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Abstract 

Value at Risk (VaR) is one of the most popular measures of risk 

associated with financial instruments. The generalized Pareto distribution 

(GPD) has been widely used to fit observations exceeding the tail 

threshold in the peaks over threshold (POT) framework. In this paper we 

propose a new estimator of GPD parameters and hence VaR& Expected 

Shortfall (ES) under POT framework. The procedure minimizes the 

differences between the empirical distribution function and the 

theoretical distribution function of GPD using an optimal loss function. 

A simulation study is carried out in presence of outliers to compare the 

performance of proposed estimator of VaR and ES with some of the 

existing estimators with respect to bias and mean square error. The study 

observed that the proposed estimator performs on par with some of the 

existing robust methods considered in the study in terms of mean square 

error for certain values of shape parameter(k<0) and moderately large 

sample size. The efficiency of proposed estimator is more than existing 

robust estimators considered in this study. In addition, the study includes 

comparison of these estimators using real dataset. 

 

Keywords: Generalized Pareto Distribution, Extreme Value Theory, 

Value at Risk, M-estimation, Peaks over threshold 

 

 

1. Introduction  

1.1 Background 

Value at risk (VaR) is used widely in financial industry by 

all stake holders, like investors, portfolio managers, rating 

agencies and regulators. It indicates the maximum amount 

that an investor may loose over a given time horizon and 

with a given probability. It is commonly used since it is 

easy to understandand it is reported as a single number that 

represents potential losses with some confidence level. 

There are several methods available in literature (Jorion,  

 

 

2001, Kuester et al., 2006) for estimating VaR and one 

among them is based on extreme value theory (McNeil, 

2000). The field of extreme values has attracted the 

attention of Statisticians, Engineers, and Economists in the 

lastfew decades and there are two widely used approaches 

to analyze extreme data (Pickands, 1975; Galambos, 1981), 

namely, the block-maxima approach (Beirlant et al. 1996) 

and the peaks-over-threshold (PoT) approach (Davison and 

Smith, 1990). The first approach considers the distribution 

of the maximum order statistic. A generalized extreme 

value GEV distribution is then fitted to the series of 

extremal observations. But this block-maxima approach is 

wasteful of data as only one data point in each block is 
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taken, see:Fisher and Tippett (1928) and Gnedenko 

(1943).The second approach extracts the peak values which 

exceed a certain threshold and in this method, the excess 

values over high threshold are modeled with generalized 

Pareto distribution (GPD); See McNeil and Saladin (1997). 

More on the two approaches can be found in Caires (2009) 

and Ferreira and de Haan (2015). 

 

1.2 Generalized Pareto Distribution and Peaks over 

Threshold (PoT) framework  

Pickands(1975) and Balkemaand de Haan (1974) proved 

that the limiting distribution of exceedances (or peaks) of a 

random variable X over a sufficiently high threshold u is 

generalized Pareto distribution (GPD) with distribution 

function F(x) and probability density function f(x) are given 

below 

𝐹 𝑋 𝜇, 𝜎, 𝑘 =   
1 −  1 − 𝑘

𝑥−𝜇

𝜎
 

1 𝑘 

        𝑘 ≠ 0

1 − 𝑒𝑥𝑝  −
𝑥−𝜇

𝜎
              𝑘 = 0

  

𝑓 𝑋 𝜇, 𝜎, 𝑘 =   

1

𝜎
 1 − 𝑘

𝑥−𝜇

𝜎
 

1 𝑘 −1

       𝑘 ≠ 0

1

𝜎
 𝑒𝑥𝑝  −

𝑥−𝜇

𝜎
                 𝑘 = 0

   - (1.2.1) 

range of x:      for 𝑘 ≤ 0,  𝜇 ≤ 𝑥 ≤ ∞ 

and for  𝑘 > 0,   𝜇 ≤ 𝑥 ≤  𝜇 +
𝜎

𝑘
 . 

 

 

Where,𝜇  𝜇 ∈ 𝑅 , 𝜎  𝜎 > 0  and 𝑘 (𝑘 ∈ 𝑅), are the 

location, scale and shape parameters respectively. 

The distribution can be classified into three types 

depending on the shape parameter k; as heavy-tailed, 

medium-tailed and short-tailed, according as k< 0, k = 0 

and k > 0 respectively. 

Under PoT framework, we can estimate extremes for 

arbitrary distributions, if threshold value is sufficiently 

high. But the choice of threshold is critical, as high 

threshold leads to high variance due to few exceedences, 

but not biased, and a low threshold would necessitate using 

samples that are no longer considered as being in the tails 

which leads to increased bias. Hence one has to balance 

between bias and precision in selecting threshold value u. In 

literature several threshold selection methods have been 

suggested; See Embrechts et al. 1999b and Caeiro and 

Gomes(2016). Most of them are based on graphical 

approaches and include iterative algorithms.  

It is often seen that the number of exceedances is small 

in peaks-over-threshold approach and thereby, even a single 

abnormally large value may distort the estimates. The 

objective of the study is to estimate VaR in presence 

outliers under POT framework. The study proposes a new 

robust estimators of parameters of GPD and hence of VaR 

and expected shortfall, under POT framework. 

The remainder of this paper is organized as follows. 

Section 2 covers various estimation procedures for 

parameters of GPD and estimation of VaR that are in the 

literature and in section 3 we propose a new parameter 

estimator for estimating parameters of GPD using 

minimization method. In Section 4, we compare the 

performances of proposed method with existing methods 

for estimating parameters of GPD and VaR through 

simulation study. Section 5 covers results of empirical 

study. Section 6 concludes the paper. 

 

2. Estimation of parameters, Value at Risk and 

Expected shortfall 

2.1 Estimation methods for parameters of GPD 

Various parameter estimation methods have been studied 

for generalized Pareto distribution in literature and several 

methods have been compared under various conditions for 

estimating the GPD parameters; See P.Z Bermudeza& S. 

