

Statistical Approach for House Price Estimation by Integrating Crucial Factors using Step-wise Multiple Linear Regression(MLR) Model

Umair Mansoor¹, V. Sivakumar²

¹tp053860@mail.apu.edu.my, ²dr.sivakumar@apu.edu.my

Abstract

Every business wants to be competitive in the market. Similar situation can observe in the housing business. This study aims to design a statistical model to estimate the price of a house by obtaining a dataset. The proposed model will be evaluated by incorporating various factors which will be proved beneficial for the housing industry in the coming future as well. If a buyer is informed with the characteristics of any home in terms of the total allocated area, making a decision for buying is still lot confusing. This process of buying certainly needs an efficient statistical approach to estimate the reasonable price of a house while integrating some of the crucial factors about it.

Keywords: statistical model, correlation, logistic regression, Multi linearity.

Article Info Volume 83 Page Number: 216 - 222 Publication Issue: March - April 2020

Article History

Article Received: 24 July 2019 Revised: 12 September 2019 Accepted: 15 February 2020 Publication: 12 March 2020

1. Introduction

In this age of digital universe shopping for any necessity has become very competitive. Every business wants to be competitive in the market. Similar situation can observe in the housing business. Purchasing of a house for an individual is a crucial task and no one wants to drain their money while making such decision. As majority of the people does not get a second chance in their lifetime to but more than one house. From this observation it is very easy to understand the significance of the decision which involves the purchasing of a house. Therefore, this study aims to design a statistical model to estimate the price of a house by obtaining a dataset. The selling price will be addressed by employing a couple of statistical models which will provide some assistance in the decision-making process for any purchaser. The proposed model will be evaluated by incorporating various factors which will be proved beneficial for the housing industry in the coming future as well.

2. Housing Price Estimation

Housing is one of the biggest industries across the world and for an individual buying a house in not as simple as it seems. It is very difficult to estimate or understand a house price even in a particular neighbourhood. If a buyer is informed with the characteristics of any home in terms of the total allocated area, making a decision for buying is still lot confusing. This process of buying certainly needs an efficient statistical approach to estimate the reasonable price of a house while integrating some of the crucial factors about it.

Following are the proposed objectives of this research study.

- To develop a regression model which can estimate the selling price of a house.
- To identify the significant attributes by developing the proposed model.

Following figure 1 is showing the proposed hypothesis for this study.

Hypothesis	Но	H1
1	Lot area does not affect the house sale price.	Lot area does affect the house sale price.
2	Basement area does not affect the house sale price.	Basement area does affect the house sale price.
3	Built Year does not affect the house sale price.	Built Year does affect the house sale price.
4	Garage area does not affect the house sale price.	Garage area does affect the house sale price.
5	Living area does not affect the house sale price	Living area does affect the house sale price.

Figure 1: Proposed Hypothesis

Experimentation and Analysis

This section of the study will elaborate the regression model development for the estimation of the sale price of houses while elaborating each of the step which was involved in this process.

Dataset

The first phase of this model development was the collection of the data and for that purpose, a dataset comprised upon various features was obtained from Kaggle data repository. The obtained dataset fulfils the required conditions of having at least seven matric independent and one matric dependent variable. The following figure 2 is representing the structure of the described dataset.

	Alphabetic List of Variables and Attributes									
#	Variable	Туре	Len	Format	Label					
5	Basement	Num	8	BEST.	Basement					
4	Built_Year	Num	8	BEST.	Built_Year					
1	Condition	Num	8	BEST.	Condition					
6	First_Floor	Num	8	BEST.	First_Floor					
2	Front_Road	Num	8	BEST.	Front_Road					
9	Garage	Num	8	BEST.	Garage					
8	Living_Area	Num	8	BEST.	Living_Area					
3	Lot	Num	8	BEST.	Lot					
10	Sale_Price	Num	8	BEST.	Sale_Price					
7	Second_Floor	Num	8	BEST.	Second_Floor					

Figure 2: Obtained Dataset

Moving forward, it can be observed in figure 3 that the obtained dataset was comprised upon 149 observations.

