

On П-Generalized A-Closed Sets and Its Applications in Neutrosophic Topological Spaces

K.Nirmaladevi¹, R.Renuka², R.Srimathi³

¹Assistant Professor, Sri Krishna Arts and Science College, Coimbatore.

^{2,3}PG Student, Sri Krishna Arts and Science College, Coimbatore.

Abstract

Article Info Volume 83 Page Number: 10 - 17 Publication Issue: March - April 2020

The concept of neutrosophic set was introduced by Smarandache. Atlansov introduced the concept of neutrosophic topological spaces. The main aim of this paper is to introduce the notation $\pi g\alpha$ -closed sets in neutrosophic topological spaces. We investigate its properties and its relationships are derived. Further $\pi g\alpha$ -closed mappings are also defined and studied and its properties.

Article History Article Received: 24 July 2019 Revised: 12 September 2019 Accepted: 15 February 2020 Publication: 12 March 2020

I. INTRODUCTION

The notion of netrosophic sets was developed by FloretinSmarandache&Atanasov generalized this idea to neutrosophic sets using the notation of fuzzy sets. In addition to Coker introduced neutrosophic topological spaces using the notion of neutrosophic sets.

II.PRELIMINARIES

Let X $\neq \varphi$. A neutrosophic set(NS) N in NTS is defined as N={<x, μ_N , $\sigma_N, \gamma_N >: x \in X$ }, and μ_N : X \rightarrow [0,1] & $\gamma_N: X \rightarrow$ [0,1] denotes the degree of membership $\mu_N(x)$ & the degree of non-membership function $\gamma_N(x)$ for all $x \in X$ to the set N resp. 0 $\mu_N + \gamma_N \le 1$ for all $x \in X$. 0=<0, 1>: 1=<1, 0>: x \in X are called empty and whole neutrosophic sets on X resp.. A neutrosophic set N={<x, μ_N , σ_N , $\gamma_N >: x \in X$ }, called a subset of neutrosophic set C = {< x, μ_C , $\sigma_C, \gamma_C >: x \in X$ } if $\mu_N \gamma \le_C$ and $\gamma_N \le \gamma_C$ for each $x \in X$.

The complement of a neutrosophic set N= {<x, μ_N , $\sigma_N, \gamma_N >: x \in X$ } is N^c={<x, $\mu_N, \sigma_N, \gamma_N >: x \in X$ } the intersection(resp. union) of any arbitrary family neutrosophic sets is given by

 $N\cap C=\{<x,\mu N \land \mu C,\sigma N \land \sigma C,\nu N \lor \nu C>/x \in X\}$ $N\cup C=\{<x,\mu N \lor \mu C,\sigma N \lor \sigma C,\nu N \land \nu C>/x \in X\}$

A family τ of neutrosophic sets on X is said to be a neutrosophic topology on X if the neutrosophic sets 0, $1 \in \tau$, & τ is closed under arbitrary union and finite intersection. The ordered pair (X, τ) is said to be a neutrosophic topological space . Let N be a NS on X Then

(i) int(N)= \cup {G,G is a NOS in X & G \subseteq N}

(ii)cl(N)= $\cap \{K, K \text{ is a NCS in } X \& N \subseteq K\}$

Definition2.1

A subset of N of a space (X, τ) is called:

(i) Regular open if N = int (cl(N)).

(ii) π open if N is the union of regular open sets.

Definition2.2

A NS N =<x, μ , ν > in a NTS is called a neutrosophic semi closed if

$$(NCS) N \subseteq cl(int(N)).$$

Definition2.3

A NS N= $\langle x, \mu, v \rangle$ in a NTS is called a neutrosophic semi open set (NSOS) if N \subseteq cl(int(N)).

Definition2.4

A NS N in a NTS is a neutrosophic pre closed set (NPCS) if $cl(int(N)) \subseteq N$, its complement is (NPOS).

