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Abstract 

In this paper, a class of third order non-linear difference equations with deviating 

argument, which is of the form 

∆(𝑎𝑛 (∆𝑏𝑛(∆𝑥𝑛)
𝛼)𝛽 ) + 𝑐𝑛𝑥𝑛+𝜏

𝜇
 = 0 

is considered. Sufficient conditions for oscillation and almost oscillation are obtained. 

Examples are provided to interpret the results. 
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1. Introduction 

In past one decade, there has been a lot of activity 

done on the oscillatory theory for second order and 

fourth order nonlinear difference equations [1], [2], 

[7], [8], [10], [11]. In the survey of literature the 

attention given on third order difference equation is 

less with the second and fourth order difference 

equations. 

This paper, we investigate the oscillation of a class 

of third order nonlinear difference equations of the 

form 

∆(𝑎𝑛(∆𝑏𝑛(∆𝑥𝑛)𝛼)𝛽)+𝑐𝑛𝑥𝑛+𝜏
𝜇

 = 0          (1.1) 

where𝛼, 𝛽, 𝜇 are the ratios of odd positive integers, 

𝜏 ∈ 𝑍, is a deviating argument, 

{𝑎𝑛}, {𝑏𝑛 }, 𝑎𝑛𝑑 {𝑐𝑛 }  are positive real sequences 

defined for 𝑛 ∈  𝑁𝑜 =  𝑛𝑜 + 𝑛𝑜+1 + ⋯ .  , 𝑛𝑜 is a       

positive integer. 𝑇he forward difference operator, ∆ 

is defined by ∆𝑥𝑛  = 𝑥𝑛+1  − 𝑥𝑛. 

By a solution of (1.1), we mean a real sequence {𝑥𝑛 }  

that satisfies (1.1) for all 𝑛 ∈  𝑁𝑜  .A nontrivial 

solution  {𝑥𝑛 } ,  𝑛 ∈  𝑁𝑜  of (1.1)  is oscillatory if it 

is neither eventually positive nor eventually 

negative. Otherwise, it is non-oscillatory. Equation 

(1.1) is said to be oscillatory, if all its solutions are 

oscillatory. 

A solution {x_n}  of (1.1) is quickly oscillatory if 

𝑥𝑛 = (−1)𝑛𝑜𝑛,      𝑜𝑛 > 0,   𝑓𝑜𝑟      𝑛 > 0 

Equation (1.1) is almost oscillatory if either {𝑥𝑛 } is 

oscillatory or ∆𝑥𝑛  is oscillatory or 

                 lim𝑛 → ∞ 𝑥𝑛 = 0. 

The motivation behind the work is mainly derived 

from the oscillatory solutions of non-linear 

difference equations contained in [1], [8] and the 

knowledge gained from [2 – 7], [9], [10]. oscillatory 

and asymptotic properties of third order difference 

equations are established.  

Consider (1.1) as a three dimensional system, let 
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Consider (1.1) as a three dimensional system, let 
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nnn yaz    (1.3) 

Construct the nonlinear system, 
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where nnnnnn cCaAbB   &, /1/1 

. If any one 

solution of (1.4) is positive then other two solutions 

also positive. If any one solution of (1.4) is negative 

then other two solutions also negative. 

The canonical form of the difference operator in 

(1.1) is defined by, 
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In section 2, sufficient conditions are obtained for 

quickly oscillatory solutions of (1.1). In section 3, 

some sufficient conditions for oscillatory and non-

oscillatory solutions of (1.1) are presented. Section 

4, deals with the almost oscillatory solutions. In 

section 5, examples are given to illustrate the results. 

2. Quickly Oscillatory Solutions 

Theorem 2.1:  Assume that   and   is even. If    is 

odd, then (1.1) has no quickly oscillatory solutions. 

Proof:  Let n

n

n ax )1(
 be a quickly oscillatory 

solution (1.1) with positive even terms. 

Then there exists 
00.0  nNn

 such that 
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From the first equation of (1.4), we have 
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Since   is odd, therefore (1.1) has quickly 

oscillatory solution with positive odd terms, which 

gives contradiction. 