The CONTENTS Procedure								
Data Set Name	WORK.IMPORT	Observations	149					
Member Type	DATA	Variables	10					
Engine	V9	Indexes	0					
Created	08/04/2019 18:27:43	Observation Length	80					
Last Modified	08/04/2019 16:27:43	Deleted Observations	0					
Protection		Compressed	NO					
Data Set Type		Sorted	NO					
Label								
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64							
Encoding	utf-8 Unicode (UTF-8)							

Figure 3: Number of Observations in the Dataset

The next figure 4 is representing the first ten head rows of the obtained dataset. It can be clearly observed that all the attributes are of the matric data type.

Obs	Condition	Front_Road	Lot	Built_Year	Basement	First_Floor	Second_Floor	Living_Area	Garage	Sale_Price
1	5	65	8450	2003	856	856	854	1710	548	208500
2	5	68	11250	2002	920	920	866	1786	608	223500
3	5	84	14260	2000	1145	1145	1053	2198	836	250000
4	5	85	11924	2006	1175	1182	1142	2324	736	345000
5	5	101	14215	2006	1158	1158	1218	2376	853	325300
6	5	108	13418	2005	1117	1132	1320	2452	691	309000
7	5	24	2645	2000	970	983	756	1739	480	172500
8	5	66	13682	2006	1410	1426	1519	2945	641	438780
9	5	76	9591	2005	1143	1143	1330	2473	852	317000
10	5	74	10141	1998	832	885	833	1718	427	185000

Figure 4: Head Rows of the Dataset

Stepwise Multiple Linear Regression Model Development

This modelling process is comprised upon stepwise selection of independent variables for a multiple linear regression process using SAS. The first step of this stepwise MLR process can be observed in figure 5 where the first independent variable will be incorporated in the model because of its significance and correlation to the dependent variable. The first independent variable which entered in the model was "Living Area".

Value Pr > 6 268.75 <.000
268.75 <.000
Value Pr > 1

Figure 5: Stepwise Selection - Step 1

The second step can be observed in figure 6 where the second independent variable will be incorporated in the model because of its significance and correlation to the dependent variable. The second independent variable which entered in the model was "Garage".

Stepwise Selection: Step 2									
Variable Garage Entered: R-Square = 0.7263 and C(p) = 16.4446									
Analysis of Variance									
Source	DF		Sum of Squares	Mean Square	F Value	Pr > F			
Model	Model 2		1.38262E12	6.913101E11	193.73	<.0001			
Error	146	5.209994E11		3568488976					
Corrected To	tal 148	1.90362E12							
Variable	Paramet Estima	ter te	Standard Error	Type II SS	F Value	Pr > F			
Intercept	-916	51	17959	92943557974	26.05	<.000			
Living_Area	95.434	59	12.16949	2.194579E11	61.50	<.000			
Garage	250.048	80	38.30238	1.520836E11	42.62	<.000			

Figure 6: Stepwise Selection - Step 2

The third step can be observed in figure 7 where the third independent variable will be incorporated in the model because of its significance and correlation to the dependent variable. The third independent variable which entered in the model was "Built Year".

		Analysis of \	/ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	1.408855E12	4.696185E11	137.63	<.0001
Error	Error 145 4		3412166063		
Corrected Total	148	1.90362E12			

Intercept	-2191964	757657	28559580626	8.37	0.0044
Built_Year	1067.87991	385.11850	26235311362	7.69	0.0063
Living_Area	97.38774	11.92078	2.277347E11	66.74	<.0001
Garage	195.01194	42.38826	72220843842	21.17	<.0001

Figure 7: Stepwise Selection - Step 3

The fourth step can be observed in figure 8 where the fourth independent variable will be incorporated in the model because of its significance and correlation to the dependent variable. The fourth independent variable which entered in the model was "Basement".

Stepwise Selection: Step 4 Variable Basement Entered: R-Square = 0.7479 and C(p) = 7.8566									
Analysis of Variance									
Source		DF	Sum of Squares		Mean Square	F Value	Pr≥F		
Model		4	1.423753E12		3.559381E11	106.81	<.0001		
Error		144	4.79867E11		3332409400				
Corrected Total		148	1.90362E12						
Variable	Pa	Parameter Estimate		Standard Error	Type II SS	F Value	Pr > F		
Intercept	-1	196081	0	756689	22376610324	6.71	0.0105		
Built_Year	95	5.6151	4	384.27698	20807991082	6.18	0.0140		
Basement	5	2.8111	0	24.97774	14897125595	4.47	0.0362		
Living_Area	6	7.1038	9	18.54553	43829015224	13.09	0.0004		
Garage	19	2.2088	0	41.91091	70089139217	21.03	<.0001		

Figure 8: Stepwise Selection - Step 4

The fifth step can be observed in figure 9 where the fifth independent variable will be incorporated in the model because of its significance and correlation to the dependent variable. The fifth independent variable which entered in the model was "Lot".