Definition2.5

Consider a NS N in NTS, then it is called:

(i)neutrosophicα-openset(NαOS) N⊆int(cl(int(N))),

(ii)neutrosophicα-closedset(NαCS)ifcl(int(cl(N)))⊆ N.

Definition2.6

Let Z be a NS in (X,T) is a

(i)neutrosophica-openset(NaOS)if $Z \subseteq cl(int(cl(Z)))$,

(ii)neutrosophica-closedset(NaCS)

If $int(cl(int(Z))) \subseteq Z$.

Definition2.7

Let Z be a NS in (X,T) is a

(i)neutrosophicregularopenset(NROS)ifZ= int(cl(Z)),

(ii)neutrosophic regular closed set(NRCS)

If Z=cl(int(Z)).

Definition2.8

A NS N of a NTS is a neutrosophic w-closed (NWCS) if $cl(N) \subseteq O$ whenever $N \subseteq O \& O$ is a NSO . Otherwise it is called a Nw-open (NWOS) if Nc = NWCS.

Definition2.9

A NS N of a NTS is a neutrosophic generalized closed set (NGCS) if $cl(N) \subseteq O$ whenever N $\subseteq O$ and O is a NOS. The class of all N α CSs (N α OSs) of a NTS is denoted by N α C(X).

Definition2.10

Consider a NS N. Then the alpha interior & alpha closure of N are defined by

 α int(N)= \cup {L,L is a N α OS in (X,T) & L \subseteq N}

 $\alpha cl(N)=\cap \{M, M \text{ is a N}\alpha CS \text{ in } (X,T) \& N \subseteq M \}$

Remark2.1

if

Let N be a NS (X,T), then

(i) α cl(N)= NUint(cl(int(N))),

(ii) $\alpha int(N) = N \cap cl(int(cl(N)))$

Definition2.11

Consider N be a NS of a NTS. Then the semi closure of N (scl(N)) is given by scl(N)= $\cap \{M/M \text{ is a NSCS in NTS & N \subseteq M }$.

Definition2.12

A NS N of a NTS is a neutrosophic generalized semi closed set if $scl(N) \subseteq O$ whenever $N \subseteq O \& O$ is a NTS.

Definition2.13

A NS N of a NTS is a neutrosophic semi pre closed set (NSPCS) if there exists a NPCS B with $int(B)\subseteq N\subseteq B$.

Definition2.14

A NS N of a NTS is a neutrosophic generalized alpha closed set (NG α CS) if α cl(N) \subseteq O whenever N \subseteq O and O is a NOS.

Remark2.2

Each NOS is NSOS in NTS.

Remark2.3

Union of two NROS is NOS in NTS.

Remark2.4

Each $N\pi OS$ is NOS in NTS..

III. NEUTROSOPHIC II-GENERALIZED ALPHA CLOSED SETS

In this chapter, the notion of $N\pi G\alpha CS$ is defined and few of their characteristics are investigated.

Definition3.1

A NS N is said to be a neutrosophic π g alpha closed sets(N π G α CS)in NTS, N α cl(A) \subseteq O wherein A \subseteq O & O is a N π OS.

Example3.1

Consider X = $\{z1, z2\}$ & T= $\{0, NG, 1\}$ is a NTS, Where NG= $\langle z, (0.6, 0.5, 0.5), (0.4, 0.5, 0.3) \rangle$ Then NG= $\langle z, (0.4, 0.1, 0.5), (0.3, 0.1, 0.6) \rangle$ is a N π g α CS.

Theorem3.1

Each NCS is a N π G α CS, not the converse.

Proof: Suppose N be a NCS and let $N \subseteq O$ and O is a N πOS . By given $\alpha cl(N) \subseteq scl(N) \subseteq cl(N)$ and N is a NCS, $\alpha cl(A) \subseteq cl(A) = A \subseteq NU$. Then it is $N\pi G\alpha CS$.

