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Abstract 

Robust control charts have been proposed for multivariate data as the 

traditional control charts are affected by extreme observations. Control 

charts have also been constructed for multivariate non normal data. Our 

proposed control chart uses comedian as a outlier detection measure 

along with winsorization to construct control limits in phase I of the chart 

so that most of the information that is available is utilized and not 

discarded because of outlier observations. Simulation and winsorization 

have been used to generate observations from multivariate skew t and the 

g and h distributions. 
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1. Introduction 

Control charts are statistical tools for monitoring various 

industrial processes as indicators of change in shift in the 

process characteristics. The statistical process control 

chart was first developed by W.A Shewhart in 1931 for 

monitoring univariate statistical process control. 

Univariate control charts can monitor only one variable at 

a time and cannot study the relationship between the 

several variables which are usually present in a 

manufacturing process. The assumption of the process 

values following normal distribution and being 

independent and identically distributed may not always 

be valid given the dynamic behavior of the variables. 

Most of the manufacturing processes are affected by 

disturbances known and unknown. Individual monitoring 

of process variables ignores the correlation and 

interaction between variables. To include the correlation 

between variables and to study the relationship between 

them, multivariate control charts were developed in the 

1940’s by Hotelling(1947). Some of the multivariate 

statistical process control charts are HotellingT
2
, T

2
 

generalized variance charts and Exponentially Weighted 

Moving Average(EWMA) charts. 

A multivariate control chart can be used as a tool for 

detecting shifts in the mean, distributional deviations 

from the in control distribution and for detecting  

 

multivariate outliers. An overview of the developments in 

multivariate statistical process control and its use in fault 

detection and isolation can be found in Kourti(2005). The 

multivariate EWMA chart for unequal sample sizes was 

proposed by Kim and Reynold(2005). The problem of 

monitoring variance shifts in a multivariate time series 

was studied by Chang and Zhang(2007) who proposed 

the MEWMV charts. A single chart which used the 

EWMA procedure and generalised LR test for joint 

monitoring of process mean and variability was proposed 

by Zhang and Chang(2008). Zou and Qui(2009) proposed 

multivariate statistical process control using LASSO. A 

multivariate logistic regression model was proposed by 

Sinha S.K et al.(2010) for analysis of multiple binary 

outcomes with incomplete covariate data. 

Traditional control based Principal Component 

Analysis control charts was first proposed by 

Jackson(1999). Q charts based on the residuals of the 

principal components was proposed by Ferrer(2007). 

Principal Component Analysis based control charts for 

multivariate non normal data was proposed by 

Phaladiganon P et al. (2013). They proposed two methods 

using PCA with kernel density estimation and PCA with 

bootstrapping. Ahsan et al. (2018) proposed a 

multivariate control chart based on PCA mix using kernel 

density estimation for mixed data by using principal 
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component analysis for continuous variables and multiple 

correspondence analysis for categorical variables. PCA 

mix proposed by Chavent et al. (2014) analyses different 

types of quality characteristics together. 

Robust control charts for bivariate data as 

alternatives to Hotelling’sT
2
 chart have been proposed by 

Abu Shawiesh et al.(2012) using median, median 

absolute deviation and comedian as measures of location, 

scatter and covariation respectively. They also conducted 

a comparison (2014) of bivariate robust control charts 

using Hotelling’sT
2
, T

2
MEDMAD, T

2
MVE, T

2
MCD for 

individual observations. Farokhnia and Niaki(2019) have 

proposed a PCA based chart using support vector 

machines for multivariate non normal distributions. 

Ahsan et al. (2019) have proposed a control chart for 

outlier detection using PCA mix for mixed data. 