Kotz (2010, Part I & II). However, there are no universally 

accepted methods for estimating GPD parameters. Even if 

few methods are better than others over certain range of 

shape parameter k, they suffer from various constraints and 

convergence problems. Among these, maximum likelihood 

method (MLE) is preferred due to its asymptotic optimality 

properties and has been studied by Davison (1984), 

Smith(1984,1985), Grimshaw(1993). Hosking and Wallis 

(1987) compared maximum likelihood estimates with 

method of moments (MOM) and probability weighted 

moment (PWM) estimates over small ranges of k, |k|≤ ½as 

it is common to observe k between -1 and ½ (Zhang and 

Stephen 2009) and found thatprobability weighted method 

performs well for 0≤ k ≤1 and very good for k ≤ ½.Castillo 

and Hadi (1997) introduced elemental percentile method 

(EPM) and compared it with the MOM and the PWM 

methods, using root mean square error criterion when |k| ≤ 

2, through simulation study and showed that the PWM 

estimator performs well in small samples for k ≤ ½.  

Zhang and Stephens (2009) and Zhang (2010) 

developed empirical Bayes method (EBM) based on the 

likelihood and which uses a data-driven prior to estimate 

parameters of GPD. This prior is chosen in such a way that 

the estimates always exist and can be expressed as explicit 

functions of the observations which enable the estimates to 

be computed very efficiently. They showed that EBM 

performs better than MLE, MOM, PWM and Likelihood 

Moment Estimator (LME) with respect to bias and mean 

square error when – ½ < k < ½. Piao, Chen et.al., (2017) 

proposed estimator by minimizing differences between 

empirical and model distribution function through 

TukeyBiweight function (Yohai&Zamar, 1998) where they 

used EBM estimates as initial estimates.   

Luceño (2006) proposed estimators based on minimum 

distance approach by minimising the squared differences 

between empirical and model distribution functions, given 

in terms of various goodness- of-fit statistics, including the 

Cramer–von Mises statistic (CM), the Anderson– Darling 
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statistic (AD) and the right-tail weighted Anderson– 

Darling statistic (ADR) and compared few maximum 

goodness-of-fit (MGF) estimators with Quasi  Maximum 

Likelihood (QML), MLE, MOM, PWM and EPM over k = 

-2, -1, 0, 1, 2. It is seen that many simulation studies for 

comparing different methods of estimation of GPD 

parameters, have been conducted by many authors but these 

simulation studies are somewhat difficult to compare, as 

they have been performed under different conditions. 

Moreover, some of the methods have never been compared 

via a simulation study. See: Bermudeza& S. Kotz (2010) 

part I & II. 

 

2.2Value at Risk and Expected Shortfall 

Generally returns on investments at stock markets follow 

normal distribution and as a result, under typical conditions, 

VaR is thought to be almost as effective as expected 

shortfall (ES) at capturing risk. However, the financial 

crisis in 2007 highlights the importance of measuring the 

risk associated with non-normal returns. In this connection 

we are using generalized Pareto distribution to model 

returns exceeding a sufficiently high threshold value in case 

of violation of normality assumption and for heavy tailed 

distribution. The procedure is to estimate parameters of 

GPD and use it for estimation of VaR and ES. 

If X denotes the return random variable with 

distribution function 𝐹𝑋(𝑥), then for each 𝛼 𝜖  0, 1 , the 

VaR with 100x (1–𝛼)% confidence coefficient is defined 

as: 

𝑉𝑎𝑅 𝛼  𝑋 = inf 𝑥: 𝑃 𝑋 ≤ 𝑥 > 𝛼  = sup(𝑥: 𝑃 𝑋 < 𝑥 ≤

𝛼) 

𝐼𝑓 𝑋~𝐺𝑃𝐷  𝜇, 𝜎, 𝑘 , then𝛼th 
quantile is given by  

𝑉𝑎𝑅 𝛼  𝑋 = μ + σ 𝐹𝑘 ,𝜎
−1 α .  

𝑉𝑎𝑅 𝛼 = 𝑢 +
𝜎

𝑘
  

𝑛

𝑁𝑢

(1 − 𝛼) 
−𝑘

− 1  

If 𝑋~𝐺𝑃𝐷 𝜇 = 0, 𝜎, 𝑘  then, for a threshold u, the 

random variable Y = X – u| X > u has GPD (σ – ku,  k) 

(Zhang and Stephens, 2009), which reflects the fact that the 

excess over threshold operation does not affect the shape 

parameter of the GPD. 

As value at risk is not a linear function of parameters of 

GPD, there is a need for studying estimation of VaR, 

especially in the presence of outliers.The main drawback 

with the use of VaR as a risk measure is that, it does not 

respond to losses exceeding the confidence level, as a result 

it cannot capture the risk associated with the shape of the 

distribution beyond the confidence level. Artzner et al. 

(1997) propose the use of expected shortfall as an 

improvement on VaR. 

𝐸𝑆 𝛼  𝑋 = 𝐸  𝑋 | 𝑋 > 𝑉𝑎𝑅 𝛼  𝑋   

𝐸𝑆 𝛼 =
𝑉𝑎𝑅(𝛼)

1 − 𝑘
+

𝜎 − 𝑘𝑢

1 − 𝑘
 

This is expected value of return random variable 

beyond value at risk 

3. Proposed Method 

3.1 Motivation 

P. Chen et. al (2017) recently proposed two new estimators 

for the GPD parameters using the minimum distance 

estimation, where the Tukeybiweight function (Rey, 2012) 

is used as the distance measure which minimizes the 

distance between the empirical distribution function and the 

theoretical distribution function of GPD. The two 

estimators were shown to be consistent and it is claimed 

that as distance measure is borrowed from robust 

estimation, these estimators are robust to outlier 

contamination with breakdown point as high as 50% and 

95% efficiency under gaussian errors. 

As we are interested in estimation of VaR in presence 

of outliers we propose a robust method for estimating 

parameters of GPD similar to methods proposed by P.Chen 

et.al (2017) using an optimal loss function (Yohai, V.J., and 

Zamar, R.H. (1988), & M.Salibian-Barrera  et. al, 2008) 

which has high breakdown point 50% and efficiency of 

97.5% under Gaussian errors. 