Example3.2

Consider X= {z1, z2} & T= {0, NG, 1}, NG=<z, (0.6,0.1,0.4), (0.6,0.1,0.3)>. Then the NS N=<z, (0.4,0.1, 0.5), (0.3, 0.1, 0.6)>, then N is N π gaclosed. But not NSC-set.

Theorem3.2

Each NaCS is a N π GaCS ,not the converse.

Proof: Let N be a N α CS and N \subseteq O where O is a N π OS in NTS.By given, cl(int(cl(N))) \subseteq N. Then int(cl(N)) \subseteq N . we have int(N) \subseteq N, cl(int(N) \subseteq cl(N),hence int(cl(int(N))) \subseteq int(cl(N)) \subseteq N, it leads to α cl(N) \subseteq N \subseteq O. Therefore it is N π G α CS.

Example3.3

Let X= {z1, z2} & NG=<z, (0.7, 0.1, 0.2), (0.6, 0.1, 0.3)> and T= {0, NG, 1} be a NT. Then the NS N= NG, is a N π g α -closed set.

Theorem3.3

Each N α CS is a N π G α CS, not the converse.

Proof: Let N be a N α CS. By given, α cl(N) \subseteq N wherein N \subseteq O & O \in N π OS. Then α cl(N) \subseteq O wherein N \subseteq O & O \in NOS. Hence N is a N π G α CS.

Example3.4

Let X= {z1, z2}& T= {0, NG, 1} is a NTS, whenever NG=<z, (0.5, 0.2, 0.5), (0.5, 0.4, 0.5)> Then NS N=<z, (0.4, 0, 0.6), (0.5, 0, 0.5)> is an NPCS-set. But not N π g α -closed.

Theorem3.4

Each NRCS is a N π G α CS, not the converse..

Proof: Let N be a NRCS. By Def. N= cl(int(N)). Then cl(N)=cl(int(N)). Thus cl(N)=N. Hence N is a NCS. By Thm. 3.1, N is a $N\pi G\alpha CS$.

Example3.5

Consider X= $\{z1, z2\}$ & T= $\{0, NG, 1\}$ is a NTS, NG=<z, (0.6, 0.3, 0.5), (0.5, 0.6, 0.5)> then NS N=<z,(0.2, 0.1, 0.7), (0.3, 0.1, 0.6)> then N is N π G α -closed but not NPCS.

Theorem3.5

Each NWCS is a $N\pi G\alpha CS$, not the converse.

Proof: Suppose N be a NWCS and N \subseteq O&O is a N π OS \in NTS. By assumption cl(N) \subseteq O wherein N \subseteq O ,because α cl(N) \subseteq cl(N) & N is NWCS , α cl(N) \subseteq cl(N) \subseteq O, wherein N \subseteq O & O \in NSO. Thus N is a N π G α CS.

Example3.6

Consider X= $\{z1, z2\}$ and T= $\{0, NG, 1\}$ is a NTS, NG=<z, (0.6, 0.1, 0.3), (0.7, 0.1, 0.2)> then the NS N=<z, (0.2, 0.1, 0.7), (0.3, 0.1, 0.6)> then NG is N π gaCS, not NWCSs.

Theorem3.6

Each NGSCS is a N π G α CS, not the converse.

Proof: Let N be a NGSCS. By given, $scl(N) \subseteq O$, wherein N $\subseteq O$ & O \in N π OS. By Remark $\alpha cl(N) \subseteq O$, wherein N $\subseteq O$ & O \in NOS. Hence it is N π G α CS.

Theorem3.7

Each NG α CS is an N π G α CS, not the converse.

Proof: Let N be a NG α CS. By given, α cl(N) \subseteq O, wherein N \subseteq O & O \in N π OS. By assumption and (Remark2.3) α cl(N) \subseteq scl(N) \subseteq O, wherein N \subseteq O & O \in NOS. Then N is N π G α CS.

Theorem3.8

Each N π GSCS is a N π G α CS not the converse.

