

November-December 2019
ISSN: 0193-4120 Page No. 2416 - 2420

2416

Published by: The Mattingley Publishing Co., Inc.

 Additional DQN Extension Methods of Fast

Convergence for the Optimal Policy

Young-Man Kwon
1
, Gyu-Bong Lee

2
, Dong-Keun Chung

3
, Myung-Jae Lim

4

1
Department of Medical IT, Eulji University, Korea, ymkwon@eulji.ac.kr

2
Department of Medical IT, Eulji University, Korea, 0409gb@gmail.com
3
Department of Medical IT, Eulji University, Korea, tchung@eulji.ac.kr

4
Department of Medical IT, Eulji University, Korea, lk04@eulji.ac.kr

Article Info

Volume 81

Page Number: 2416 - 2420

Publication Issue:

November-December 2019

Article History

Article Received: 5 March 2019

Revised: 18 May 2019

Accepted: 24 September 2019

Publication: 12 December 2019

Abstract

To improve the performance of DQN, Deep Mind proposed six extensions. In this

paper, we propose two additional DQN extensions. The first extension applies

batch normalization to the model of DQN and the second extension applies atrous

convolution. We measured the performance of them 30 times on the Atari game

Pong. We did the post-hoc-analysis because ANOVA analysis of them is

significant at the confidence level of 95%. According to experimental results, we

conclude that we can apply the proposed extensions to the vanilla DQN for better

performance.

Keywords: Atrous Convolution, Batch Normalization, Convolutional Neural

Network, Deep Q-Network, Deep Reinforcement Learning

__

1. INTRODUCTION

Reinforcement learning is one of the areas of machine

learning such as supervised learning and unsupervised

learning, that solves problems by interaction with the agent

and the environment. The agent executes one of the valid

actions and receives the next state and rewards for this from

the environment. Based on this interaction, the agent learns a

policy that maximizes the accumulated rewards.

Tabula method is the method to solve reinforcement learning

problem by defining and updating the value of action by using

a Q-table. However, it is difficult in the environment with

many states or actions. Q-Network replaces it with an

artificial neural network, that works as a function

approximator with parameters. DQN (Deep Q-Network) uses

deep neural network whose output is the action value [1], [2].

Many extensions of DQN have been studied to improve the

performance of it [3]. Google DeepMind proposed six

extensions: N-steps DQN, Double DQN, Prioritized

Experience Replay, Categorical DQN, Noisy Networks and

Dueling DQN. These extensions can be used independently or

together. Rainbow DQN is a combination of these extensions.

In this paper, we propose two extensions for fast convergence

of DQN, those are batch normalization and atrous

convolution. We measure the performance of our extensions

by using the Atari game Pong, where the player who gets 21

points first wins.

2. RELATED WORKS

2.1 Deep Q-Network

The structure of the vanilla DQN looks like Figure 1. In

Q-learning using artificial neural network, the agent executes

action to the environment and receives the next state and

rewards from it (see the (a) part in Figure 1).

Figure 1: The structure of the vanilla DQN

November-December 2019
ISSN: 0193-4120 Page No. 2416 - 2420

2417

Published by: The Mattingley Publishing Co., Inc.

In DQN, the agent is trained in the flow as (b) part of Figure 1.

Deep learning algorithm such as SGD optimization assumes

that training data are independent of each other, but the data

of reinforcement learning are results of sequential action, so it

has a strong correlation between samples. Therefore, the

DQN uses the replay memory for breaking the correlation

between samples (see the (b) part in Figure 1).

The replay memory stores a tuple of samples (state, action,

reward, next state) during exploring or exploiting the

environment. Then, the agent can obtain gradients through

several samples that is sampled at random from the memory

and then update the artificial neural network. Therefore, it

prevents the artificial neural network from being updated to

the wrong policy and helps keep learning stable.

Another problem of using Q-network is that the target value

continues to change during updating. In the formula of MSE,

the loss function of the vanilla Q-network is as follows.

