

the similarity between the two data points. A 

polynomial kernel with degree d is used for 

linear boundary. When the nonlinear boundary is 

needed, d should be greater than 1. The SVM is 

obtained when a nonlinear kernel is used with 

SVC [10]. 

In this paper a classifier based on SVM 

algorithm is used which identifies the given star 

as a pulsar. The algorithm is implemented using 

mean values of two features of candidates. The 

two features being integrated profile and DM-

SNR curve. 

II. SUPPORT VECTOR MACHINE FOR PULSAR 

IDENTIFICATION 

 The algorithm is implemented using mean 

values of two features of candidates. The two 

features being integrated profile and DM-SNR 

curve. The equation of the hyperplane is given 

by Eq. 1. 

 β0 + β1X1 + β2X2 +….+ βnXn = 0 

       (1) 

Where, β0 is known as bias, 

             β1…. βn are the weights, 

             X1….Xn are the coordinates of the 

point on the hyperplane. Eq. 1 can also be 

written as, 

D(x) = β0 + βiXi = 0   

       (2) 

Where, i = 1….n. 

This is known as the Linear Discriminate 

Function D(x). 

If the point X does not lie on the hyperplane, 

then it lies either on the positive or on the 

negative side of the hyperplane. Then Eq. 2 

becomes 

D(x) = β0 + βiXi> 0 If X lies on positive side

       (3) 

D(x) = β0 + βiXi< 0 If X lies on negative side

       (4) 

Then the classification can be done by the 

following rules, 

D(x) = β0 + βiXi> 0,  Xi ∈ class C1 i.e. 

a pulsar candidate     (5) 

 D(x) = β0 + βiXi< 0,  Xi ∈ class C2 i.e. 

not a pulsar       (6) 

Now, to classify the given data point as a 

pulsar or not a pulsar, the values of β0 and βi 

must be found. But, before that it should be 

ensured that for point Xi taken from class C1, the 

D(x) should be positive or greater than zero. If it 

is not, then the values of β0 and βi are modified 

such that it comes to the positive side of the 

hyperplane. I.e. the hyperplane is adjusted 

accordingly. Similarly, for point Xitaken from 

class C2, the D(x) should be negative or less than 

zero. And for this also the values of β0 and βi are 

modified such that it comes to the negative side 

of the hyperplane. 

If the hyperplane lies closer to one data point 

of class C1 and farther from a data point of class 

C2, then the hyperplane is putting large bias 

against class C2 and a penalty towards class C1. 

In that case, a small noise can misclassify the 

given data point. Hence, the hyperplane should 

be equally and maximum distanced from the 

classes. 

Now, for every input data point Xi with „p‟ 

features, the output Yi is a class of value ±1. It is 

given by, 

Xi ∈ class C1    Yi = +1   

        (7) 
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Xi ∈ class C2    Yi = -1  

        (8) 

The generalized equation is written as, 

Yi(β0 + βiXi) ≥ 0   

       (9) 

To keep the margin maximum, Eq. 9 becomes 

Yi(β0 + βiXi) ≥ M   

      (10) 

Where, M is the margin. 

The distance of a data point X from the 

hyperplane is calculated by, 

 
𝛽0 + 𝛽𝑖𝑋𝑖

||𝛽𝑖||
≥ M   (11) 

 

The parameter „M‟ is set to unity by proper 

scaling. Then Eq. 10 becomes,  

 

Yi (β0 + βiXi) = 1  If Xi is support 

vector      

 (12) 

Yi (β0 + βiXi) > 1  If Xi is not a 

support vector     

 (13) 

The SVM is a linear machine and the 

classification of data points depends only on the 

Support Vectors. The data points other than 

Support Vectors do not affect the classifier. Thus 

only a few points decide the classification 

process.  

For Eq. 11, to maximize the margin „M‟, the 

weights „βi‟ should be minimized and the bias 

„β0‟ should be maximized. To minimize the 

weights, the function is given by, 

G(x) = βt β =   β.β   (14) 

Here, 
1

2
 β.β is to be minimized. This is 

constraint optimization problem and is converted 

to unconstraint optimization by using 

Lagrangian Multiplier. It is given as, 

L(β, β0) = 
1

2
 β.β - ⅀αi [Yi (β0 + βiXi) – 1]

 (15) 

Where, αiis Lagrangian Multiplier. 

Optimization of Eq. 15 can be obtained by taking 

derivatives with respect to β0 and β and equating 

it to zero. 

 
∂𝐿

∂𝛽0
=

∂𝐿

∂𝛽0
[

1

2
𝛽.𝛽 − ⅀αiYi(βi.Xi) 

− ⅀αiYi(β0) − ⅀𝛼i]    

   (16) 

∂𝐿

∂𝛽0
=

∂𝐿

∂𝛽0
[ − ⅀αiYi(β0) ]  (17) 

Where, remaining terms are constant. 

Equating Eq. 17 to zero can be written as Eq. 18.   

 𝑝𝑖=0 αiYi = 0   (18) 

Where, p is the number of features. Eq. 18 

gives one of the constraints to design the SVM. 