Remark 2.2:  If   is even, 0n , and n  is odd, 

then (1.1) has no quickly oscillatory solution. 

Theorem 2.3:  Let ,  and   be the ratios of odd 

positive sequences. If ,0  then (1.1) has quickly 

oscillatory solutions. 

Proof Let nx
 be not quickly oscillatory solution of 

(1.1), 

That means 
0,)1(  nn

n

n oox
 

Since 0 , ,  and   are ratios of odd positive 

integers. Let assume that .1   

  Since n

n
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 then it follows 
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(2.1)        

Taking 1   and 0  in (2.1), then it 

becomes 
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   nnnnn xcxbc  )(
                (2.2) 

Comparing (2.1) and (2.2), we get 

   nnnnnnnnnnnnnnnnnnnnn
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(2.3) 

According to the assumption 
,0no
 then the left 

side terms of (2.3) are positive. But the  right side 

terms of (2.3) are negative, which is a contradiction. 

Hence the solutions of nx
of (1.1) are quickly 

oscillatory solutions. 

3. Oscillatory Solutions 

Lemma 3.1: The followings are equivalent. 

(i) x is a solution of (1.1). 

(ii) nyy  , where ,)( 
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(iii) ,nzz  where ,)( 
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Proof:    Let us prove (i) is equivalent to (ii). 

Consider the third equation in (1.4) and (1.1), we 

express   as follows, 
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Next, we consider the first equation in (1.4), we 
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which gives (ii). 

Next, to prove (i) is equivalent to (iii). From (3.3), 
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From second equation in (1.4), we get 

 

  









































 







/1

/1
)

1
nn

n

nn ya
c

by

 

  







/1

/1

/1/1

/1

1
)

1




 









































 n

n

n

n

n z
a

z
c

b

 

which gives (iii). 

Theorem 3.2:      (1.1) is oscillatory   (3.1) & 

(3.2) are oscillatory. 

Proof:  Equation (1.1) is oscillatory. 

 Every solution (1.1) is oscillatory. 

nx
is an oscillatory solution of (1.1) for 

.0Nn
 

 ny
is an oscillatory solution of (3.1) for 

.0Nn
 

Lemma 3.3: Assume (1.5), then any solution of 

),,( zyx of (1.4) so that 
0nx

 for the large value of 
n , is of the following types: 

)( 1B 0,0,0  nnn zyx
for all the large value of

.n  

)( 2B 0,0,0  nnn zyx
for all the large value of 

.n  
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Proof: Let   ),,( zyx  be non-oscillatory solution of 

(1.4). 

Therefore, there exists a solution such that 

0,0  nn zy
 for the large value of .n  

Since 
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Lemma 3.4:  Equation (1.1) has solution of type 
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Proof:   Let (the solution of  (1.4)) ),,( zyx  be  a 

solution of type  )( 1B , that is all  the solutions are 

positive. 
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Let us assume (3.4) and (3.5) hold. By assuming 

third equation of (1.4) and using (3.6),  we get 
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Therefore  (1.1) has no solution of type )( 1B . 

This completes the proof. 

Lemma 3.5: 
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Proof: Let (z, a, b) be a solution of (1.4) and 

satisfying 
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 Let (ii) hold, consider the second equation of (1.4), 

we have 


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
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              (3.9) 

Since x  is positive decreasing and using (4.1), we 

have                                          


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0
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nn
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
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
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which is a contradiction. 

Therefore (1.1) has no solution of type  .2B  

This completes the proof. 

Theorem 3.6: Assume that (1.5), 




 0nn

nc

 and 

,Z  if (3.5) and (3.8) hold then (1.1) is 

oscillatory. 

Proof   From the lemma 3.4 and lemma 3.5, if the 

conditions (3.5) and (3.7) hold, then (1.1) has no 

solutions of type  1B  and  .2B  

By lemma 3.3, (1.1) has oscillatory solutions. 

Theorem 3.7:  Assume that (1.5), 




 0nn

nc

 and 

,Z  if (3.6) and (3.9) hold then (1.1) is 

oscillatory. 

