

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2226

Published by: The Mattingley Publishing Co., Inc.

 Efficient Sensor Programming Patterns in SPL of

MSRDS

Jong-In Chung

Department of Computer Education,

Kongju National University, Korea,

 jichung@kongju.ac.kr

Article Info

Volume 81

Page Number: 2226 - 2233

Publication Issue:

November-December 2019

Article History

Article Received: 5 March 2019

Revised: 18 May 2019

Accepted: 24 September 2019

Publication: 12 December 2019

Abstract

SPL of MSRDS provides many functions for sensor programming. The sensor

programming can be implemented into two types of patterns: procedure and

while–loop. The easiest way to check the sensor’s measured value is to use the

procedure sensor notify pattern in SPL. But the pattern can have a synchronization

problem between procedure execution and sensor notification. Therefore, the

procedure sensor notify pattern can lead to an abnormality of robot control. However,

the while-loop pattern is known to cause system overload because the robot control

routine is executed whenever the while-loop block executes. This study suggests the

efficient programming scheme to control the robot movement. This study consider

three efficient programming schemes to control the robot movement by studying the

advantages and disadvantages of the procedure and while loop scheme and also makes

a simulation environment to evaluate the performance for the three considered

schemes. The simulation environment consists of a maze and a robot with one of three

potential sensors. This study measures the required travel time and robot actions

(number of turns and number of collisions) needed to escape the maze and compares

the performance for the three considered schemes

Keywords: MSRDS, Programming Pattern, Sensor Programming, Simulation,SPL

1. INTRODUCTION

Recently, primary schools, secondary schools,

and universities are attempting to create interest

in students and raise class participation by using

robots in their existing classes [1-3]. There are

especially many cases for robot simulations as

alternatives to the constraints of purchasing

physical robots that will be tested and developed

in working fields. The simulation robot evokes a

student’s curiosity for new fields and provides a

new environment that they have never

experienced. It helps students understand their

expectations and achievements and provides a

positive leaning effect [4, 5].

If the robot is developed after its hardware

manufacture, the robot development will have a

high cost because of the trial and error. With

real-world robot simulations, robot development

cost can be saved because you can predict the

development result through the concurrent

development and test of the hardware and

software [6, 7].

MSRDS(Microsoft Robotics Developer Studio)

of Microsoft[8], ERSP of Evolution Robotics,

ROS of Willow Garage, OROCOS of Europe,

and OpenRTM-aist of AIST in Japan are typical

global robotics platforms. MSRDS provides a

development and simulation environment that

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2227

Published by: The Mattingley Publishing Co., Inc.

can predict the hardware factors such as the

manipulator and the software factors such as

kinematics. It also provides the development

framework that can easily combine the diverse

factors for developing different intelligent

services and human-friendly technologies

because it provides common message protocols

and interworking technologies based on the

modularized services. Therefore, the MSRDS

platform provides a simulation robot

environment that can simulate robot

programming without a hardware robot. A

special simulation robot can be made, such as

space a shuttle and submarine.

2. SPL

MSRDS provides the VPL(Visual Programming

Language) which allows developers to create

applications simply by dragging and dropping

components onto a canvas and wiring them

together. You can also use the SPL (Simple

Programming Language) for easy, fun and

simplified programming for creative IT, robotics,

embedded and mobile programming. SPL helps

people begin programming in an easy and fun

environment by simplifying complicated

programming patterns into simple scripts. A

novice user with little or no programming

experience can start creative IT, embedded,

mobile and robotics programming right away

without any preliminary preparation.

Sensors are attached on the robot to effectively

control it in MSRDS. MSRDS provides several

sensors for robotics programming and you can

use the attached sensors on many robot

platforms. Programmers can use the Kinect,

Bumper(Touch), LRF, IR, Sonar, bright, color,

compass, GPS and RFID sensor on VPL and SPL

to control the robot. Each sensor is used for its

different areas but the LRF sensor has the highest

performance and the bumper sensor has the

lowest performance on the maze explorer[9].

SPL has better procedure statements than any

other computer programming language. A

procedure can be enabled to make several small

program units. Thus, it is easy to control and

manage a large program if you use the procedure

in the computer program.

You can add the differential drive entity to use

the robot with motors in SPL. The differential

drive robot is controlled by the power of the left

and right motor.

To make the sensor program on a robot with two

wheels in SPL, Differential Drive entity and

sensor entities are needed. For example, the robot

with an LRF sensor can be written as follows:

AddDifferentialDriveEntity robot1

 /Position:0 0 4

 AddLaserRangeFinderEntity lrf1

 /Position:0 0.4 0

 /ParentEntity: robot1

 /Procedure_SensorNotify:proc1

robot1. GoTo(5, 0.5)

robot1.Turn(30, 0.2)

The example given in the script above shows that

a robot,“robot1”, with an LRF sensor and goes

5m distance with the power of 0.5 and turns 30

degrees with the power of 0.2.