 

3.2 Introduction  

In this section, two robust estimators for the GPD 

parameters are proposed based on the M-estimation (Huber, 

1973). It can be shown that a simple regression model can 

be established for estimating GPD parameters and then the 

M-estimation procedure of Huber can be applied. The 

proposed estimators are M-estimators of GPD parameters 

obtained under anoptimal loss function. 

 

3.3 Proposed Method 

Consider an i.i.d. sample𝑥1, 𝑥1 , . . . . . 𝑥𝑛 from 𝐹𝜃 𝑥𝑖 and let 

𝜃= (𝜎, 𝑘). Let Fn(x) be the corresponding empirical 

distribution function.If we define residuals similar to those 

in a linear regression, i.e., 

 

𝑟𝑖 𝜃 = 𝐹𝑛 𝑥𝑖 − 𝐹𝜃 𝑥𝑖 ;       𝑖 = 1, 2, . . . . . 𝑛;  
Where, 

𝐹𝜃 𝑥𝑖 =   
1 −  1 − 𝑘

𝑥

𝜎
 

1 𝑘 

        𝑘 ≠ 0

1 − 𝑒𝑥𝑝  −
𝑥

𝜎
              𝑘 = 0

  

range of (𝜎, 𝑘) and x as in 1.2.1 

𝐹𝑛 𝑥𝑖 =  
𝑖 − 0.5

𝑛
;   

 

We may be able to obtain an estimator of θ by 

minimizing a function  ρ(. ) (distance measure) of ri θ . 

For the GPD, it is found that the estimators obtained by 

minimizing 
1

𝑛
  𝑟𝑖 𝜃  2𝑛

𝑖=1  are sensitive to the shape 
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parameter k (Song and Song 2012). When sample size is 

small, some outlying observations in the sample may have 

decisive impact in minimizing 
1

n
  ri θ  2n

i=1  (least squares 

method) at some values of shape parameter. Borrowing the 

idea from M-estimation, we may reduce the influence of the 

outlying observations in ri θ  by using an appropriate 

distance function ρ(. ). 

The M-estimator for  θ is defined as 

θ n = argmin
1

n
 ρ(ri θ )

n

i=1

                    −      (3.3.1) 

In the literature, many 𝜌 functions have been proposed 

(Rey 2012). We have considered following 𝜌 function 

(Yohai and Zamar 1988) 

 
𝜌𝑐 𝑢 

=

 
 
 

 
   1.38  

𝑢

𝑐
 

2

 
𝑢

𝑐
 ≤

2

3

 0.55 − 2.69  
𝑢

𝑐
 

2

+ 10.76  
𝑢

𝑐
 

4

− 11.66  
𝑢

𝑐
 

6

+ 4.04  
𝑢

𝑐
 

8

;       
2

3
<  

𝑢

𝑐
 ≤ 1

1,                                                                                                             
𝑢

𝑐
 > 1

  

 Where, c is called the tuning parameter. By setting c = 

1.214, the M-estimator with the above optimal function has 

an efficiency of 97.7% under independent Gaussian errors. 

Theconsistency and asymptotic normality of an M-

estimator for the linear regression with i.i.d. errors are well 

established in Huber (2011, chap.11). Observing that ri θ 's 

are asymptotically normal and have different asymptotic 

variances(Van der Vaart 1998, chap.19), i.e., 

 nri θ0 =  n Fn xi − Fθ0
 xi  N  0, Fθ0

 xi  1 −

Fθ0
 xi   ,    − (3.3.2) for every θ0 in parametric 

space (𝜎, 𝑘), 𝜎 > 0, 𝑘 ∈ 𝑅  

 

We can construct a weighted M-estimator as  

θn
∗ = argmin

1

n
 ρ(ri

∗ θ )

n

i=1

                                      − (3.3.3) 

Where, ri
∗ θ =

ri θ 

w i  θ 
 ;   with weightswi θ =

  Fθ xi  1 − Fθ xi  .     

However, optimizing (3.3.3) with this weight is 

difficult, as ρ(. )a complicated function of the parameters θ, 

direct optimization of  3.3.3 is difficult, as such we use the 

weightwi θ =   Fθn  xi  1 − Fθn  xi   where θn
  is 

unweighted M-estimator obtained from (3.3.1). We have 

employed iterative reweighed least squares (IRLS) 

algorithm and used estimates obtained from EBM (ZJ) 

method for initial values, as they exist for all values of 

shape parameter. 

4. Simulation Study  

4.1 Introduction  

As our objective is to estimate VaR in presence of outliers, 

we compared performance of proposed method with some 

robust methods and few traditional methods which are 

available in R-Environment through a simulation study 

using bias and root mean square error criteria. We 

considered six robust methods among which, four are based 

on minimum distance approach and six non-robust methods 

(which are available at R-environment) for comparison in 

estimating parameters of GPD, VaR and ES in presence of 

two additive outliers under PoT framework. 

 

Table 1: List of Estimation methods considered in the study 

Robust Methods Non Robust Methods 

1. Proposed Method-1 

(Unweighted) 

2. Proposed Method-2 

(Weighted) 

3. P.Chen method-1 

(Unweighted, PZ 

method), proposed by 

P.Chenet.al (2017),  

4. P.Chen method-2 

(Weighted, WPZ method) 

proposed by P.Chen et.al 

(2017),  

5. Median Estimator, 

(MED),                          

Peng and Welsh, (2001) 

6. Minimum Density 

Power Divergence, 

(MDPD),Juárez and 

Schucany (2004) 

7. Empirical Bayes 

Method,  

(EBM or ZJ), Zhang 

(2010), 

8. PICKANDS 

(Pickands) 

Pickands, J. (1975) 

9. Maximum 

Likelihood Estimator, 

(MLE), Smith (1984). 

