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Abstract 

To improve the performance of DQN, Deep Mind proposed six extensions. In this 

paper, we propose two additional DQN extensions. The first extension applies 

batch normalization to the model of DQN and the second extension applies atrous 

convolution. We measured the performance of them 30 times on the Atari game 

Pong. We did the post-hoc-analysis because ANOVA analysis of them is 

significant at the confidence level of 95%. According to experimental results, we 

conclude that we can apply the proposed extensions to the vanilla DQN for better 

performance. 
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1. INTRODUCTION 

Reinforcement learning is one of the areas of machine 

learning such as supervised learning and unsupervised 

learning, that solves problems by interaction with the agent 

and the environment. The agent executes one of the valid 

actions and receives the next state and rewards for this from 

the environment. Based on this interaction, the agent learns a 

policy that maximizes the accumulated rewards. 

 

Tabula method is the method to solve reinforcement learning 

problem by defining and updating the value of action by using 

a Q-table. However, it is difficult in the environment with 

many states or actions. Q-Network replaces it with an 

artificial neural network, that works as a function 

approximator with parameters. DQN (Deep Q-Network) uses 

deep neural network whose output is the action value [1], [2].  

 

Many extensions of DQN have been studied to improve the 

performance of it [3]. Google DeepMind proposed six 

extensions: N-steps DQN, Double DQN, Prioritized 

Experience Replay, Categorical DQN, Noisy Networks and 

Dueling DQN. These extensions can be used independently or 

together. Rainbow DQN is a combination of these extensions. 

 

In this paper, we propose two extensions for fast convergence 

of DQN, those are batch normalization and atrous 

convolution. We measure the performance of our extensions 

by using the Atari game Pong, where the player who gets 21 

points first wins. 

 

2. RELATED WORKS 

2.1 Deep Q-Network 

The structure of the vanilla DQN looks like Figure 1. In 

Q-learning using artificial neural network, the agent executes 

action to the environment and receives the next state and 

rewards from it (see the (a) part in Figure 1). 

 
Figure 1: The structure of the vanilla DQN 
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In DQN, the agent is trained in the flow as (b) part of Figure 1. 

Deep learning algorithm such as SGD optimization assumes 

that training data are independent of each other, but the data 

of reinforcement learning are results of sequential action, so it 

has a strong correlation between samples. Therefore, the 

DQN uses the replay memory for breaking the correlation 

between samples (see the (b) part in Figure 1). 

 

The replay memory stores a tuple of samples (state, action, 

reward, next state) during exploring or exploiting the 

environment. Then, the agent can obtain gradients through 

several samples that is sampled at random from the memory 

and then update the artificial neural network. Therefore, it 

prevents the artificial neural network from being updated to 

the wrong policy and helps keep learning stable. 

 

Another problem of using Q-network is that the target value 

continues to change during updating. In the formula of MSE, 

the loss function of the vanilla Q-network is as follows. 

 

1

2

1 1( max ( , , ) ( , , ))
t

t t t t t
a

MSE r Q s a Q s a  


        (1)          

 

The first term is the reward tr . It is the value received by 

action in the time step t. The second term is the maximum of 

Q-value after executing 1ta  in the next state 1ts  , which is 

the target value. The third term is the Q-value which is the 

value after executing the action ta  in the state ts . When we 

calculate the value of second and third term using same neural 

network. However, training is unstable because the parameter 

of the target value is the same as the training parameter.  

 

To solve this problem, DQN adds the separated target 

network, and it copies the weight of the main network at 

regular interval (see the(c) part in Figure 1). Then, the 

modified loss function of DQN is as follows. 

 
2

1 1( max ( , ) ( , ))t t t t t
a

MSE r Q s a Q s a
               (2) 

 

Where, the  
 means the parameter of the target network 

and the   means the parameter of the main network. 

2.2 Deep Q-Network Extensions 

Google DeepMind proposed six extensions: N-steps, Double 

DQN, Prioritized Experience Replay, Categorical DQN, 

Noisy Networks and Dueling DQN. 

 

When calculating the target value in Q-Learning, the target 

value is based on only the current reward. For N-steps DQN, 

rewards from N steps are added together and the Q function 

value is added only at the very end, 2-steps DQN is as in the 

following formula [4]. 

