

March - April 2020

ISSN: 0193-4120 Page No. 2038 - 2042

2038

Published by: The Mattingley Publishing Co., Inc.

IMINE: Index Support for Item Set Mining

Vemula Rohini
1
, V.Sujatha

 2

1
 Assistant professor in Computer Science and Engineeering department at

Dr. K V.Subba Reddy College of Engineering for Women, Kurnool
2
 Assistant professor in Computer Science and Engineeering department at

Dr. K V.Subba Reddy College of Engineering for Women, Kurnool

Article Info

Volume 83

Page Number: 2038 - 2042

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 18 March 2020

Abstract

The IMine index, a general and compact structure which provides tight integration of item

set extraction during a relational DBMS. IMine provides an entire representation of the first

database, Since no constraint is enforced during the index creation phase. To reduce the I/O

cost, data accessed together during an equivalent extraction phase are clustered on an

equivalent disk block. The IMine index structure are often efficiently exploited by different

item set extraction algorithms. IMine data access method supports the LCM v.2 algorithms

and FP-growth, but they will straightforwardly support the enforcement of varied constraint

categories. It has been integrated into the Postgre SQL DBMS and exploits its physical

level access methods. Experiments, run both sparse and dense data distributions, show the

efficiency of the proposed index and its linear scalability also for giant data sets.Item set

mining supported by the IMine index shows performance always comparable , and

sometimes (especially for low supports) better than, state-of-the-art algorithms accessing

data on file.

Keywords: Data mining, FP-Growth, LCM v.2.

1. INTRODUCTION:

With the wide use of computers, scanners and data

base technique, human accumulated an excellent

deal of historical data. These data look simple at

the surface of them, but, there's much valuable

information behind them. business decision and

resource management, the knowledge and rule

behind these data are very useful in data

prediction. But, if we still use traditional methods

of statistical and analyses, these useful

information can’t be discovered or are often found

in infinite time. Hence data processing has been

proposed on this occasion. As one of the most

research patterns within the field of knowledge

mining, association rules are wont to determine

the relationships of a group of item, to seek out

out valuable information. Frequent item mining,

the main task of the association rule mining, is the

efficiency of which is the difficult problem.

Relevant knowledge of frequent item set mining is

introduced and some classic algorithms are

analyzed in detail. For the maximum frequent

contains all the frequent item sets, in this focuses

on how to mining maximum frequent item sets,

the maximum frequent mining from generating

FP-tree, the prune strategy, superset checking,

first searching strategy, reducing dimension are

deeply researched.

Many research attempts have been made in

maintaining the reliability which is conducted

from the past decades, also its efficiency is less. If

the database size gets increased its performance

may degrade. In these models more number of

scans are required to retrieve the data and it

increases the complexity.

2. PROPOSED METHODOLOGY

2.1 Proposed Work:

March - April 2020

ISSN: 0193-4120 Page No. 2038 - 2042

2039

Published by: The Mattingley Publishing Co., Inc.

In this section we are going to propose the

techniques which we are going to use in the

system and we consider example data set to

illustrate how the techniques can be implemented

.and the techniques are as follows:

a) Frequent Item Set Extraction.

b) I Tree Module.

c) I B Tree Module.

The transactional data set D is represented, in the

relational model, as a relation R. Each tuple in R

is a pair (TransactionID, ItemID). The IMine

index provides a compact and complete

representation of R. Hence, it allows the efficient

extraction of item sets from R, possibly enforcing

support or other constraints.

Table 2.1: Example Data Set

2.1.1 Frequent Item Set Extraction:

On the IMine index Frequent item set extraction

takes place. We are presenting two approaches,

FP-based and LCM-based algorithms, which are

an adaptation of the FP-Growth algorithm and

LCM v.2 algorithm, respectively.

FP-based algorithm:

The FP-growth algorithm stores the info during a

prefix-tree structure called FP-tree. First, it

computes item support. Then, for every

transaction, it stores within the FP-tree its subset

including frequent items. Items are considered one

by one. For each item, extraction takes place on

the frequent-item projected database, which is

generated from the first FP-tree and represented

during a FP-tree based structure.

LCM-based algorithm:

The LCM v.2 algorithm loads in memory the

support-based projection of the first database.

First, it reads the transactions to count item

support. Then, for every transaction, it loads the

subset including frequent items. Data are

represented in memory by means of an array-

based arrangement , on which the extraction takes

place.

2.2 Modules:

We use two modules I Tree module and IB Tree

module for efficient extraction of item sets from

the database.

2.2.1 I-Tree Module:

The Item set-Tree (I-Tree) may be a prefix-tree

which represents relation R by means of a

succinct and lossless compact structure.

Implementation of the I-Tree is predicated on the

FP-tree arrangement , which is extremely effective

in providing a compact and lossless representation

of relation R. However, since the two index

components are designed to be independent,

alternative I-Tree data structures can be easily

integrated in the IMine index as shown in figure.

Fig 2.1: IMINE Index for Example data set of

I-Tree

March - April 2020

ISSN: 0193-4120 Page No. 2038 - 2042

2040

Published by: The Mattingley Publishing Co., Inc.