3. COMPARISON OF SENSOR

PROGRAMMING PATTERNS

The robot must recognize the event issued from

the sensor continuously whilethe robot is driving.

The event generated from a sensor is the situation

that traces the changing status of a robot

periodically. Therefore, a sensor must generate

events to sense the status of a robot while the

robot is driving.

To get the sensing values generated from the

sensors, SPL uses two kinds of the sensor

programming patterns: the procedure sensor

notify pattern and the while loop pattern. The

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2228

Published by: The Mattingley Publishing Co., Inc.

easiest way to check the sensor’s measured value

is to use the procedure sensor notify pattern in

SPL. The procedure sensor notify pattern can

implement the robot sensing routine using the

sensor’s measured values. To implement the

robot sensing routine in the procedure sensor

notify pattern, it is necessary to use the

“/Procedure_SensorNotify” option in the sensor

entities of the SPL editor. The

“/Procedure_SensorNotify” option means that

the system jumps to and executes the specified

procedure whenever the sensor measures any

value. Figure 1 shows the process of procedure

sensor notify pattern.

In the procedure sensor notify pattern, the system

cannot execute the specified procedure again

when the sensor makes very frequent

measurements and notifies the system of new

sensing data while the specified procedure is

being executed. This pattern can cause a

synchronization problem between procedure

execution and sensor notification. Therefore, the

procedure sensor notify pattern can lead to an

abnormality of robot control.

The while-loop pattern is good for making a

program that can sense the user’s intent. The

system can obtain measured data and execute the

robot control routine in a while-loop block. There

is no synchronization problem in the procedure

sensor notify pattern. However, the while-loop

pattern causes system overload because the robot

control routine is executed whenever the

while-loop block executes.

Figure 1: Process of procedure sensor notify

pattern

To see if there is any performance difference

between the two sensor programming patterns of

MSRDS, Chung [10,11] made a simulation

environment to evaluate performance. The

simulation environment consisted of the maze

and the robot with any sensor. The robot with any

sensor travels the maze to escape from the start

point to the end point. He measured the required

traveling time and the robot’s actions(turning

number and collision number) for escaping the

maze and compared the performance of the two

sensor programming patterns for three different

sensors(LRF, IR, bumper). He concluded that

there is no performance difference between the

while-loop pattern and the procedure sensor

notify pattern for each sensor.

4. SIMULATION

This study suggests efficient sensor

programming schemes to control the robot

movement and also compares and analyzes the

following three possible programming cases:

(Case 1) Scheme using the flag in

Procedure_SensorNotify

(Case 2)Scheme using the non-flag in

Procedure_SensorNotify

(Case 3) Scheme using the non-flag in

NonProcedure_SensorNotify

This study makes the simulation environment as

follows:

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2229

Published by: The Mattingley Publishing Co., Inc.

1. make a maze for a robot to trace.

2. put the robot with an LRF sensor at the starting

point.

3. The robot escapes the maze by moving along

the maze wall from the starting point to the

exit.

The initial conditions of the simulation are for the

robot to have the power of 0.2 and 45 degrees for

each rotation in the left or right direction.

The procedure sensor notify pattern needs an

added sensor entity and the predefined procedure

being executed when an event is generated. The

sensor_entity named,“sensor-name”, must be

defined with the “/Procedure_SensorNotify”

attribute previously.

Case 1 executes the predefined procedure

specified in the Procedure_SensorNotify

attribute when an event occurs in which the

sensor recognizes the distance. It uses the flag to

prevent it from being applied to new events of the

sensor while the procedure is running. The

Following is the code for case 1:

Code for case1

AddDifferentialDriveEntity base1

 /Position:-1.3 0.2 3.7

 /Orientation: 0 0 0

AddLaserRangeFinderEntity lrf1

 /Position:0 0.2 0

 /ParentEntity:base1

 /Procedure_SensorNotify:LRFEvent

FlushScript

WaitForServiceCreation lrf1

Wait 1000

base1.SetDrivePower(0.2 ,0.2)

int busy=0

Procedure LRFEvent

 d180 = value.DistanceMeasurements[355]

 d135 = value.DistanceMeasurements[270]

 d90 = value.DistanceMeasurements[180]

 if(busy==0) {

 busy=1

 if(d180 < 400 || d135 < 600 || d90 < 1000) {

 base1.Turn(-45, 0.2)

 base1.Go()

 }

 if(d180 > 1000) {

 base1.Turn(45, 0.2)

 base1.DriveDistance(0.2, 0.2)

 base1.Go()

 }

 busy=0

}

End

Case 2 executes the predefined procedure

specified in the Procedure_SensorNotify

attribute when the sensor recognizes the distance.

However, unlike case 1, if the new event of the

sensor occurs while executing a procedure, the

currently executing procedure is aborted and the

procedure specified is executed again. The

following is the code for case 2:

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2230

Published by: The Mattingley Publishing Co., Inc.