 
2

1 2( , ) max ( , )t t t
a

Q s a r r Q s a  


                               (3) 

 

In the vanilla DQN, the bellman equation of target is as 

follows. 

 

1 1( , ) max ( , )t t t
a

Q s a r Q s a


                                     (4) 

 

It has tendency to overestimate Q-value because of using max 

operation, which may be harmful to training performance and 

sometimes can lead to suboptimal policy. So, the bellman 

equation of Double DQN is modified as followings [5]. It 

solves overestimation completely. 

 

1 1,( , ) max ( ,arg max ( ))t t t
a a

Q s a r Q s Q s a
         (5) 

 

There is also extension that improve performance by 

modifying the sampling method. The DQN samples the tuple 

of the replay memory uniformly. In Prioritized Experience 

Replay, for the efficiency of the sample, it prioritized the 

samples according to the training loss [6]. The important 

samples are sampled more frequently, and therefore the agent 

learn more efficiently. 

 

Categorical DQN predicts value as distribution rather than a 

single scalar value. Therefore, it uses distribution instead of 

value Q of bellman equation [7]. 

 

Noisy Networks and Dueling DQN are the extension that 

modifies model of the network. Noisy Networks adds the 

noise to the network weights to make exploration more 

efficient [8].  

In Dueling DQN, the value and advantage are calculated 

separately and then combined only at the final layer in to the 

Q-value [9]. The benefit of it is to generalize learning across 

without imposing any change to underlying reinforcement 

learning algorithm. The network architecture of the Dueling 

DQN looks like Figure 2. 
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Figure 2: The architecture of the Dueling DQN model 

 

Capitalize only the first word in a paper title, except for 

proper nouns and element symbols. For papers published in 

translation journals, please give the English citation first, 

followed by the original foreign-language citation [8]. 

2.2 Batch Normalization 

Batch normalization is a technique used to improve the 

stability of the output of operation [10]. The idea of batch 

normalization is to adjust the activation values on each layer 

to be distributed appropriately. BN normalizes the mini-batch 

data by standard normal distribution (mean is zero and 

variance is one). Suppose we denote the mini-batch data as B 

= { 1x , 2x , …, 2x }(m means the number of input data). 

First, we obtain the mean and variance of the data set. 

 

1

1 m
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i

x
m
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                                                                               (6) 
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Second, we normalize it for the average 0, and the variance 1. 

 


2

i B
i

B

x
x



 





                                                                    (8) 

 

In the above formula, we used a small value epsilon whose 

role is to prevent the division by zero. By applying this 

process, data distribution can be made like normal 

distribution. In addition, scale and shift factor are applied to 

this normalized data. These factors control the gradient of 

normal distribution. 

 

 
ii

y x                                                                           (9) 

 

Batch normalization can be applied to convolutional neural 

network. The following is the formula of convolutional neural 

network. 

 

( )z g Wu b                                                                       (10) 

 

Where, W and b are parameters of the network model to be 

learned. g(·) is the activation function such as ReLU. Batch 

normalization is applied between convolution layer and 

activation function, so the formula looks like following 

formula. 

 

( ( ))z g BN Wu                                                                         (11) 

 

Because of the shift factor of batch normalization, bias b can 

be ignored. By applying batch normalization, the advantage is 

known that we can quickly learn without being greatly 

affected by the initial weight. 

2.3 Atrous Convolution 

Atrous Convolution [11] is a method of increasing the 

receptive field by adding holes inside the filter. Atrous rate 

defines the interval of the filter to add hole.  

 

For example, 3x3 filter with atrous rate 2 has the same view as 

5x5 filter using only nine parameters in Figure 3. The dark 

part has only non-zero values. 

 
Figure 3: 3x3 filter and 3x3 filter with atrous rate 2 

 

3. PROPOSED MODELS 

In this paper, we compare the performance with the vanilla 

DQN and our extensions of it. The architecture of the vanilla 

DQN is as Figure 4. 

 

 
Figure 4: The vanilla DQN model of Deep Mind 

 

We cropped 84x84 region of the Atari game screen image and 

made values between 0 and 1. The first hidden layer 

convolves 32 8x8 filters with stride 4 with the input image 

and applies a rectifier nonlinearity. The second hidden layer 

convolves 64 4 x 4 filters with stride 2, again followed by a 

rectifier nonlinearity. This is followed by a third 

convolutional layer that convolves 64 filters of 3 x 3 with 

stride 1 followed by a rectifier. The final hidden layer is 
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fully-connected and consists of 512 rectifier units. The output 

layer is a fully-connected linear layer with a single output for 

each valid action. 