The I-Tree associated to relation R is really a

forest of prefix-trees, where each tree represents a

gaggle of transactions all sharing one or more

items. Each node within the I-Tree corresponds to

an item in R. Each path within the I-Tree is an

ordered sequence of nodes and represents one or

more transactions in R. Each item in relation R is

associated to at least one or more I-Tree nodes and

every transaction in R is represented by a singular

I-Tree path.

2.2.2 I-BTree Module

The Item-Btree (I-Btree) may be a B+Tree

structure which allows reading selected I-Tree

portions during the extraction task. For each item,

it stores the physical locations of all item

occurrences within the I-Tree. It supports

efficiently loading from the I-Tree. I-Btree allows

selectively accessing the I-Tree disk blocks during

the extraction process as within the Fig.2.2.2. It is

based on a B+Tree structure. For each item i in

relation R, there's one entry within the I-Btree.

Fig 2.2: IMINE Index for Example data set of

I-BTree

I-Tree associated to R is a forest of prefix-trees,

where each tree represents a group of transactions

all sharing one or more items. Every node in the

I-Tree corresponds to an item in R. Each path

within the I-Tree is an ordered sequence of nodes

and represents one or more transactions in R. Each

item in relation R is associated to at least one or

more I-Tree nodes and every transaction in R is

represented by a singular I-Tree path.

3. RESULTS AND DISCUSSION:

We are uploading a data set for mining, when we

start mining the data set it shows number of

records, columns, Min Support, Generation time,

FP tree storage. On this data set we are applying

association rule mining. Finally by using

Association rule mining the accuracy was

displayed and total mining duration also given .

March - April 2020

ISSN: 0193-4120 Page No. 2038 - 2042

2041

Published by: The Mattingley Publishing Co., Inc.

On this data set we are applying association rule

mining. Finally by using Association rule mining

the accuracy was displayed and total mining

duration also given.

4. CONCLUSION:

IMine index may be a novel index structure that

supports efficient item set mining into a relational

DBMS. By exploiting its physical level access

methods, it has been implemented into the

PostgreSQL open source DBMS. The IMine index

provides an entire and compact representation of

transactional data. It efficiently supports different

algorithmic approaches to item set extraction. The

physical index blocks significantly reduces the I/O

costs by selective access and efficiently exploits

DBMS buffer management strategies. This

approach, albeit implemented into a relational

DBMS, yields performance better than the state-

of-the-art algorithms (i.e., Prefix-Tree and LCM

v.2 accessing data on a flat file and is

characterized by a linear scalability also for giant

data sets).

As further extensions of this work, the following

issues may be addressed: Compact structures

suitable for different data distributions. We are

adopting the prefix-tree structure to represent any

transactional database independently of its data

distribution. Different techniques may be adopted,

possibly ad hoc for the local density of the

considered data set portion. Integration with a

mining language. The proposed primitives could

also be integrated with a question language for

specifying mining requests, thus contributing an

efficient database implementation of the essential

extraction statements. Incremental update of the

index. Currently, when the transactional database

is updated, the IMine index must be

rematerialized. To incrementally update the index

when new data become available a different

approach would be done. Since no support

threshold is enforced during the index creation

phase, the incremental update is possible without

accessing the first transactional database.

5. REFERENCES:

[1] R. Agrawal and R. Srikant, “Fast Algorithm

for Mining Association Rules,” Proc. 20th

Int’l Conf. Very Large Data Bases (VLDB

’94), Sept. 1994.

March - April 2020

ISSN: 0193-4120 Page No. 2038 - 2042

2042

Published by: The Mattingley Publishing Co., Inc.

[2] R. Agrawal, T. Imilienski, and A. Swami,

“Mining Association Rules between Sets of

Items in Large Databases,” Proc. ACM

SIGMOD ’93, May 1993.

[3] J. Han, J. Pei, and Y. Yin, “Mining Frequent

Patterns without Candidate Generation,” Proc.

ACM SIGMOD, 2000.

[4] H. Mannila, H. Toivonen, and A.I. Verkamo,

“Efficient Algorithms for Discovering

Association Rules,” Proc. AAAI Workshop

Knowledge Discovery in Databases (KDD

’94), pp. 181-192, 1994.

[5] Savasere, E. Omiecinski, and S.B. Navathe,

“An Efficient Algorithm for Mining

Association Rules in Large Databases,” Proc.

21st Int’l Conf. Very Large Data Bases

(VLDB ’95), pp. 432-444, 1995.

[6] H. Toivonen, “Sampling Large Databases for

Association Rules,” Proc. 22nd Int’l Conf.

Very Large Data Bases (VLDB ’96), pp. 134-

145, 1996.

[7] M. El-Hajj and O.R. Zaiane, “Inverted

Matrix: Efficient Discovery of Frequent Items

in Large Datasets in the Context of Interactive

Mining,” Proc. Ninth ACM SIGKDD Int’l

Conf. Knowledge Discovery and Data Mining

(SIGKDD), 2003.