Proof: Consider N is a N π GSCS \in NTS.Given that, scl(N) \subseteq O, wherein N \subseteq O&O \in N π OS. α cl(N) \subseteq scl(N) \subseteq O ,wherein N \subseteq O & O \in N π OS. Hence N is N π G α CS.

Remark3.1

Let N and M be in N π G α CS. Then N \cap M is not a N π G α CS.

Theorem3.9

Consider X is a NTS. Then for each $P \in N\pi G\alpha C(X)$ & every all $Q \in NS(X)$, $P \subseteq Q \subseteq \alpha cl(P) \Rightarrow Q \in N\pi G\alpha C(X)$.

Proof: Let $Q \subseteq O \& O \in N\pi OS$. Since $P \subseteq Q$, $P \subseteq O$ and $P \in N\pi G\alpha CS$, $\alpha cl(P) \subseteq O$, wherein $P \subseteq O$, By given $,Q \subseteq \alpha cl(P), \alpha cl(Q) \subseteq \alpha cl(P) \subseteq O$. Therefore $\alpha cl(Q) \subseteq O$. Hence Q is a $N\pi G\alpha CS$.

Theorem3.10

Let N be both N π OS & N π G α CS in NTS, then N is a N α CS in NTS.

Proof: Let N be a N π OS. Since N \subseteq N, By given $\alpha cl(N)\subseteq N$ but always N $\subseteq \alpha cl(N)$. We get $\alpha cl(N)=N$. Hence N is N α CS.

Theorem3.11

Let X be a NTS. If a NS N is both $N\pi OS$ & NCS of X, then the following are equivalent:

(1) N is a NGCS

(2) N is a N π G α CS.

Proof: (1) \Rightarrow (2): Consider N is NGCS in NTS. By theorem 3.8 N is N π G α CS in NTS. (2) \Rightarrow (1):Consider N \in N π G α CS. Then α cl(N) \subseteq O wherein N \subseteq O&O \in N π OS,=> α cl(N) \subseteq cl(N) \subseteq O, wherein N \subseteq O, Since N is both N π OS & NCS in NTS. Then it is NGCS.

Definition 3.17

Let N be a NS .Then

The N π -kernel= \cap { K: K is a N π OS and N \subseteq K}

Remark3.2

Let N \subseteq X, then N is NTS is N π g α C if α cl(N) \subseteq N π -ker(N).

Theorem3.12

Let $N \subseteq X$, then N is $N\pi G\alpha$ -closed iff $\alpha cl(N) CN\pi$ -ker(N).

Proof: Since N is $N\pi g\alpha C$, $\alpha cl(N) \subseteq N$ for any π -open set O& N \subseteq O and then $\alpha cl(N) \subseteq N\pi$ -ker(N). Conversely, consider O is any $N\pi$ open set such that N \subseteq O.By assumption, $\alpha cl(N) \subseteq N\pi$ -ker(N) $\subseteq O$ and hence N is $N\pi g\alpha C$.

Theorem3.13

Let N is N π -open and N π g α C. Then N is α -closed.

Proof: Since N is N π -open & N π g α C, α Cl(N) \subset N, but N $\subset \alpha$ Cl(N) Hence, N is α C.

Theorem3.14

Consider N is $N\pi g\alpha$ -closed in NTS. Then $\alpha Cl(N) \setminus N$ does not contain any nonempty $N\pi$ -closed.

Proof: Consider V is N π C subset of α Cl (N)\N. Then N \subset X \V, wherein N is NV π g α closed and X \V is N π -open. Hence α Cl (N) \subset X \V, or V \subset X \ α Cl (N). By given V \subset Cl(N), we get a contradiction.

Corollary3.1

Consider N be a N π g α -closed in NTS. Then N is N α -closed iff α Cl (N)|N is N π Cs.

Proof: Necessary: Let N is $N\pi g\alpha$ -closed. By assumption $\alpha Cl(N)=N \& \alpha Cl(N)\setminus N= \phi$ which is $N\pi Cs$.