 

As a first extension of the vanilla DQN, we add batch 

normalization layer between the convolution layer and the 

activation function. So, our proposed network looks like 

Figure 5. 

 
Figure 5: The architecture of the model using batch 

normalization 

As you can see, BN normalizes output values of each 

convolution layer. It makes the network more stable. Also, it 

can be less affected by initial values and prevents problems 

such as vanishing and exploding gradient.  

 

In the second extension, we replace the second convolution 

layer of DQN with an atrous convolution layer. 64 4x4 filters 

with stride 2 were modified to 64 4x4 filters with stride 1, 

adding an atrous rate 2. The stride was adjusted to 1 because 

the atrous rate was set to 2. It has a wider receptive field and 

learns features of it. The second proposed model looks like 

Figure 6. 

 
Figure 6: The architecture of the model using atrous 

convolution 

 

4. EXPERIMENTAL RESULTS 

We used Pong Game in Atari 2600 to measure the 

performance of proposed extensions. A Pong Game is a 

two-dimensional game imitating ping-pong, in which a 

player who takes 21 points first wins by passing the ball over 

the opponent. The hyperparameters of the model are shown in 

the Table I. 

 

Table 1. Hyperparameter list of the model 

Hyperparamete

r 

Value Description 

Batch Size 32 Number of samples to be 

sampled from the memory 

Replay memory 

size 

100,000 Size of experience replay 

buffer 

Target network 

update frequency 

1,000 The frequency with which 

the target network is 

updated 

Discount factor 0.99 Discount factor used in the 

Q-learning update 

Learning rate 1e-4 The learning rate used by 

Adam optimizer 

Replay start size 10,000 Random policy is run for 

this number of frames 

before learning starts 

 

We experimented three models on the same environment and 

how many frames are required until the mean reward for last 

100 episodes was 17 points (80% of 21 points) or more. We 

compared total reward per episode (shown in the Figure 7) 

and how many frames are required by average to reach 17 

points in the recent 100 episodes (shown in the Figure 8. It 

means moving average). 

 
Figure 7: A sample plot of total reward per episode 

 
Figure 8: A sample plot of mean reward for 100 episodes 

 

As you can see in Figure 7 and Figure 8, proposed extensions 

(vanilla + BN, vanilla + ACNN) shows better performance 

than the vanilla DQN. We made experiments 30 times by 

changing seed value for proposed extensions so as to be 

significant. The number of frames to reach 17 points on 

average are in the table (see Table 2). The boxplot of result is 

shown in Figure 9 [13-15]. 

 

Table 2. Average of frames to reach 17 points 
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Model Average number of frames 

Vanilla DQN 454,889 

Vanilla DQN + BN 364385 

Vanilla DQN + ACNN 404,092 

 

We did ANOVA analysis to be significant between models. 

As a result, it was significant. So, we did post-hoc-analysis. 

The result between BN model and the vanilla DQN model 

(p=1e-07 < 0.05), the result between ACNN model and the 

vanilla DQN (p=6e-03 <0.05) and the result between BN 

model and ACNN model (p=2e-03 < 0.05) showed significant 

difference. As a result, we conclude that we can apply the 

proposed extensions to the vanilla DQN for better 

performance.  

 
Figure 9: Boxplot of the required frames to reach 17 points 

on average 

5. CONCLUSION 

To improve the performance of DQN, Deep Mind proposed 

six extensions: N-steps, Double DQN, Prioritized Experience 

Replay, Categorical DQN, Noisy Networks and Dueling 

DQN. Those extensions showed great performance in Atari 

games. 

 

In this paper, we additionally proposed two extensions: The 

first extension applies batch normalization and the second 

extension uses atrous convolution. We measured how many 

frames were required until the mean reward for 100 episodes 

reached 17 points. We did ANOVA analysis and 

post-hoc-analysis, as a result, the proposed models had 

significant differences from the vanilla model(p<0.05). We 

conclude that we can apply the proposed extensions to the 

vanilla DQN for better performance. 

 

In the future, further research is needed to confirm whether 

the combination of proposed extensions and existing 

extensions shows better performance. 
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