10. Maximum 

Penalized Likelihood, 

(MPLE), Coles and 

Dixon (1999) 

11. Probability 

Weighted Moments 

Unbiased,(PWMU),  

Hosking and Wallis 

(1987) 

12. Probability 

Weighted Moments 

Biased,( PWMB),  

Hosking and Wallis 

(1987) 

 

Throughout the study, location parameter is set at 0 and 

scale parameter is set at 1, as simulation results are 

invariant of scale parameter(Hosking & Wallis, 1987). In 

practice the value of shape is commonly observed between 

-1 and ½(Zhang and Stephens, 2009) and alsoit is not 

uncommon to observe shape parameter k ≥ ½ (infinite 

variance)(Castillo et. al 2005), due to violation of normality 

assumption (heavy tailed distribution), thereforewe restrict 

our attention to the case of shape (k) values between -1 and 

+1.  

Bias and RMSE are computed in estimating VaR and 

ES using all methods considered in this study, at different 

confidence levels (1 − 𝛼) = 0.95, 0.98 and 0.99) under 

PoTsetup. Under this setup the sizes of exceedances are 
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usually small due to critical choice of threshold, therefore, 

in order to have some exceedances, a sample of 1,000 

random observations are generated from GPD and 

exceedances of size n = 20, 40 and 80 are obtained at p = 

0.02, 0.04 and 0.08 respectively. For each combination of 

sample size (n), shape (k) and confidence level (1 – 𝛼), bias 

and mean squared error of the estimators are obtained based 

on 10,000 Monte Carlo replications using R-software. 

𝐵𝑖𝑎𝑠 = 𝐸(𝜃 − 𝜃) ;     𝑅𝑀𝑆𝐸 =  𝐸   𝜃 − 𝜃 
2
 ; 

Performanceof the above methods of estimators in 

estimating parameters of GPD, VaR and ES are compared 

in the absence of outliers and in the presence of two 

additive outliers. 

 

4.2 Algorithm 

Step 1: Generated a random sample of size 1,000 

observations from GPD at location (µ) = 0, scale σ = 1 and 

shape = k 

Step 2: Select a threshold value u, taken to be (1 – p)
th
 

sample quantile 

Step 3: Compute true Value at Risk (VaR) and true 

Expected Shortfall (ES) at α   

𝑉𝑎𝑅 𝛼 = 𝑢 +
𝜎

𝑘
  

𝑛

𝑁𝑢

(1 − 𝛼) 
−𝑘

− 1  

𝐸𝑆 𝛼 =
𝑉𝑎𝑅(𝛼)

1 − 𝑘
+

𝜎 − 𝑘𝑢

1 − 𝑘
 

Step 4: Compute mean, standard deviation of observations 

obtained in step 1 and replace two random observations by 

additive outliers (mean+(5*StdDev) and 

mean+(5.5*StdDev)) to obtain contaminated data 

Step 5: Obtain observations above threshold u and generate 

exceedances (X – u)  

Step 6: Fit GPD for exceedances (for both non-

contaminated and contaminated data) using all methods 

(Table 1) and estimateσ (scale), k (shape),VaR and ES 

Step 7: Compute bias and mean square error for scale, 

shape, VaR and ES for non-contaminated data and 

contaminated data 

Step 8: Above steps are repeated (step 1 to 7), 10,000 times 

and compute average bias and square root ofaverage of 

squared error (RMSE) for scale, shape, VaR and ES for 

both contaminated and non-contaminated data. 

 

4.3 Results 

It is observed that the performance of different methods in 

estimation of parameters of GPD depends on the sample 

size and the shape of the sampling distribution. Also we 

found that there is no one estimator, which stands out as 

being the best in all situations. Following are some of major 

findings of simulation study  

 RMSE in estimation of VaR increases considerably 

with increase in confidence level (1 – α) for all methods.  

 Distribution of RMSE in estimation of VaRis found to 

be asymmetric over range of–1<k< 1 for a given shape and 

confidence level for all methods.  

 Two additive outliers affected estimation of Value at 

Risk and Expected shortfall even when sample size is 

moderately large.  

For brevity RMSE values in estimating shape, VaR and 

ES in presence of outliers at 95% confidence and n = 40 are 

reported in table 2, table 4 and table 5 respectively. As we 

are interested in estimation of Value at Risk, we have also 

reported BIAS in estimating VaR in presence of outliers at 

n = 40 and 95% confidence level in table 3. However 

results for n = 20 and 80 in estimation of shape, VaR and 

ES are summarized and reported in table 6, 7& 8 

respectively. 

 

Table 2: RMSE in estimating shape in presence of outliers when n = 40(p= 0.04, N = 1,000) at 95% confidence level 

k New1 New2 ZJ PZ WPZ MLE 

PWM

U 

PWM

B PICK MED 

MDP

D 

MPL

E MGF 

-1 1.02 1.02 0.40 1.02 1.01 1.58 1.72 1.70 0.55 0.95 1.31 1.48 10.54 

-0.9 0.93 0.93 0.36 0.93 0.92 1.42 1.54 1.52 0.54 0.84 1.25 1.34 14.19 

-0.8 0.84 0.83 0.30 0.84 0.82 1.27 1.36 1.34 0.52 0.74 1.13 1.20 20.18 

-0.7 0.75 0.73 0.26 0.75 0.73 1.11 1.16 1.14 0.56 0.63 1.00 1.05 27.99 

-0.6 0.67 0.64 0.22 0.67 0.65 0.95 0.95 0.93 0.54 0.52 0.86 0.90 40.32 

-0.5 0.57 0.54 0.19 0.57 0.54 0.78 0.75 0.73 0.56 0.45 0.72 0.74 41.34 

-0.4 0.49 0.44 0.17 0.49 0.34 0.59 0.55 0.53 0.55 0.38 0.56 0.56 11.76 

-0.3 0.41 0.27 0.16 0.41 0.31 0.40 0.37 0.35 0.52 0.33 0.39 0.37 0.54 

-0.2 0.31 0.25 0.15 0.31 0.29 0.23 0.26 0.24 0.58 0.39 0.24 0.20 0.29 

-0.1 0.28 0.27 0.15 0.28 0.31 0.14 0.17 0.17 0.58 0.39 0.17 0.12 0.15 

0 0.31 0.36 0.18 0.31 0.40 0.22 0.17 0.17 0.56 0.41 0.21 0.21 4.30 
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0.1 0.35 0.42 0.17 0.35 0.48 0.35 0.21 0.22 0.56 0.40 0.32 0.35 0.34 