Proof     From the lemma 3.4 and lemma 3.5, (1.1) 

has no solutions of type  1B  and  2B  if the  

conditions (3.8) hold. 

Then by lemma (3.3), (1.1) is oscillatory. 

4. Almost Oscillatory Solutions 

  Throughout this section, the conditions of almost 

oscillatory solutions of (1.1) are obtained. 

Corollary 4.1:  If x, y, z is  a solution of  (1.4), with 

bounded first component and such that one of its 

components is of one sign, then there exists limit of 
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sequence 
 nx

 and exactly one of the following two 

cases are hold 

(i) 
0lim 


n

n
x

and sequence yx,  and z are 

monotonic for the large value of  n, or 

(ii) sequence
 ny

 is of one sign and  
0lim 


n

n
x

. 

Corollary 4.2:  Assume  

 






 00 nn

n

nn

n BA

 

and x, y, z   is a solution of (1.4), so that 
,lim Rx n

n


  

then 

.0limlim 


n
n

n
n

zy
 

Proof   Since 
n

n
x


lim

 is finite. Consider the first 

equation in system (1.4),  

/1

nnn yBx 
 

Summing the equation, we get 







0

0

/1

ni

iinn yBxx 

 

Now, assume the contrary that  
0lim 


n

n
y

 

0lim
/1






n
n

y
 

Since nB
 is positive and taking n  tends to infinity, 

we have 
0lim 


n

n
x

 which is a contradiction to the 

fact that 
n

n
x


lim

 is finite. 

Hence 
.0lim 


n

n
y

 

Similarly we can prove 
.0lim 


n

n
z

 

Theorem 4.3:  If 
Rxn

n



lim

 and 



1i

ic

is divergent, 

then all the solutions of (1.1) is almost oscillatory. 

Proof:    Assume the contrary that (1.1) has a non –

oscillatory solution does not approach zero. Now, 

we assume that 
0nx

 for the large value of n. 

 From corollary 4.1, 
 nx

 exists. We have 

).,0(lim 


kxn
n  

Since 
,0rnx
 there exists a positive integer 1n  

such that 

2

k
x rn 

for 1nn   

Since 
 nc

 is a real positive sequence. Summing the 

equation (4.1), we get 

 










11
2 ni

i

ni

rii c
k
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

 

Summing the third equation of (1.4), we have 







1

1

1

n

i

riin xczz 

 

By corollary 4.2, we have 
.0lim 


n

n
z

 

Taking n  tends to infinity in above equation, we get  







1

1

i

rii xcz 

 

which gives a contradiction to the fact that 1z  is a 

constant term. Therefore, any bounded solution of 

(1.1) is almost oscillatory. 

5. Examples 

Example 5.1:  Consider the third order difference 

equation 
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      .02130042 3  n

n

n

nn xx
                                                       

(5.1) 

Here
n

nn bna 4,2 
,

 n

nc 321300
and  

.1 
nn

nx 3)1(
 is one of the quickly 

oscillatory solution of (5.1). 

Example 5.2:  Consider the difference equation of 

order 3, 

).1(,0
1

1
)))(1(( 3

2 
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nn x
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 (5.2)  

Here 
1,1  nn bna

and 1

1




n
cn

and .1   

we have 
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Therefore if ,1  then the conditions (3.5)  and 

(3.8) are satisfied and by theorem 3.6, (5.2) has no 

solution of type  2B , therefore (5.2) is oscillatory. 

Example 5.3:  Suppose that 1

1
,

1




n
b

n
a nn

 and 

.2ncn   Let .1   Take the deviating 

argument   is 2 then the equation (1.1) becomes 
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Therefore if ,1  the conditions (3.6) and (3.9) are 

satisfied. Hence by theorem 3.7, (5.3) has no 

solution of  type  2B  , hence (5.3) is oscillatory.  

Example 5.4: By  considering the third order 

difference equation 

   03
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argument 1. Here 
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Has deviating argument 3  and 
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nnx
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1
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 is negative solution of (5.4). 

Example 5.5:  Suppose that 
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)127214(2
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Hence by theorem 4.3, n

n

2

)1(

 is almost oscillatory 

solution of (5.5). 
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