	Stepwise Selection: Step 5
ble	Lot Entered: R-Square = 0.7523 and C(p) = 7.3314

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	5	1.432004E12	2.864008E11	86.84	<.0001			
Error	143	4.718157E11	3298012017					
Corrected Total	148	1.90362E12						

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-1987523	752963	22978899486	6.97	0.0092
Lot	1.47380	0.93176	8251235143	2.50	0.1159
Built_Year	973.60762	382.45776	21372395111	6.48	0.0120
Basement	49.17840	24.95441	12808744252	3.88	0.0507
Living_Area	56.11794	19.71361	26725334373	8.10	0.0051
Garage	194.65897	41.72281	71788347802	21.77	<.0001

Figure 9: Stepwise Selection - Step 5

Interpretation of MLR Model

Varia

The following figure 10 is showing the obtained parameters of stepwise MLR model in which total

of five independent variables were selected and the total of 75.23% of variance were explained by this model for the dependent variable as the value of R-Square is 0.7523.

	All variables left in the model are significant at the 0.1500 level.									
	No other variable met the 0.1500 significance level for entry into the model.									
			Summa	ary of Step	wise Selection	on				
Step	Variable Entered	Variable Removed	Label	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F	
1	Living_Area		Living_Area	1	0.6464	0.6464	60.9876	268.75	<.0001	
2	Garage		Garage	2	0.0799	0.7263	16.4446	42.62	<.0001	
3	Built_Year		Built_Year	3	0.0138	0.7401	10.4156	7.69	0.0063	
4	Basement		Basement	4	0.0078	0.7479	7.8566	4.47	0.0362	
5	Lot		Lot	5	0.0043	0.7523	7.3314	2.50	0.1159	

Figure 10: MLR Model Results

Assessment of MLR Model Assumptions

As there are four assumptions linearity, normality, homoscedasticity and multicollinearity for any MLR model and each of those assumptions are elaborated in the subsequent study.

Linearity

The following figure 11 is showing the residual plots for each of the significant independent variable. As it can be observed that a couple of the plots are showing a linearity while the rest of the attributes have a nonlinear relation.

Figure 11: Linearity Assumption

Normality

For the developed model, normality assumption was assessed, and four different tests were performed. From figure 12 it can be seen that the model is fulfilling the assumption of the normality successfully.

Tests for Normality							
Test	St	atistic	p Val	ue			
Shapiro-Wilk	w	0.717961	Pr < W	< 0.0001			
Kolmogorov-Smirnov	D	0.157305	Pr > D	< 0.0100			
Cramer-von Mises	W-Sq	1.4205	Pr > W-Sq	< 0.0050			
Anderson-Darling	A-Sq	8.290414	Pr > A-Sq	< 0.0050			

Figure 12: Normality Assumption

Moreover, the normality assumption can also be evaluated by the Q-Q normality plot which has been showed in the mentioned below figure 13.

Figure 13: Normality Curve

Homoscedasticity

For the of the homoscedasticity assumption assessment following scatter plot between residual and predicted values were obtained and it can be observed in figure 14. From this plot it can be seen that most of the behavior of the model was homoscedasticity while there is a presence of some outliers in the obtained data.

Figure 14: Homoscedasticity Assessment

Multicollinearity

The multicollinearity assumption can be assessed from the variance inflation parameter. All those attributes will be non-multicollinear which have the value of more than 5 for the variance inflation parameter and all this can be observed from figure 15.

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-2015023	761412	-2.65	0.0091	0
Condition	Condition	1	12428	7917.83062	1.57	0.1188	1.33761
Front_Road	Front_Road	1	-116.19290	242.43070	-0.48	0.6325	2.04199
Lot	Lot	1	1.20567	0.94722	1.27	0.2052	2.07376
Built_Year	Built_Year	1	951.31397	386.31880	2.46	0.0150	1.59230
Basement	Basement	1	99.99878	37.95962	2.63	0.0094	10.90713
First_Floor	First_Floor	В	4.74123	38.30058	0.12	0.9017	10.70477
Second_Floor	Second_Floor	в	77.41417	24.43965	3.17	0.0019	2.02834
Living_Area	Living_Area	0	0		-		
Garage	Garage	1	197.75627	44.97219	4.40	<.0001	3.25541

Figure 15: Multicollinearity Assumption

Model Significance

The following section of the study will elaborate whether the developed MLR model is significant or adequate while elaborating the obtained parameters mentioned in figure 16.