0.2 0.15 0.21 0.18 0.15 0.28 0.33 0.50 0.51 0.86 0.49 0.34 0.33 0.23 

0.3 0.18 0.27 0.49 0.18 0.48 0.17 0.36 0.37 1.20 0.50 0.22 0.19 41.04 

0.4 0.31 0.35 0.69 0.31 0.43 0.16 0.27 0.29 1.37 0.54 0.23 0.19 58.82 

0.5 0.42 0.45 0.85 0.42 0.49 0.19 0.25 0.27 1.49 0.62 0.28 0.23 47.25 

0.6 0.53 0.55 0.99 0.53 0.57 0.25 0.27 0.29 1.62 0.71 0.35 0.29 35.29 

0.7 0.64 0.67 1.12 0.64 0.71 0.32 0.31 0.33 1.70 0.80 0.43 0.37 26.81 

0.8 0.74 0.76 1.23 0.74 0.79 0.40 0.38 0.39 1.80 0.89 0.52 0.45 20.64 

0.9 0.85 0.86 1.34 0.85 0.88 0.49 0.45 0.47 1.93 0.99 0.62 0.54 16.91 

1 0.95 0.97 1.46 0.95 0.99 0.58 0.53 0.55 2.01 1.09 0.71 0.63 13.67 

 

 

Figure 1: RMSE in estimation of shape parameter in presence of outliers when n = 40 

 

Table 3: BIAS in estimating Value at Risk in presence of outliers when n = 40 

(p= 0.04, N = 1,000) at 95% confidence level 

 

k New1 New2 ZJ PZ WPZ MLE 

PWM

U 

PWM

B PICK MED 

MDP

D 

MPL

E MGF 

-1 0.24 0.24 0.25 0.24 0.24 0.25 0.25 0.25 0.24 0.24 0.25 0.25 -0.91 

-0.9 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.24 0.24 0.24 -1.07 

-0.8 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.23 0.22 0.23 0.23 0.23 -1.19 

-0.7 0.22 0.22 0.23 0.22 0.22 0.23 0.23 0.23 0.21 0.22 0.23 0.23 -1.19 

-0.6 0.21 0.21 0.22 0.21 0.21 0.22 0.22 0.22 0.20 0.21 0.22 0.22 -1.13 

-0.5 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20 -0.93 

-0.4 0.18 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.16 0.17 0.18 0.18 -0.04 

-0.3 0.15 0.16 0.16 0.15 0.16 0.16 0.15 0.15 0.14 0.14 0.15 0.16 0.17 
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-0.2 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.11 0.11 0.11 0.12 

-0.1 0.07 0.07 0.07 0.07 0.07 0.04 0.06 0.05 0.06 0.06 0.05 0.04 0.04 

0.1 -0.09 -0.08 

-

0.11 

-

0.09 -0.08 -0.19 -0.12 -0.13 -0.10 -0.10 -0.17 -0.19 -0.20 

0.2 0.03 0.04 0.05 0.03 0.04 0.03 0.00 0.00 -0.03 0.00 0.03 0.03 0.05 

0.3 0.13 0.13 0.15 0.13 0.14 0.14 0.13 0.13 0.08 0.12 0.14 0.14 -0.08 

0.4 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.13 0.16 0.17 0.17 -0.73 

0.5 0.18 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.16 0.17 0.18 0.18 -0.94 

0.6 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.18 0.19 0.19 -1.10 

0.7 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.19 0.19 0.19 -1.25 

0.8 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 -1.38 

0.9 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 -1.49 

1 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 -1.57 

 

 

Figure 2: BIAS in estimation of Value at Risk in presence of outliers when n = 40 

 

Table 4:RMSE in estimating Value at Risk in presence of outliers when n = 40 

(p= 0.04, N = 1,000) at 95% confidence level 

 

k New1 New2 ZJ PZ WPZ MLE 

PWM

U 

PWM

B PICK MED 

MDP

D 

MPL

E MGF 

-1 0.24 0.24 0.25 0.24 0.24 0.25 0.25 0.25 0.24 0.24 0.25 0.25 1.14 

-0.9 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.24 0.24 0.24 1.19 

-0.8 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.23 0.22 0.23 0.23 0.23 1.22 

-0.7 0.22 0.22 0.23 0.22 0.22 0.23 0.23 0.23 0.21 0.22 0.23 0.23 1.20 

-0.6 0.21 0.21 0.22 0.21 0.21 0.22 0.22 0.22 0.20 0.21 0.22 0.22 1.13 

-0.5 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20 0.97 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1

Shape Parameter

New1

New 2

ZJ

PZ

WPZ

MLE

PWMU

PWMB

PICK

MED

MDPD



 

March- April 2020 
ISSN: 0193-4120 Page No. 1249 - 1263 

 
 

1256 Published by: The Mattingley Publishing Co., Inc. 

-0.4 0.18 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.17 0.17 0.18 0.18 0.41 

-0.3 0.15 0.16 0.16 0.15 0.16 0.16 0.15 0.15 0.14 0.15 0.15 0.16 0.17 

-0.2 0.12 0.13 0.12 0.12 0.13 0.11 0.12 0.11 0.12 0.11 0.11 0.11 0.12 

-0.1 0.08 0.08 0.07 0.08 0.08 0.06 0.07 0.07 0.09 0.08 0.06 0.06 0.06 

0.1 0.12 0.11 0.13 0.12 0.11 0.22 0.15 0.16 0.17 0.15 0.20 0.22 0.23 

0.2 0.04 0.05 0.06 0.04 0.05 0.05 0.06 0.06 0.11 0.05 0.04 0.05 0.06 

0.3 0.13 0.14 0.15 0.13 0.14 0.14 0.13 0.13 0.10 0.12 0.14 0.14 0.35 

0.4 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.14 0.16 0.17 0.17 0.75 

0.5 0.18 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.16 0.17 0.18 0.19 0.94 