Sufficient: Let $\alpha Cl(N) \setminus N \in N\pi C$. Then by Thm. 3.9, $\alpha Cl(N) \setminus N = \pi$. i.e, $\alpha Cl(N) = N$. Hence, N is αC .

IV. NEUTROSOPHIC IIGAC MAPPINGS

In this chapter we define neutrosophic $\pi g\alpha C$ mappings and discuss few of its characteristics.

Definition 4.1

A map $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be neutrosophic $\pi g \alpha C$ mapping if f(N) is a $N \pi G \alpha C S \in (Y,\sigma)$ for all NCS N in (X,τ) .

Example4.1

Consider X= {p, q} & Z= {r, s}. Now T1= <x, (0.4, 0.1, 0.5), (0.4, 0.1, 0.5) & T2= <x, (0.4, 0.1, 0.5), (0.3, 0.1) 0.6> are NTs on (X,τ) and (Z,σ) . Consider a mapping f:T1 \rightarrow T2 by f(p)=r & f(q)=s. Hence f is a N π G α C.

Definition4.2

A map $f:(X,\tau) \rightarrow (Y,\sigma)$ is called neutrosophic $\pi g \alpha O$ map $(N\pi G \alpha \text{ open map})$ if f(M) is a $N\pi G \alpha OS \in (Y,\sigma)$ for each NOS $M \in (X,\tau)$.

Example4.2

Consider X= {p, q} and Y= {x, y}.Let $T_1 = \langle x, (0.6, 0.1, 0.3), (0.5, 0.1, 0.4) \rangle$ and $T_2 = \langle x, (0.2, 0.1, 0.7), (0.3, 0.1, 0.6) \rangle$ are NTs in (X,τ) & (Y,σ) respectively. Consider a f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(p)=x and f(q)=y. Then map is a N π G α O.

Theorem4.1

Each NC map is a $N\pi G\alpha C$ map ,not the converse.

Proof: Consider f: $(X,\tau) \rightarrow (Y,\sigma)$ is a NC map & N is a NCS $\in (X,\tau)$. But f is a NC map, f (N) is a NCS \in (Y, σ). For each NCS $\in N\pi G\alpha CS$, f (N) $\in N\pi G\alpha CS \in$ (Y, σ). Hence map is a N $\pi G\alpha C$.

Example4.3

Consider X= {p, q} and Y= {x, y} and T1= <x, (0.2, 0.1, 0.7), (0.1, 0.1, 0.8)>, T2= <y, (0.3, 0.1, 0.6), (0.2, 0.1, 0.7)> are NTs on (X,τ) and (Y,σ) respectively. Consider f:X \rightarrow Y by f(p)=x & f(q)=y. Let NS N= <x, (0.7, 0.9, 0.2), (0.8, 0.9, 0.1)> is a NCS in X. Then f(n) is a N π G α in Y. Hence map is N π G α C map, f(n) is not a NC.

Theorem4.2

Each NGC map is a $N\pi G\alpha C$ ma, not the converse.

Proof: Let f is a NGC map. Consider M is a NCS in X. By assumption f(M) is a NGCS in Y. but all NGCS is N π G α CS, f(M) is a N π G α CS in Y. Then the map is a N π G α C.

Example4.4

Consider X= {p, q} and Y= {x, y}.let T1= <x, (0.5, 0.1, 0.4), (0.6, 0.1, 0.3)> and T2= <y, (0.6, 0.1, 0.3), (0.7, 0.1, 0.2)> are NTs on (X,τ) and (Y,σ) respectively. Consider $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(p)=x and f(q)=y. Let NS n= <x, (0.4, 0.9, 0.5), (0.3, 0.9, 0.6)> is a NCS in (X,τ) .Hence map is a N π G α C map ,map is not NGC.

Theorem4.3

Each N α C map is a N π G α C map, not the converse.