		Ana	lysis of V	ari	iance		
Source DF		Sum of Squares		Mean Square		F Value	Pr > F
Model	8	1.446157E12		1	.807696E11	55.32	<.0001
Error	140	4.574625E11		3	3267589241		
Corrected Tot	I 148	1.90362E12					
Ro	ot M SE	57163	3	R-Square	0.7597		
De	Dependent Mean		24630	7	Adj R-Sq	0.7460	
Coeff Var		23.2079	7				

Figure 16: Model Assessment

The first permanent which can be used to determine the significance of the developed MLR model is the p-value. If that p-value is equal to 0.05 then the model is considered as significance. Therefore, this model will be considered as significant as mentioned in figure 16 the p-value is <0.0001. While the other parameter which is R-Square represents the amount of variance explained by the incorporated independent variables in the model which is in this case is about 75.9 percent which also enforces the significance of this model.

Hypothesis Testing

In this section of the study, the proposed hypothesis will be tested on the basis of their significance to the model and dependent variable selling price of the house.

- **H1:** The first hypothesis will be rejected as the lot area does affect the sale price of the house.
- **H2:** The second hypothesis will be rejected as the basement area does affect the sale price of the house.
- **H3:** The third hypothesis will be rejected as the built year does affect the house sale price
- **H4:** The 4th hypothesis will be rejected as the garage area does affect the house sale price
- **H5:** The 5th hypothesis will be rejected as the living area does affect the house sale price'

3. Factor analysis Purpose of Factor Analysis

The most appropriate and substantial method to reduce the dimensionality of a dataset or a problem is achieved by the employment of factor analysis. By reviewing the correlation among various attributes, some comprehensive factors are formed by combining them. Therefore, various number of variables will be grouped into some factors which are explaining the same variance of the targeted variable.

Exclusion of Non-matric Independent Variables from Factor Analysis

The factor analysis basic functionality is to calculate the correlation of independent variables with each other and then grouping them in a same factor which is only possible if the variable is matric as for non-matric variables correlation calculation is not possible.

Performing Factor Analysis

The following section of the study is illustrating the results of the factor analysis. Figure 17 is representing the eigenvalues for all the attributes. The cutoff eigenvalue is set to the default value of 1.

Eig	Eigenvalues of the Correlation Matrix: Total = 9 Average = 1						
	Eigenvalue	Difference	Proportion	Cumulative			
1	5.22824305	4.05046829	0.5809	0.5809			
2	1.17777476	0.39865459	0.1309	0.7118			
3	0.77912017	0.12515293	0.0866	0.7983			
4	0.65396724	0.14882994	0.0727	0.8710			
5	0.50513730	0.14163204	0.0561	0.9271			
6	0.36350526	0.12734156	0.0404	0.9675			
7	0.23616370	0.18007517	0.0262	0.9938			
8	0.05608853	0.05608853	0.0062	1.0000			
9	0.00000000		0.0000	1.0000			

Figure. 17: Eigenvalues

Moreover, the next figure 2 is representing the factor pattern, variance explained by each factor and final communality estimates of the factor analysis. We can observe in figure 18 that there are two factors formed by the factor analysis on the provided dataset. The variance explained by the first factor is 5.22 while 1.77 by the second factor.

Factor Pattern						
		Factor1	Factor2			
Condition	Condition	-0.17086	0.83534			
Front_Road	Front_Road	0.71969	0.26032			
Lot	Lot	0.74708	0.30183			
Built_Year	Built_Year	0.51698	-0.48132			
Basement	Basement	0.90021	-0.05463			
First_Floor	First_Floor	0.90430	0.10750			
Second_Floor	Second_Floor	0.77133	0.05598			
Living_Area	Living_Area	0.96772	0.09855			
Garage	Garage	0.83434	-0.24912			

		Varia	Variance Explained by Each Factor					
			Fact	or1	Fa	actor2		
			5.2282	431	1.17	77748		
		-						
		F	inal Commun	ality Estimate	s: Total = 6.40	6018		
Condition	Front_Road	Lot	Built_Year	Basement	First_Floor	Second_Floor	Living_Area	Garage
0.72697976	0.58571551	0.64923547	0.49894084	0.81337015	0.82930946	0.59807995	0.94619771	0.75818897

Figure. 18: Factor Pattern and Explained Variance

Grouping in Factor Analysis

The following figure 19 shows the orthogonal transformation matrix, the result of the employment of the grouping of the factor. As the eigenvalue is set 1 as default, the rotation method known as VERIMAX was applied to achieve the rotated matrix.