1

2

1 1(max (, ,) (, ,))
t

t t t t t
a

MSE r Q s a Q s a  


    (1)

The first term is the reward tr . It is the value received by

action in the time step t. The second term is the maximum of

Q-value after executing 1ta  in the next state 1ts  , which is

the target value. The third term is the Q-value which is the

value after executing the action ta in the state ts . When we

calculate the value of second and third term using same neural

network. However, training is unstable because the parameter

of the target value is the same as the training parameter.

To solve this problem, DQN adds the separated target

network, and it copies the weight of the main network at

regular interval (see the(c) part in Figure 1). Then, the

modified loss function of DQN is as follows.

2

1 1(max (,) (,))t t t t t
a

MSE r Q s a Q s a
      (2)

Where, the  
 means the parameter of the target network

and the  means the parameter of the main network.

2.2 Deep Q-Network Extensions

Google DeepMind proposed six extensions: N-steps, Double

DQN, Prioritized Experience Replay, Categorical DQN,

Noisy Networks and Dueling DQN.

When calculating the target value in Q-Learning, the target

value is based on only the current reward. For N-steps DQN,

rewards from N steps are added together and the Q function

value is added only at the very end, 2-steps DQN is as in the

following formula [4].

2

1 2(,) max (,)t t t
a

Q s a r r Q s a  


   (3)

In the vanilla DQN, the bellman equation of target is as

follows.

1 1(,) max (,)t t t
a

Q s a r Q s a


     (4)

It has tendency to overestimate Q-value because of using max

operation, which may be harmful to training performance and

sometimes can lead to suboptimal policy. So, the bellman

equation of Double DQN is modified as followings [5]. It

solves overestimation completely.

1 1,(,) max (,arg max ())t t t
a a

Q s a r Q s Q s a
     (5)

There is also extension that improve performance by

modifying the sampling method. The DQN samples the tuple

of the replay memory uniformly. In Prioritized Experience

Replay, for the efficiency of the sample, it prioritized the

samples according to the training loss [6]. The important

samples are sampled more frequently, and therefore the agent

learn more efficiently.

Categorical DQN predicts value as distribution rather than a

single scalar value. Therefore, it uses distribution instead of

value Q of bellman equation [7].

Noisy Networks and Dueling DQN are the extension that

modifies model of the network. Noisy Networks adds the

noise to the network weights to make exploration more

efficient [8].

In Dueling DQN, the value and advantage are calculated

separately and then combined only at the final layer in to the

Q-value [9]. The benefit of it is to generalize learning across

without imposing any change to underlying reinforcement

learning algorithm. The network architecture of the Dueling

DQN looks like Figure 2.

November-December 2019
ISSN: 0193-4120 Page No. 2416 - 2420

2418

Published by: The Mattingley Publishing Co., Inc.

Figure 2: The architecture of the Dueling DQN model

Capitalize only the first word in a paper title, except for

proper nouns and element symbols. For papers published in

translation journals, please give the English citation first,

followed by the original foreign-language citation [8].

2.2 Batch Normalization

Batch normalization is a technique used to improve the

stability of the output of operation [10]. The idea of batch

normalization is to adjust the activation values on each layer

to be distributed appropriately. BN normalizes the mini-batch

data by standard normal distribution (mean is zero and

variance is one). Suppose we denote the mini-batch data as B

= { 1x , 2x , …, 2x }(m means the number of input data).

First, we obtain the mean and variance of the data set.

1

1 m

B i

i

x
m




  (6)

2 2

1

1
()

m

B i B

i

x
m

 


  (7)

Second, we normalize it for the average 0, and the variance 1.


2

i B
i

B

x
x



 





 (8)

In the above formula, we used a small value epsilon whose

role is to prevent the division by zero. By applying this

process, data distribution can be made like normal

distribution. In addition, scale and shift factor are applied to

this normalized data. These factors control the gradient of

normal distribution.

 
ii

y x   (9)

Batch normalization can be applied to convolutional neural

network. The following is the formula of convolutional neural

network.

()z g Wu b  (10)

Where, W and b are parameters of the network model to be

learned. g(·) is the activation function such as ReLU. Batch

normalization is applied between convolution layer and

activation function, so the formula looks like following

formula.