Our proposed control chart uses comedian as a 

outlier detection measure along with winsorization to 

construct control limits in phase I of the chart so that 

most of the information that is available is utilized and 

not discarded because of outlier observations. Simulation 

is done by generating samples from. 

i. Standard normal distribution with Np(0, Ip) 

ii. Multivariate skew t distribution: Let Y be a p-

dimensional random vector. Then Y is said to follow a p-

dimensional unrestricted skew t distribution with p × 1 

location vector µ, p × p scale matrix Σ, p × 1 skewness 

vector δ, and (scalar) degrees of freedom ν, if its 

probability density function  is given by  

fp(y; µ, Σ, δ, ν) = 2
p
tp,ν(y; µ, Ω) Tp,ν+p(y ∗ ; 0, Λ), 

Where ∆ = diag(δ), Ω = Σ + ∆
2
 , y ∗ = q √(ν + p/(ν + d 

(y)),  

q = ∆Ω
−1

 (y − µ), d (y) = (y − µ) ‘Ω
−1

 (y − µ), Λ = Ip − 

∆Ω
−1

∆. 

iii. g x h distribution: The g x h distribution is used when 

skewness and elongation are jointly considered. g 

measures the skewness and h is a measure of elongation. 

It is given by  

Yg,h(Z) =(e
gz

-1)g
-1𝑒

ℎ𝑧2

2 ; Z is a standard normal variate. 

 

2. Traditional Hotelling T
2
Chart 

Two phases are described in constructing multivariate 

control charts. In phase I, the parameters of the in control 

process are estimated and control limits are set up using 

training data or historical data which is obtained when the 

process is inthe normal region. In phase II, the estimates 

and control limits in phase I are used to test whether the 

manufacturing process is in control or not.  

Multivariate statistical process control methods were 

first developed as an extension to univariate Shewhart 

control charts, by Hotelling(1947) using the T
2
 statistic. 

Let X=(x1,x2,x3,…xn) be a sample where xi is a p 

dimensional vector of measurements made at time period 

i. Then Hotelling T
2
 statistic is  

Ti
2
= (xi-µ)’Σ

-1
(xi-µ) 

When the process is in control, it is assumed that xi’s 

are independent and follow multivariate normal 

distribution N(µ,Σ) where µ is the mean vector and Σ is 

the variance covariance matrix. When µ and Σ are known, 

the statistic follows Chi square distribution with p degrees 

of freedom. 

When µ and Σ are unknown, they are estimated using 

the sample mean vector and the sample covariance matrix 

respectively. Then Ti
2
= (xi-x)’S

-1
(xi-x), where x and S are 

the location and scale estimates. When T
2
 is computed 

under the null hypothesis, further inference about the 

process can be made by comparing it to the defined limits 

which are obtained using T
2
CL = p(n+1)(n-1)Fα,p,n-p/n

2
 

where n denotes the number of sample size and p denotes 

the number of quality characteristics. These estimates are 

sensitive to outliers and hence the T
2
 statistic is also 

sensitive to outliers. 

 

3. Outlier Detection Techniques and Winsorization 

It is well known that outliers affect the process of 

estimation and inference. The measures of location and 

scatter are unduly affected by outliers. Hence there is a 

need to study their influence and identify methods to 

reduce their effect or eliminate them from the data sets. 

This is a challenging aspect of data analysis. Various 

methods and techniques have been devised to detect 

multivariate outliers. Some of these methods are distance 

based. Mahalanobis squared distance is one such measure 

used for multivariate data analysis. A large value of this 

measure indicates that the corresponding observation is 

an outlier. The problem of ‘masking’ and ‘swamping’ 

also exist in the sense that there are outliers who have a 

very small value for the Mahalanobis distance and a large 

value of the distance measure need not necessarily 

indicate an outlier.  Therefore there is a need to tackle this 

problem by using robust distances which are obtained by 

replacing the classic estimates by estimators which are 

robust. Some of the robust estimators proposed are the 

affine equivariant M estimators proposed by 

Maronna(1976), StahelDonoho estimators(1982) which 

are the weighted mean vector  and the covariance matric 

with weights depending on the outlyingness of an 

observation, Minimum covariance determinant estimator 

by Rosseeuw(1984), a fast outlier detection procedure 

proposed by Pena and Prieto(2001) using the direction of 

the projections that maximise and minimize the 

coefficient of kurtosis of the projected data and  the 

orthogonalised Gnanadesikan-Kettenring estimator 

proposed by Maronna and Zamar(2002) to obtain affine 

equivariant robust scatter matrices beginning with any 

pairwise robust scatter matrix, which performs well under 

high collinearity.  