The FACTOR Procedure Rotation Method: Varimax							
Orth	Orthogonal Transformation Matrix						
	1 2						
1	0.90417	0.42718					
2	-0.42718	0.90417					

Figure.	19: Rotation	Method	Employment
0			

4. Eigenvalue of the Obtained Factors

Calculation of Eigenvalue

The first two factors' eigenvalue has been calculated as below.

Factor 1: $(-0.17086^2) + (0.71696^2) + (-0.74708^2) + (0.51698^2) + (0.90021^2) + (0.90430^2) + (0.77133^2) + (0.86772^2) + (0.83434^2) = 5.2282431$

5.2282/100 = 0.52282 = 52.28%. This means each factor in group 1 have 52.28% of information can explain the factor 1.

Factor 2: $(0.83534^2) + (0.26032^2) + (0.030183^2) + (-0.48132^2) + (-0.05463^2) + (0.10750^2) + (0.05598^2) + (0.09855^2) + (0.24912^2) = 1.1777748$

1.1777748/100 = 11.77%. This means each factor in group 2 have 11.77% of information can explain the factor 2.

Total amount of factor 1 and factor 2 :(5.2282+1.1777) = 6.4059

Interpretation of Eigenvalue

Based on calculate the eigenvalue for the first 2 factors. It is indicating the relative important for first factor in secretarial for variance associated which is 5.2282 with the variables set. The important for second factor in accounting for variance associated which is 1.1777 with the set of variables. The factor one accounting for the most variance. Compare to the factor 2. Factor 2 is slightly less than factor 1. The sum of factor one and factor two is 6.4059, it indicates the total of two eigenvalues. by the factor solution it is represent the total amount of variance extracted.

5. Factorability, Factor Cross-Loading and its Resolution

a. Factorability of the Dataset

To testing factorability of dataset can improved prior to factor analysis have many methods. The one use for this dataset is that to use Bartlett's and KMO table. Usually if the KMO more than 0.6, means the factor analysis of the dataset can accept and adopt to do factor analysis. Besides that, from correlation matrix also can testing the factorability. If the overall factorability as well as measure of sampling adequacy is more than 0.5, which means is the factorable between the variables which is existence correlation among variables if less than 0.5, means there are not factorable between variable which means no correlation among variables.

b. Factor Cross-Loading

Cross loading occurs when an attribute appears in more than one factor with a similar amount of correlation. In this study, no factor cross loading appears in the factor analysis.

c. Solution for Factor Cross-Loading

The most fundamental method to avoid factor cross loading is by the implementation of the rotation

method. Cross loading can also be avoided by removing such factors as well.

6. Conclusion and Recommendation

It is observed from this stepwise MLR model development that the obtained results are very much satisfactory. By the employment of the stepwise selection process of the attributes, it was found that five of the independent variables were significant to the and that made five of the hypotheses rejected in this study. Furthermore, the model assumption was also performed where all of the four assumptions which were linearity, normality, homoscedasticity and multi collinearity were assessed. In terms of the recommendation, the obtained data was just comprised upon 150 observations and only 9 attributes. For more comprehensive study on the housing prices assessment, larger sample size is required with various other attributes as well.

7. References

- Kaggle.com. (2019). House Prices: Advanced Regression Techniques / Kaggle. [Online] Available at: https://www.kaggle.com/c/houseprices-advanced-regression-techniques [Accessed 5 Aug. 2019].
- [2] Medium. (2019). 5 Data Science Principles (for predicting house prices)—#100DaysOfMLCode.
 [Online] Available at: https://medium.com/datadriveninvestor/5-data-science-principles-for-predicting-house-prices-100daysofmlcode-84bb47d7a99a [Accessed 5 Aug. 2019].
- [3] Medium. (2018). House hunting the data scientist way. [Online] Available at: https://medium.com/geoai/house-hunting-the-data-scientist-way-b32d93f5a42f [Accessed 5 Aug. 2019].