(())z g BN Wu (11)

Because of the shift factor of batch normalization, bias b can

be ignored. By applying batch normalization, the advantage is

known that we can quickly learn without being greatly

affected by the initial weight.

2.3 Atrous Convolution

Atrous Convolution [11] is a method of increasing the

receptive field by adding holes inside the filter. Atrous rate

defines the interval of the filter to add hole.

For example, 3x3 filter with atrous rate 2 has the same view as

5x5 filter using only nine parameters in Figure 3. The dark

part has only non-zero values.

Figure 3: 3x3 filter and 3x3 filter with atrous rate 2

3. PROPOSED MODELS

In this paper, we compare the performance with the vanilla

DQN and our extensions of it. The architecture of the vanilla

DQN is as Figure 4.

Figure 4: The vanilla DQN model of Deep Mind

We cropped 84x84 region of the Atari game screen image and

made values between 0 and 1. The first hidden layer

convolves 32 8x8 filters with stride 4 with the input image

and applies a rectifier nonlinearity. The second hidden layer

convolves 64 4 x 4 filters with stride 2, again followed by a

rectifier nonlinearity. This is followed by a third

convolutional layer that convolves 64 filters of 3 x 3 with

stride 1 followed by a rectifier. The final hidden layer is

November-December 2019
ISSN: 0193-4120 Page No. 2416 - 2420

2419

Published by: The Mattingley Publishing Co., Inc.

fully-connected and consists of 512 rectifier units. The output

layer is a fully-connected linear layer with a single output for

each valid action.

As a first extension of the vanilla DQN, we add batch

normalization layer between the convolution layer and the

activation function. So, our proposed network looks like

Figure 5.

Figure 5: The architecture of the model using batch

normalization

As you can see, BN normalizes output values of each

convolution layer. It makes the network more stable. Also, it

can be less affected by initial values and prevents problems

such as vanishing and exploding gradient.

In the second extension, we replace the second convolution

layer of DQN with an atrous convolution layer. 64 4x4 filters

with stride 2 were modified to 64 4x4 filters with stride 1,

adding an atrous rate 2. The stride was adjusted to 1 because

the atrous rate was set to 2. It has a wider receptive field and

learns features of it. The second proposed model looks like

Figure 6.

Figure 6: The architecture of the model using atrous

convolution

4. EXPERIMENTAL RESULTS

We used Pong Game in Atari 2600 to measure the

performance of proposed extensions. A Pong Game is a

two-dimensional game imitating ping-pong, in which a

player who takes 21 points first wins by passing the ball over

the opponent. The hyperparameters of the model are shown in

the Table I.

Table 1. Hyperparameter list of the model

Hyperparamete

r

Value Description

Batch Size 32 Number of samples to be

sampled from the memory

Replay memory

size

100,000 Size of experience replay

buffer

Target network

update frequency

1,000 The frequency with which

the target network is

updated

Discount factor 0.99 Discount factor used in the

Q-learning update

Learning rate 1e-4 The learning rate used by

Adam optimizer

Replay start size 10,000 Random policy is run for

this number of frames

before learning starts

We experimented three models on the same environment and

how many frames are required until the mean reward for last

100 episodes was 17 points (80% of 21 points) or more. We

compared total reward per episode (shown in the Figure 7)

and how many frames are required by average to reach 17

points in the recent 100 episodes (shown in the Figure 8. It

means moving average).

Figure 7: A sample plot of total reward per episode

Figure 8: A sample plot of mean reward for 100 episodes

As you can see in Figure 7 and Figure 8, proposed extensions

(vanilla + BN, vanilla + ACNN) shows better performance

than the vanilla DQN. We made experiments 30 times by

changing seed value for proposed extensions so as to be

significant. The number of frames to reach 17 points on

average are in the table (see Table 2). The boxplot of result is

shown in Figure 9 [13-15].

Table 2. Average of frames to reach 17 points

November-December 2019
ISSN: 0193-4120 Page No. 2416 - 2420

2420

Published by: The Mattingley Publishing Co., Inc.