A method to detect multivariate outliers has been 

proposed by Sajesh and Srinivasan(2012) using the 

measure Comedian defined by Falk(1997). This method 

can detect a large number of outliers. Falk introduced a 

dependence measure called the comedian which is a 

robust measure of the covariance between random 
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variables U and V. For any two random variables U and 

V, comedian is defined as, 

COM(U,V)= med((U-med(U))(V-med(V))) 

Where med(U) and med(V) are the medians of U and 

V respectively. It is equal to the square of the median 

absolute deviation (MAD) when U=V and has the highest 

breakdown point. Further COM(U,V) always exists, is 

symmetric and location and scale invariant. An 

alternative to the coefficient of correlation based on the 

median is called the correlation median and is given by 

δ(U,V)= COM(U,V)/(MAD(U)MAD(V) 

Where MAD(U) and MAD(V) are the median 

absolute deviations of U and V respectively. Falk 

proposed this measure as a measure of dependence.  

The method proposed by Sajesh and Srinivasan for 

outlier detection is as follows- 

Let U=(uij) , i=1,2…n; j=1,2…p be a n x p matrix.  

The comedian matrix is COM(U) =COM(ui,uj), 

i,j=1,2,…p and the multivariate correlation median matrix 

is δ(U)= DCOM(U)D’ where D is a diagonal matrix with 

diagonal elements being the reciprocal of MAD(ui), 

i=1,2...p. As the comedian matrix is not positive definite, 

the following steps are used so that the estimators 

obtained are robust.  

The eigen values λi and eigen vectors ej of the scatter 

matrix such that δ(U)=EΛE’ where E is the matrix with 

columns as ej’s and Λ=diag(λ1, λ2,… λp). Then define 

Q=D(U)
-1

E where D is as defined above. Let zi= Q
-1

ui, 

i=1,2…n where zi’ is the i
th

 row of the orthogonal matrix 

Z. Then the robust location and scatter estimates are 

m(U)= QF where F=(med(z1),med(z2),…med(zj)) 

S(U)= QΓQ’ where Γ=diag(t1
2
, t2

2
,…tp

2
) where  tj= MAD( 

zj), j=1,2,…p 

The robust Mahalanobis distance is given by  

RD(ui, m)= rdi= (ui-m)’S
-1

(ui-m)  where m and S are as 

defined above. 

The cutoff value for identifying outliers is given by 

C= 
1.4826 (𝜒𝑝 0.95 

2 )

𝜒𝑝 0.5 
2 𝑚𝑒𝑑(𝑟𝑑1 , 𝑟𝑑2, … 𝑟𝑑𝑛) 

If any RD(ui, m)>C, then ui is an outlier. The 

expression for C is obtained following Maronna and 

Zamar(2002) and holds for non-normal original data. 

Estimation of parameters is done using the trimmed 

values obtained after the winsorization process. The given 

observations are arranged in ascending order to identify 

outliers and the outliers are replaced by the corresponding 

trimmed values. This is done by replacing the outliers less 

than the smallest value by the smallest value retained and 

the outliers greater than the largest value by the largest 

value retained. Hence the winsorized sample is given by 

Wij= 

𝑢(𝑖1+1)𝑗 ,       𝑖𝑓    𝑢𝑖𝑗 ≤ 𝑢(𝑖1+1)𝑗 ,

   𝑢𝑖𝑗                    𝑖𝑓  𝑢(𝑖+1)𝑗 ,  ≤  𝑢𝑖𝑗 ≤ 𝑢(𝑛−𝑖2)𝑗 ,

𝑢(𝑛𝑗−𝑖2)𝑗 ,              𝑖𝑓 𝑢𝑖𝑗 ≥ 𝑢(𝑛−𝑖2)𝑗 ,

  

i=1,2..n; j=1,2…p 

Then the estimate of the winsorized location measure 

is m(W)= QF where F=(med(w1),med(w2),…med(wp)) 

and the scatter estimate is given by S(W)= QΓQ’ where 

where Γ=diag(t1
2
, t2

2
,…tp

2
) where  tj= MAD( wj), 

j=1,2,…p  

The distribution of Hotelling’s T
2
 is unknown under 

the assumption of non-normal data. In Phase I, the upper 

control limit for the proposed control chart is computed 

using simulation and bootstrapping using the overall false 

alarm rate as α.  

 

4. Simulation and Bootstrapping 

Bootstrapping, Efron and Tibshirani(1986), is a 

resampling procedure which is not based on any 

assumptions about the parent distribution. It is very useful 

when the distribution under consideration is non-normal. 