Now, taking derivative of Eq. 15 w.r.t. β can be 

written as Eq. 19.  ,  

∂𝐿

∂𝛽
=

∂𝐿

∂𝛽
[

1

2
𝛽.𝛽 − ⅀αiYi(βi.Xi) − ⅀αiYi(β0) − ⅀𝛼i ]

    (19) 

 

∂𝐿

∂𝛽
=

∂𝐿

∂𝛽
[

1

2
𝛽.𝛽 − ⅀αiYi(βi.Xi) ]  

      

 (20) 

Where, remaining terms are constant. 

Equating Eq. 20 to zero can be written as Eq. 21.   

𝛽 = ⅀αiYi Xi  (21) 

 

Putting Eq. 18 and Eq. 21 in Eq. 15 can be 

written as Eq. 22.   

L(β, β0) = ⅀αi−  
1

2
⅀ αi .αj .Yi .Yj.(Xi .Xj)

 (22) 

Where, 𝛽.𝛽 is dot product written as αi .αj. 

Here, the target is to find the Lagrangian 
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Multiplier ‘αi’ that will maximize Eq. 22. If the 

Lagrangian Multiplier is zero, then 

corresponding Xi is not support vector. If it is 

very high, then corresponding Xi has high 

influence on hyperplane. If it is extra ordinary 

high, then corresponding Xi is an outlier. For 

unknown data point „i‟, the classification 

decision will be given by Eq. 23 and Eq. 24, 

Di = 𝛽i . Xi + β0   (23) 

 

Di =Sign ⅀αiYi XiXi+ β0  (24) 

In Eq. 24, the sign decides the class of the 

data point. If the sign is positive, then it belongs 

to class C1. If the sign is negative, then it belongs 

to class C2. The value of β0 is calculated by Eq. 

25. 

 

Β0 = 
1

2
[min (⅀αiYi (Xj Xi) max (⅀αiYi (Xj Xi))]   

       (25) 

Hence, in this way finding the values of βi 

and β0, SVM is designed. 

III. ALGORITHM 

 The algorithm is shown below and flowchart 

is given in Fig. 1.   

1. Start. 

2. Load the data. 

3. Store attributes values of class 1 as 

„data1‟. 

4. Store Attributes values of class 2 as 

„data2‟. 

5. Plot these values on scatter plot. 

6. Store values of both classes in „data3‟. 

7. Label the „data1‟ values as -1 and „data2‟ 

values as +1. 

8. Train the SVM classifier using „data3‟. 

9. Predict scores over the grid. 

10. If score -1, classify into group 1 else 

group 2. 

11. Plot decision boundary around the data 

classified. 

12. End 

 

IV. RESULT AND DISCUSSIONS 

 The dataset used in this experiment has 

mainly two attributes. First one is Integrated 

Profile and the other one is DM-SNR curve. The 

values of four statistics of the two features are 

considered. The statistics considered are Mean, 
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Standard Deviation, Excess Kurtosis and 

Skewness. Hence there are total eight input 

values and one output value for each sample. 

The output 0 stands for class 1 which consists of 

non-pulsar candidates and output 1 stands for 

class 2 which consists of pulsar candidates. Total 

17,897 samples are considered for training the 

data. Table below shows obtained results of the 

experiment. 

 The predicting accuracy of the dataset for 

Linear SVM for different number of samples is 

calculated by cross validation with five folds. 

Training Time with different samples is also 

noted down. 

  The Predicting Accuracy for the original 

dataset is 97.9% and the Training Time is 9.993 

seconds. When the number of samples taken is  

66 % of the original, Predicting Accuracy is 

97.5% and Training Time is 6.41 seconds. 

Further when the number of samples taken is 

50% of the original, the Predicting Accuracy is 

97.3% and Training Time is 1.07 seconds. Hence 

as the number of samples are reduced both 

Predicting Accuracy and Training Time 

decrease.  

 The scatter plot of the original data and 

predicted data after trained by SVM algorithm is 

shown in Fig. 2. Blue dots indicate non-pulsar 

candidate and red dots indicate pulsar 

candidates. Support vectors are shown by dots 

and decision boundary by black line. 

TABLE I. Predicting accuracy and Training Time 

Samples 
Predicting 

Accuracy 

Training Time 

(sec) 

17897 97.9% 9.9930 

14433 97.6% 8.3629 

12123 97.5% 6.4153 

06350 97.4% 2.3307 

03579 97.3% 1.0723 

 

Fig. 2. Scatterplot of original data set 

V.  CONCLUSIONS 

ML algorithms have been founded as an 

effective approach in the field of radio 

astronomy for identification of celestial objects 

such as pulsars. In particular supervised learning 

algorithms used for classification are used. The 

SVM algorithm is studied by experimenting it 

with a dataset which consists of observations of 

pulsar candidates. The dataset was collected 

during the High Time Resolution Universe 

Survey. The algorithm identifies a given 

candidate as a pulsar or no pulsar by performing 

binary classification on data points. The 

classification is done by demonstrating decision 

boundary in the feature space. The decision 

boundary or the hyperplane is explained with 

equations. The mathematical construction of the 

algorithm is given. The predicting accuracy of 

the algorithm is estimated by 5-fold cross 

validation after performing linear SVM. The 

average accuracy of the experiment was found to 

be 97.54%. It is observed that as the number of 

observations increase the corresponding 

accuracy also increases. The training time is also 

directly proportional to the number of 

observations. The original dataset and the dataset 

with predicted values are plotted. 
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