0.6 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.18 0.19 0.19 1.11 

0.7 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.19 0.19 0.19 1.26 

0.8 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 1.39 

0.9 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 1.52 

1 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 1.62 

 

 

Figure 3: RMSE in estimation of Value at Risk in presence of outliers when n = 40 

 

Table 5: RMSE in estimating Expected Shortfall in presence of outliers when n = 40 

(p= 0.04, N = 1,000) at 95% confidence level 
 

k New1 New2 ZJ PZ WPZ MLE PWMU PWMB PICK MED MDPD MPLE MGF 

-1 0.35 0.35 0.37 0.35 0.35 0.34 0.32 0.32 0.36 0.35 0.35 0.34 21.79 

-0.9 0.37 0.37 0.38 0.37 0.37 0.35 0.33 0.33 0.37 0.36 0.36 0.35 2.07 

-0.8 0.37 0.38 0.40 0.37 0.38 0.35 0.34 0.34 0.38 0.38 0.37 0.36 1.97 

-0.7 0.38 0.38 0.41 0.38 0.38 0.36 0.35 0.35 0.40 0.38 0.37 0.37 1.92 

-0.6 0.38 0.38 0.43 0.38 0.38 0.36 0.35 0.35 0.41 0.38 0.37 0.37 1.85 
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-0.5 0.37 0.37 0.43 0.37 0.38 0.35 0.35 0.35 0.48 0.40 0.36 0.36 1.70 

-0.4 0.34 0.34 0.42 0.34 0.40 0.34 0.34 0.34 0.39 0.85 0.34 0.34 0.83 

-0.3 0.29 0.29 0.39 0.29 0.37 0.30 0.30 0.30 0.92 6.01 0.30 0.30 0.29 

-0.2 0.29 0.30 0.32 0.29 0.34 0.24 0.24 0.24 3.96 1.60 0.24 0.24 0.24 

-0.1 0.32 0.32 0.24 0.32 0.31 0.15 0.15 0.15 20.13 5.27 0.14 0.15 0.13 

0.1 0.60 0.58 0.70 0.60 0.51 0.32 0.31 0.31 19.01 13.92 0.32 0.32 0.36 

0.2 0.30 0.29 0.39 0.30 0.37 0.41 0.41 0.41 0.48 0.48 0.41 0.41 0.41 

0.3 0.77 0.78 0.92 0.77 0.88 0.83 0.83 0.83 0.89 0.85 0.83 0.83 1.26 

0.4 1.12 1.13 1.21 1.12 1.14 1.12 1.12 1.12 1.18 1.15 1.13 1.13 2.25 

0.5 1.46 1.46 1.51 1.46 1.46 1.44 1.43 1.43 1.49 1.47 1.45 1.45 2.73 

0.6 1.89 1.89 1.93 1.89 1.89 1.87 1.86 1.86 1.91 1.89 1.88 1.88 3.31 

0.7 2.57 2.58 2.61 2.57 2.58 2.56 2.55 2.55 2.59 2.58 2.57 2.56 4.15 

0.8 3.92 3.92 3.95 3.92 3.92 3.91 3.90 3.90 3.94 3.92 3.91 3.91 5.65 

0.9 7.93 7.93 7.95 7.93 7.93 7.92 7.91 7.91 7.94 7.93 7.92 7.92 9.82 

 

 
 

Figure 4: RMSE in estimation of Expected Shortfall in presence of outliers when n = 40 
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Detailed summary of simulation study in absence of 

outlier is given below  

 

Shape Parameter 

 PWM methods are consistent in estimating shape 

parameter, but however bias increases sharply when k > ½ 

and PWM underestimates shape over the range of -1 < k < 

1. 

 As sample size increases MPLE& MDPD were 

performing on par with PWM method but RMSE of 

MDPDincreases sharply, when k>½, in estimating shape 

parameter. 

 

Scale Parameter 

 As sample size increases all methods were performing 

equally well in estimation of scale.  

 rate of change in RMSE for scale is more when k > 0, 

as compared to k < 0 for all estimators. 

 

Value at Risk 

 RMSE in estimating VaR is increasing as confidence 

level (1 – α) increases for all sample sizes. 

 When sample size is small (n = 20, 40) all methods 

overestimates VaR, when k<0, and underestimates VaR 

when k > 0.  

 But as sample size increases (n=80), all methods 

underestimates VaR when k < 0, and overestimates VaR 

when k > 0. 

 RMSE in estimating VaR for all methods increases 

rapidly when k > 0.2. 

 Proposed methods are performing on par with robust 

methods (PZ and WPZ) proposed by Chen.et.al(2017), 

which are are performing well in estimation of VaR, when 

k ≤ 0.2 and k>0.1 respectively for large sample size (n=80). 

 

Expected Shortfall 

 As sample size increases proposed methods and 

methods proposed by Chen et.al (PZ, WPZ) methods are 

performing equally well in estimating expected shortfall  

 But however, EBM is better than others in estimating 

ES based on RMSE when -0.7 < k < 0 for large sample size. 

(n=80) 

We finally conclude that no estimators are performing 

better than others in estimating shape, VaR and ES over the 

range of -1 < k < 1 in absence of outlier.  