Proof: Let f is a N α C map and M is a NCS in X. By given f(M) is a N α CS in Y. Since each N α CS is a N π G α CS, f(M) is a N π G α CS in Y. Then the map is a N π G α CC.

Example4.4

Consider X= {p, q} and Z= {r, s}.Also T1= <x, (0.4, 0.1, 0.5), (0.5, 0.1, 0.4)> and T2= <x, (0.4, 0.1, 0.5), (0.3, 0.1, 0.6)> are NTs on (X,τ) and (Y,σ) respectively. Consider $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(p)=r & f(q)=s. Let NS n= <x, (0.5, 0.9, 0.4), (0.4, 0.9, 0.5)> is a NCS in (X,τ) . Hence the map is a N π G α C map, map is not a N α C.

Remark4.1

A N π G α C map is independent of a NPC mapping.

Example4.5

Consider X= {p, q} and Y= {x, y}.Let T1= <x, (0.1, 0.1, 0.8), (0.2, 0.1, 0.7)> and T2= <y, (0.7, 0.1, 0.2), (0.6, 0.7, 0.3)> are NTs on (X,τ) and (Y,σ) respectively. Consider f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(p)=x and f(q)=y. also NS N= <x, (0.8, 0.9, 0.1), (0.7, 0.9, 0.2)> is a NCS in X. Hence the map is a N π G α C, map is not a NPC.

Example4.6

Consider X= {p, q} and Y= {x, y}.Let T1= <x, (0.7, 0, 0.3), (0.6, 0, 0.4)> and T2= <y, (0.4, 0, 0.6), (0.5, 0, 0.5)>are NTs on (X, τ) and (Y, σ) respectively. Consider f:(X, τ) \rightarrow (Y, σ) by f(p)=x & f(q)=y. Let NS N= <x, (0.3, 0.7, 0.7), (0.4, 0, 0.6)> is a NCS .Hence the map is a N π G α C, map is not a N π G α C.

Remark4.2

A N π G α C map is independent of a NGSC map.

Example4.7

Consider X= {p, q} and Y= {x, y}.Let T1= <x, (0.45, 0.1, 0.45), (0.5, 0.1, 0.4)> and T2= <y, (0.5, 0.1, 0.4), (0.6, 0.1, 0.3)>are NTs on (X, τ) and (Y, σ) respectively. Consider f:X \rightarrow Y by f(a)=u & f(b)=v. Let NS N= <x, (0.45, 0.9, 0.45), (0.4, 0.1, 0.5)> is a NCS. Hence the map is a N π G α C, map is not a NGSC.

Example4.8

Consider X= {p, q} and Y= {x, y}.And T1= <x, (0.8, 0.1, 0.1), (0.7, 0.1, 0.2)> and T2= <y, (0.2, 0.1, 0.7), (0.3, 0.1, 0.6)> are NTs on (X, τ) and (Y, σ) respectively. Consider f:(X, τ) \rightarrow (Y, σ) by f(p)=x and f(q)=y. Let NS N= <x, (0.1, 0.9, 0.8), (0.2, 0.9, 0.7)> is a NCS in in (X, τ). Hence the map is a NGSC, map is not a N π G α C.

Theorem4.4

Consider f:X \rightarrow Y.Suppose f(A) is a NRCS in Y for each NCS N in X. Then f is a N π g α C map.

Proof: Let N be a NCS in (X,τ) . Then f(N) is a NRCS in (Y,σ) . Since each NRCS is a N π G α CS, f(N) is a N π G α CS in (Y,σ) . Then f is a N π G α C.

Theorem4.5

Consider f:X \rightarrow Y is a N π G α C map. Then f is a NFC map if (Y, σ) is a NF $\pi\alpha$ aT1/2 space.

Proof: Consider a NS set N in (X,τ) .. By given, f(N) is a N π G α CS in Y. Because Y is a NF $\pi\alpha$ aT1/2 space, f (N) is a NCS. Hence the map is a NFC.