Model Average number of frames

Vanilla DQN 454,889

Vanilla DQN + BN 364385

Vanilla DQN + ACNN 404,092

We did ANOVA analysis to be significant between models.

As a result, it was significant. So, we did post-hoc-analysis.

The result between BN model and the vanilla DQN model

(p=1e-07 < 0.05), the result between ACNN model and the

vanilla DQN (p=6e-03 <0.05) and the result between BN

model and ACNN model (p=2e-03 < 0.05) showed significant

difference. As a result, we conclude that we can apply the

proposed extensions to the vanilla DQN for better

performance.

Figure 9: Boxplot of the required frames to reach 17 points

on average

5. CONCLUSION

To improve the performance of DQN, Deep Mind proposed

six extensions: N-steps, Double DQN, Prioritized Experience

Replay, Categorical DQN, Noisy Networks and Dueling

DQN. Those extensions showed great performance in Atari

games.

In this paper, we additionally proposed two extensions: The

first extension applies batch normalization and the second

extension uses atrous convolution. We measured how many

frames were required until the mean reward for 100 episodes

reached 17 points. We did ANOVA analysis and

post-hoc-analysis, as a result, the proposed models had

significant differences from the vanilla model(p<0.05). We

conclude that we can apply the proposed extensions to the

vanilla DQN for better performance.

In the future, further research is needed to confirm whether

the combination of proposed extensions and existing

extensions shows better performance.

ACKNOWLEDGMENT

This work was supported by R.O.K. National Research

Foundation under grant NRF-2017R1D1A1B03036372 in

2019.

REFERENCES

1. V. Mnih et al. Human-level control through deep

reinforcement learning, Nature 518, vol. 7540, pp.

529-533, 2015.

2. V. Mnih, et al. Playing Atari with deep reinforcement

learning, 2013.

3. M. Hessel et al. Rainbow: Combining improvements in

deep reinforcement learning, Proc. AAAI, pp.

3215-3222, 2018.

4. R. S. Sutton. Learning to predict by methods of

temporal differences, Machine Learning, vol. 3, pp.

9-44, 1988.

5. H. van Hasselt, A. Guez, D. Silver. Deep reinforcement

learning with double Q-learning, Proc. Association for

the Advancement of Artificial Intelligence, pp.

2094-2100, 2016.

6. T. Schaul, J. Quan, I. Antonoglou, D. Silver. Prioritized

Experience Replay, Proc. Int. Conf. Learning

Representations, 2015.

7. M. Bellemare, W. Dabney, R. Munos. A Distributional

Perspective on Reinforcement Learning, ICML, 2017.

8. M. Fortunato et al. Noisy networks for exploration,

CoRR, 2017.

9. Z. Wang, N. de Freitas, M. Lanctot. Dueling network

architectures for deep reinforcement learning, Proc.

Int. Conf. Learning Representations, 2016.

10. S. Ioffe, C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate

shift, Proc. Int. Conf. Mach. Learn., pp. 448-456, 2015.

11. P. Wang et al. Understanding convolution for semantic

segmentation, 2017.

12. Maxim Lapan. Deep Reinforcement Learning Hands-on,

Packt Publishing, 2018.

13. Jabarullah, N.H. (2019) Production of olefins from syngas

over Al2O3 supported Ni and Cu nano-catalysts, Petroleum

Science and Technology, 37 (4), 382 – 385.

14. Hussain, H.I., Kamarudin, F., Thaker, H.M.T. & Salem,

M.A. (2019) Artificial Neural Network to Model

Managerial Timing Decision: Non-Linear Evidence of

Deviation from Target Leverage, International Journal of

Computational Intelligence Systems, 12 (2), 1282-1294.

15. Aziz, A. R., Sumantoro, I. B., & Maria, D. (2019). Total

Quality Management of micro, small and medium

enterprises (MSMES), and the impact to organizational

culture and performance: emerging country case. Polish

Journal of Management Studies, 19 (1), 32-45.