If x1,x2,x3,…xn is a random sample of size n then the 

bootstrapping procedure generates B samples with 

replacement of size n from the original sample. To 

construct control limits we use the bootstrapping 

technique and draw B samples of size n from an in 

control data. For each bootstrap sample the 100(1-α) 

percentile value is computed, 0<α<1. An average of the B 

percentile values is taken as the UCL. If a value exceeds 

this UCL it is said to be out of control. 

Taking α as 0.01, simulation of 5000 data sets of size n 

from 

iv. Standard normal distribution with Np(0, Ip) 

v. Multivariate skew t distribution 

vi. g  x h distribution 

Traditional and robust estimators are then computed.  

Phase I involves simulation of 5000 data sets from 

Np(0, Ip) with α = 0.01 and computing the robust 

estimators. Phase II involves generating an additional 

observation for each data set and computing the robust 

statistic using the corresponding estimators obtained in 

Phase I. The UCL for the robust statistic is obtained by 

finding the 99
th

 percentile for each sample and averaging 

it using the median. 

For independent variables, we use the mixture 

normal distribution as 

(1-ε) Np(0, Ip) +ε Np(µ1, Ip) where ε is the proportion 

of outlier data, 0 is the in control mean vector , µ1 is the 

out of control mean vector (taking values 0, 2, 5) and Ip is 

the identity dispersion matrix. For dependent variables, 

the mixture normal distribution is 

(1-ε) Np(0, ∑0) +ε Np(µ1, ∑0) 

Here ∑0 is the homogenous covariance matrix of size 

pxp with the diagonal elements being 1 and the off 

diagonal elements are 0.9 following Alfaro and 

Ortega(2007). 

Simulation and winsorization was done using the R 

package MASS for multivariate normal distribution and 

using the R package rrCov for computing the comedian. 

Simulation for the multivariate skew t distribution and g 

and h distributions using the R packages EMMIXskew 

and gk respectively. The UCL of the control chart so 

obtained was compared with another set of observations 

generated and conclusions can be drawn.  
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The study was to construct control charts for 

nonnormal multivariate data and draw conclusions. 

Simulation of 5000 observations was done from Np(0, Ip) 

with p=6. Winsorization of these observations was done 

and bootstrapping the winsorized observations with 

B=1000 yielded the required 99
th

 percentile value. Its 

average of the percentiles using the median as an average 

was obtained. This value was used as the UCL of the 

control chart. Any value of T
2
, obtained using the robust 

estimators calculated from the values obtained in phase I, 

calculated in phase II which is greater than the UCL is 

said to be out of control. 

Similarly, a simulation of 5000 observations each 

was done using multivariate skew t distribution and the g 

and h distribution. The procedure defined above was 

repeated for these observations also. 

UCL values for multivariate skew t distribution for 

varying values of p. 

 

Number of 

variables(p) 

UCL0.01 UCL0.05 

7 2.9183 1.965512 

8 2.917445 1.98181 

9 2.84961 1.947831 

10 2.80191 1.916743 

11 2.828841 1.9196 

12 2.84066 1.92095 

13 2.825278 1.9242 

14 2.8166 1.96219 

15 2.791509 1.88 

 

UCL values for multivariate g and h distribution for 

different values of g and h 

 

g(skew

ness) 

0.5 

 

0.75 

 

0.99 

 

0.5 

 

0.75 

 

0.99 

 

h(elong

ation) 

0.2

5 

0.25 0.25 0.75 0.75 0.75 

UCL 5.0

065 

4.96

0063 

4.84

0608 

5.28

8651 

5.30

5734 

5.18

9159 

 

A comparison of these charts can be studied by 

varying the sample sizes and the values of the parameters 

of the distributions considered. The performance of these 

control charts compared to the traditional control charts 

can be investigated by varying the values of the measures 

of skewness and kurtosis in the case of g and h and skew t 

distributions. 

 

5. Conclusion 

For the skew t distribution, we observe that, as the 

number of variables increase, the value of the UCL 

reduces. In the case of the g and h distribution, for a fixed 

value of h, if the value of g varies, the value of the UCL 

reduces and when the value of h increases, again the same 

pattern is observed. 
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