Theorem4.6

Consider f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map from a NTS (X,τ) into a NTS (Y,σ) . Then the followings are equivalent if Y is a NF $\pi\alpha a T1/2$ space.

(1) f is a $N\pi G\alpha O$ map,

(2)If N is a NOS in X.Provef(N) is a $N\pi G\alpha OS$ in Y

 $(3)f(int(N))\subseteq int(cl(int(f(N))))$ for all NS N in X.

Proof (1)⇒(2):The proof is trivial.

(2)⇒(3):Let N be a NS in X. Then int(N) is a NOS in X. Then f(int(N)) is a N π G α OS in (Y, σ). Since (Y, σ) is an N $\pi\alpha$ aT1/2 space, f(int(N)) is a NOS in (Y, σ). Hence

 $f(int(N)) = int(f(int(N)) \subseteq int(cl(int(f(N))).$

(3)⇒(1):Let N be a NOS in (X, τ). Since f (int(N))⊆int(cl(int(f(N)))).=>f(N)⊆int(cl(int(f(N)))). Hence f (N) is a N α OS. Since every N α OS is a N π G α OS, f (N) is a N π G α OS in (Y, σ). Thus f is a N π G α O map.

Theorem4.7

Consider f: $(X, \tau) \rightarrow (Y, \sigma)$ is a N π G α C map. Then f is a NGC map if (Y, σ) is a N π α bT1/2 space.

Proof: Let N be a NCS in (X,τ) . Then f(N) is a N π G α CS in (Y,σ) . But (Y,σ) is a NF $\pi\alpha$ bT1/2 space, f(N) is a GCS in (Y,σ) . Hence the map is a NGC.

March - April 2020 ISSN: 0193-4120 Page No. 10 - 17

Theorem4.8

Consider $f:(X,\tau) \rightarrow (Y,\sigma)$ be a NC map and g: $(Y,\sigma) \rightarrow (Z,\delta)$ be a N π G α C map. Then g ° $f:(X,\tau) \rightarrow (Z,\delta)$ is a N π G α C map.

Proof: Let N be a NCS in (X,τ) . Then f(N) is a NCS in (Y,σ) . Since g is a N π G α C map, g(f(N)) is a N π G α CS in Z. Then g \circ f is a N π G α C.

Theorem4.9

Consider $f:(X,\tau) \rightarrow (Y,\sigma)$ be a map from a NTS (X,τ) into a NTS (Y,σ) . Then the following are equivalent if Y is a N $\pi\alpha a$ T1/2 space.

(1) f is a N π G α C map,

(2) $f(int(N)) \subseteq \alpha int(f(N))$ for each NCS N of (X,τ) . (3) $int(f-1(B)) \subseteq f-1(\alpha int(B))$ for each NS B of (Y,σ) .

Proof (1) \Rightarrow (2):Let f is a N π G α C map. Let N be any NS in (X, τ). Then int(N) is a NOS in (X, τ). By given, f(int(N)) is a N π G α OS in (Y, σ). Since (Y, σ) is a N $\pi\alpha$ aT1/2 space, f(int(A)) is a N α OS in (Y, σ). Then

 $aint(f(int(N)))=f(int(N)).Nowf(int(N))=aint(f(int(N)))) \subseteq aint(f(N)).$

 $\begin{array}{ll} (2) \Rightarrow (3): \text{Let S is a NS in } (Y, \sigma). \text{ Then } f-1(S) \text{ is a NS} \\ \text{in } X. & \text{Since} & \text{given,} \\ f(\text{int}(f-1(S))) \subseteq \alpha \text{int}(f(f-1(S))) \subseteq \alpha \text{int}(S). & \text{Hence} \\ \text{int}(f-1(S)) \subseteq f-1(\alpha \text{int}(S)). \end{array}$

 $(3)\Rightarrow(1)$:Let N be a NOS in (X,τ) . Then int(N)=Nand f(N) is a NS in (Y,σ) . Then int $(f-1(f(N)))\subseteq f-1(\alpha int(f(N)))$. Now $N=int(N)\subseteq int(f-1(f(N)))\subseteq f-1(\alpha int(f(N)))$. Hence $f(N)\subseteq f(f-1(\alpha int(f(N))))=\alpha int(f(N))\subseteq f(N)$, then $\alpha int(f(N)) = f(N)$ is a N α OS in (Y,σ) . We have f(N)is a N π G α OS. Then the map is a N π G α C.