 

 

4.4 Summary of Simulation study 

Table 6: Best Methods for shape parameter based on least RMSE 

Sample size Non Contaminated Contaminated 

n=20 
MDPD (-1<k<-0.5),  

PWMU (0.1<k<1) 

ZJ (-1<k<-0.2),  

PWMU (0.1<k<1) 

n = 40 
MGF(-0.5<k<-0.1),  

PWMU (0.1<k<1) 

ZJ(-0.9<k<-0.4),  

PWMU (0<k<1) 

n = 80 

MGF(k=-1,-0.9) 

MDPD(k= -0.8,-0.7) 

MGF (-0.6 ≤ k ≤ -0.2) 

MPLE(k= -0.1) 

ZJ(k=0);   PWMU (k=0.1) 

WPZ=(k=0.2,0.3) 

ZJ(0.4 ≤ k ≤ 1) 

PICKANDS(-1≤ k ≤ -0.7),  

MED(k= -0.5, -0.4)  

PWMB (k= -0.3) 

MPLE (k= -0.2, -0.1, 0) 

PWMU (k=0.1);  ZJ (k=0.2) 

NEW1 &PZ(0.3 ≤ k ≤ 0.6),  

MLE (0.7 ≤ k ≤ 1) 

 

Table 7: Best Methods for Value at Risk at 95% based on least RMSE 

Sample size Non Contaminated  Contaminated 

n=20 

PICKANDS (k ≤ - 0.6) 

MPLE (-0.5 ≤ k ≤ -0.2) 

New1 &PZ (k = -0.1) 

ZJ(0< k ≤ 0.3) 

PWMU (k=0.4, 0.5) 

 

MGF (k ≤ - 0.4) 

MED (k = -0.3) 

MPLE (k = -0.2) 

ZJ(0< k ≤ 0.3) 

PWMU (k=0.4) 
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n = 40 

PICKANDS (-1≤ k ≤ - 0.7) 

MLE (-0.6 ≤ k ≤ -0.1) 

WPZ (k=0.1) 

ZJ(k=0.2) 

MGF (k = 0.3,0.4,0.5) 

PICKANDS (0.6≤ k ≤ 1)                                                                

PICKANDS (-1≤ k ≤ -0.3) 

MPLE (k= -0.2, -0.1) 

NEW2(k=0.1) 

NEW1& PZ (k=0.2) 

PICKANDS((0.3≤ k ≤ 1) 

n=80 

NEW1 &PZ (-1≤ k ≤ -0.3) 

ZJ (k=-0.2) 

MPLE(k= -0.1) 

WPZ(k=0.1) 

PWMU(k=0.2) 

ZJ(k=0.3) 

NEW1 &PZ (0.4≤ k ≤ 1) 

MED(-1≤ k ≤ -0.6) 

NEW1 &PZ (-0.5≤ k ≤ -0.2) 

MPLE(k= -0.1) 

WPZ(k=0.1) 

MPLE(k=0.2) 

NEW1& PZ (k=0.3,0.4) 

MED (0.5≤ k ≤ 1) 

 

Table 8: Best Methods for Expected Shortfall at 95% based on least RMSE 

Sample size Non Contaminated  Contaminated 

n=20 

PICKANDS (k =-1,-0.9)  

PWM (-0.9 ≤ k ≤ -0.6) 

MLE (k = -0.5,-0.4,-0.3) 

PWM (k= 0.1)  

ZJ(0.2 ≤ k ≤ 0.9) 

PICKANDS (-1 ≤ k ≤ -0.8) 

ZJ (-0.7 ≤ k ≤ -0.3) 

PWMU (k= 0.1)  

ZJ(0.2≤ k ≤ 0.9) 

n = 40 

PICKANDS(k=-1,-0.9) 

MED(k=-0.8) 

ZJ(-0.7 ≤ k ≤ -0.2) 

MDPD(k= -0.1) 

PWMB(k= 0.1) 

MLE(k=0.2) 

PICKANDS(k=0.3,0.4) 

MED(k=0.5,0.6,0.7,0.8) 

ZJ (k=-0.9)   

PWMU (-1 ≤ k ≤ -0.4) 

PZ (k=-0.3) 

MDPD(-0.2,-0.1) 

PWMB(k=0.31) 

NEW2 (k=0.2) 

NEW1(k=0.3) 

PWMU(k=0.4 ≤ k ≤ 0.9) 

n=80 

MED(k = -1, -0.9,-0.8) 

ZJ (-0.7 ≤ k ≤ -0.2) 

PWMU(k=-0.1) 

MPLE(k=0.1) 

MED(k=0.2) 

PICKANDS (0.3 ≤ k ≤ 0.9) 

PWMB(k = -1) 

PWMU(k = -0.9,-0.8) 

NEW1 &PZ (-0.7 ≤ k ≤ -0.2) 

MDPD (k=-0.1) 

MPLE(k=0.1) 

MLE(k=0.2) 

NEW1 & PZ (0.3 ≤ k ≤ 0.9) 

 

Following are the observations from above tables 

 It is clear that estimators that perform well for VaR are 

different from those of shape parameter, which is evident 

due to nonlinear relationship between VaR and shape 

parameter. 

 It is observed that proposed methods are performing on 

par with PZ method proposed by Chen.et.al (2017) as loss 

function selected in our study behaves similar to the one 

used by Chen.et.al(2017). 

 It is also observed that proposed method (NEW1) 

performs well for certain values of shape parameter in 

presence of outliers when sample size is sufficiently large.   

Though RMSE values are not reported for 98% and 99% 

confidence levels, in the study we have found that proposed 

method and PZ method performs identically in estimating 

VaR when sample size is moderately large.  

 

5. Empirical Study  

5.1 S&P 500 Market Index 

We have considered S&P 500 stock market index daily 

returns (log-differences) of the closing values between 

December 31, 2009 and February 15, 2018 from National 

Stock Exchange (NSE) which was downloaded from 

http://www.finance.yahoo.com. As our interest is in 

comparison of estimation methods in presence of outliers, 

we covered the period of financial crisis and summary of 

descriptive statistics are reported below 

 

http://www.finance.yahoo.com/
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Table 9: Descriptive Statistics 

 

 
 

Figure 5: S&P 500Density of daily log returns 

 

5.2 Outlier Detection 

In order to study the effect of outliers we applied outlier 

detection procedures using methods proposed by Chen & 

Liu (2012) and found that there are thirteen additive outliers 

and three among them occurs to the right end of the 

distribution, which confirms the presence of additive 

outliers among exeedances in our study. The summary of 

identified additive outliers is reported below along with 

graphical representation of outlier effects.   