Theorem4.10

Consider f: $(X,\tau) \rightarrow (Y,\sigma)$ is a N π G α C map& (Y,σ) is a N $\pi\alpha$ cT1/2 space, then f is a NGSC map.

Proof: Let N is a NCS in (X,τ) . By assumption, f(N) is a N π G α CS in (Y,σ) . Since (Y,σ) is a N π α cT1/2

Theorem4.11

Consider a map f: $(X,\tau) \rightarrow (Y,\sigma)$ is a N π G α O if $f(\alpha int(N)) \subseteq \alpha int(f(N))$ for each N \subseteq X.

Proof: Let N is a NOS in (X,τ) . Then int(N) = N. Now $f(N)=f(int(N))\subseteq f(\alpha int(N))\subseteq \alpha int(f(N))$.But $\alpha intf(N)\subseteq f(N)$. Therefore $\alpha int(f(N))=f(N)$. i.e f (N) is a N α OS in (X,τ) .This shows f (N) is a N π G α OS. Then the map is a N π G α O.

Theorem4.12

Consider $f:(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following are equivalent if Y is a N $\pi\alpha$ aT1/2 space.

(1) f is a $N\pi G\alpha C$ map,

(2) $cl(int(cl(f(N)))) \subseteq f(cl(N))$ for each NS N in (X,τ) .

Proof (1) ⇒ (2) Let N be a NS in (X, τ). Then cl(N) is a NCS in (X, τ). By given, f(cl(N)) is a N π G α CS in (Y, σ). Since (Y, σ) is a N π α aT1/2 space, f(cl(N)) is a NCS in (Y, σ) Then cl(f(cl(N)))=f(cl(N)). Now cl(int(cl(f(N))))⊆cl(f(cl(N)))=f(cl(N)).Hencecl(int(cl (f(N))))⊆f(cl(N)).

 $(2)\Rightarrow(1)$ let N is a NCS. By assumption $cl(int(cl(f(N))))\subseteq f(cl(N))=f(N)$. Then f(N) is a N α CS in and therefore f(N) is a N π G α CS in (Y,σ) . Hence the map is a N π G α C.

REFERENCES

- [1]Arokiarani.I.Dhavaseelan, R.;Jafari, S;Parimala,"
 On Some New Notions and Functions in Neutrosophic Topological Spaces Neutrosophic Sets and Systems", Vol.16, 2017, 16-19
- [2]SerkanKaratas and CemilKuru,"Neutrosophic Sets and Systems", Vol.13, 2016
- [3]Ishwarya, p and Bageerathi, k.,"OnNeutrosophic semi-open Sets in Neutrosophic Topological Spaces", international Jour. of Math. Trends and Tech. 2016, 214-223

- [4]QaysHatem Imran, Smaandache, F., et. Al., On "Neutrosophic semi alpha open sets, Neutrosophic sets and systems", 2017, 37-42
- [5]Salama, A. A., and Alblowi, S. A.," Neutrosophic set and Neutrosophic Topological Spaces", IOSR Jour. of Mathematics, 2012, 31-35
- [6]SanthiR"nw-Closedsetsinneutrosophic topological spaces", Vol. 12, 2016 114-117
- [7]N.Seenivasagan,O.RaviandS.SatheeshKanna"πgα closed mappings in intuitionistic fuzzy topological spaces",vol.3,2015