Table 10: Summary of additive outliers foundin S&P 500 

stock market index 

Outliers log returns Time coefhat t-stat 

1 0.043 2009:99 0.04244 4.887 

2 -0.04 2009:107 -0.0404 -4.65 

3 -0.035 2009:117 -0.0356 -4.1 

4 -0.049 2010:47 -0.0496 -5.71 

5 -0.069 2010:49 -0.0696 -8.01 

6 -0.046 2010:57 -0.0462 -5.32 

7 -0.037 2010:115 -0.038 -4.37 

8 0.0424 2010:129 0.04181 4.814 

9 -0.04 2012:336 -0.0408 -4.7 

10 0.0383 2012:338 0.0377 4.34 

11 -0.037 2013:182 -0.0372 -4.28 

12 -0.042 2014:223 -0.0424 -4.89 

13 -0.038 2014:226 -0.0389 -4.47 

 

 

Figure 6: Plot of outlier effects 

 

5.3 Choice of threshold value   

It has been observed that the distribution is nearly 

symmetric and in order to generate exceedances, we applied 

mean excess plot and zipf plot to approximate threshold 

value 

 

 

Mean 1761.3 

Standard Error 10.021 

Median 1830.2 

Mode 1178.1 

Standard Deviation 453.29 

Kurtosis -1.0652 

Skewness 0.1637 

Count 2046 
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Figure 7: Threshold Selection Plots 

From above plots, we have selected threshold at 98% 

percentile at u = 0.01967 and summary of exceedances (log 

returns – threshold) are generated are given below  

 

Table 11: Descriptive Statistics S&P 500 Exceedances 

 

 

 

 

 

 

 

 

 

 

Figure 8. Histogram of Exceedances 

5.4 Goodness of fit 

We have considered Anderson-Darling statistic (A
2
) and 

Cramer-von Mises statistic (W
2
) to measure the goodness of 

fit  

𝑊2 =   𝐹(𝑥(𝑖)) −
(2𝑖 − 1)

(2𝑛)
 

2𝑛

𝑖=1

+
1

12𝑛
 

𝐴2 = −𝑛 −  
1

𝑛
   2𝑖 − 1  [ 𝑙𝑜 𝑔 𝐹 𝑥 𝑖   

𝑛

𝑖=1

+  𝑙𝑜 𝑔 1 − 𝐹 𝑥 𝑛+1−𝑖     ] 

 

Goodness of fit statistics and p-values are estimated using 

parametric bootstrap techniques to compare different 

methods of estimation in fitting GPD for exceedances and 

summary of the results are reported in table 5. 

 

 

 

 

 

 

 

 

 

 

Table 12: Goodness of fit statistics 

Methods 

Robust Parameters Cramer Von statistics Anderson Darling statistics 

(Yes/ No) 
Shape Scale W

2
 P-value  A

2
 P-value 

New1(R) Yes -0.1312 0.0071 0.032 0.953 0.2421 0.831 

New 2 (R) 
Yes 

-0.1311 0.0071 0.033 0.946 0.256 0.95 

EBM (NR) No -0.0217 0.0073 0.03 0.942 0.252 0.95 

PZ (R) Yes -0.1545 0.0068 0.0248 0.955 0.2393 0.966 

WPZ  (R) Yes -0.1279 0.0069 0.0251 0.93 0.2342 0.966 

MLE (NR) No 0 0.0075 13.6667 0 Inf 0 

PWMU (NR) No 0.0608 0.007 0.0528 0.73 0.5168 0.684 

PWMB (NR) No 0.0408 0.0072 0.0403 0.802 0.3816 0.792 

PICK (NR) No 0.0413 0.0068 0.0587 0.9517 0.5487 0.9336 

MED (R) Yes 0.1185 0.0066 0.1171 0.6709 1.2296 0.4815 

MDPD (R) Yes 0.01 0.0075 0.033 0.9907 0.2709 0.9942 

MPLE (NR) No 0 0.0075 13.6667 0 Inf 0 

 

As p-values are high for all methods (Except for MLE 

and MPLE), it is clear that Generalized Pareto Distribution 

is good choice for modelling exceedances generated at u = 

0.01967 (m=41, 98
th

 percentile). Among six robust methods 

five are having p-values more than 0.8 and among six non 

robust methods  

 

 

 

Mean 0.00746 

Standard Error 0.00114 

Median 0.00479 

Standard Deviation 0.00728 

Kurtosis 0.95 

Skewness 1.324 

Count 41 
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Table 13: Estimates of VaR and Expected shortfall along with in-sample failure rate 

 

From above table as confidence level (1–𝛼) increases, 

in-sample failure rates for proposed methods are 

converging towards expected in-sample failure rates, which 

indicates proposed methods are performing on par with 

other methods in estimating Value at Risk for higher values 

of confidence levels, especially in presence of outliers.  

 

6. Concluding Remarks   

The main objective of this study was the investigation of 

the performances of some estimators of Value at Risk under 

PoT framework in the presence of outliers when sample 

size is small and moderately large. With this aim, we 

proposed a new robust method for estimating VaR& ES and 

compared its performance with few robust methods which 

are widely used in estimation of parameters of GPD 

through simulation and also with non robust methods. 

Weobservethat all methods considered in simulation study 

are affected by additive outliers and further it is found that 

PWM based methods are consistent in estimating shape 

parameter when sample size is small (n=20) which supports 

finding reported in Hosking and Wallis (1987) and Castillo 

and Hadi (1997). Finally in absence of outlier, we conclude 

that no estimator is performing better than others in 

estimating shapeparameter over the range of -1 < k < 1. 

We note that our proposed method is performing on par 

with PZ method, proposed by P. Chen et.al, (2017) based 

on minimum distance approach and M-estimation. These 

methods are performing uniformly better than others in 

estimation of VaR in presence and absence of outliers when 

sample size is moderately large, for certain values of k < 0. 

Hence, we conclude that one can use proposed methods for 

estimating Value at Risk(extreme quantiles) and Expected 

Shortfall without looking for outliers when the size of 

exceedances is large under peaks over threshold framework. 

We believe that above findings and conclusion facilitate 

investors/practitioners in selecting appropriate method in 

calculating risk measures wherever outliers are likely to 

occur.   
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