Code for case2

AddDifferentialDriveEntity base1

 /Position:-1.3 0.2 3.7

 /Orientation: 0 0 0

AddLaserRangeFinderEntity lrf1

 /Position:0 0.2 0

 /ParentEntity:base1

 /Procedure_SensorNotify:LRFEvent

FlushScript

WaitForServiceCreation lrf1

Wait 1000

base1.SetDrivePower(0.2 ,0.2)

Procedure LRFEvent

 d180 = value.DistanceMeasurements[355]

 d135 = value.DistanceMeasurements[270]

 d90 = value.DistanceMeasurements[180]

 if (d180 < 400 || d135 < 600 ||d90 < 1000)

 {

 base1.Turn(-45, 0.2)

 base1.Go()

 }

 else

 {

 if (d180 > 1000)

 {

 base1.Turn(45, 0.2)

 base1.GoTo(0.2, 0.2)

 base1.Go()

 }

 }

End

Case 3 does not use the Procedure_SensorNotify

attribute and calls the procedure in the loop.

Therefore, the next procedure can be called after

the execution of the procedure is completed. The

following is the code for case 3:

Code for case3

AddDifferentialDriveEntity base1

 /Position:-1.3 0.2 3.7

 /Orientation: 0 0 0

AddLaserRangeFinderEntity lrf1

 /Position:0 0.2 0

 /ParentEntity:base1

FlushScript

WaitForServiceCreation lrf1

Wait 1000

base1.SetDrivePower(0.2 ,0.2)

for (i = 0; i < 100000000; i++)

{

Call proc1

}

Procedure proc1

{ distance=lrf1.Get()

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2231

Published by: The Mattingley Publishing Co., Inc.

 d90 = distance[180]

 d135 = distance[270]

 d180 = distance[355]

 if (d180 < 400 || d135 < 600 || d90 < 1000)

 {

 base1.Turn(-45, 0.2)

 base1.Go()

 }

 else

 {

 if (d180 > 1000)

 {

 base1.Turn(45, 0.2)

 base1.DriveDistance(0.2, 0.2)

 base1.Go()

 }

 }

 }

End

5. COMPARISON OF PERFORMANCE

In order to evaluate the performance of cases 1, 2

and 3, we measured the total travel time, number

of turns of the robot, number of abnormalities

such as collisions with the wall, and failure of the

robot to escape the maze. Simulation data was

measured five times for the objectivity of the

performance evaluation. Table 1, 2, and 3 show

the simulation data for cases 1, 2 and 3,

respectively. Table 4 shows the performance

comparison of cases 1, 2, and 3 based on Table 1,

2, and 3.

Table 1: Simulation data for case 1

 1st 2nd 3rd 4th 5th Average

Total Travel

Time
74 74 74 79 74 75

of Turns 24 23 24 28 24 24.6

of

Abnormalities
0 0 0 0 0 0

Table 2:Simulation data for case 2

 1st 2nd 3rd 4th 5th Average

Total Travel

Time
73 76 ∞ 86 75 ∞

of Turns 39 39 ∞ 64 43 ∞

of

Abnormalities
0 1 stop 3 1

1 stop,

5 collisions

Table 3:Simulation data for case 3

 1st 2nd 3rd 4th 5th Average

Total Travel

Time
72 76 76 74 75 74.6

of Turns 22 27 26 26 26 25.4

of

Abnormalities
0 0 0 0 0 0

Table 4: Comparison of performance of Case

1, 2, 3

 Total Travel

Time[sec]
of Turns # of Abnormalities

Case 1 75 24.6 0

Case 2 ∞ ∞ 1 stop, 5 collisions

Case 3 74.6 25.4 0

The travel time of case 1 and 3 are almost similar,

and the number of turns of case 1 and 3 are fewer

than case 2. It also do not have any collision with

the wall while moving in maze. Case 2 had 5

collisions with the wall, and in some cases it is

stopped.

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2232

Published by: The Mattingley Publishing Co., Inc.

In case 2, while the procedure is being executed

by the previous event, a new event is detected,

and the executing procedure is stopped. Then a

new procedure is performed, so the number of

turns of the robot increases. Since the previous

procedure is stopped and the new procedure is

executed, the consistent operation logic for

escaping the maze cannot be executed.

Therefore, many collisions with the wall occur.

Case 3 reads the sensor value in the loop, and

calls the procedure that controls the robot's

movement based on the value. Consequently,

there are no abnormalities such as collisions with

the wall and unintended stoppage.

Therefore, case 1 and case 3 are more effective

for robot sensor programming in SPL of

MSRDS. That is, it is efficient to use the flag in

the procedure sensor notify pattern or to call the

procedure without using the flag in the loop

statement.

6. CONCLUSION

MSRDS is a very suitable tool for creating robot

simulations. You can control the motion of the

robot using various sensors in SPL and VPL. In

particular, the procedure sensor notify pattern in

SPL is a popular programming pattern because it

is easy to program and has good readability of

programming. To find the efficient programming

scheme, this study comparedthree cases, and

suggested the efficient programming schemes to

control the robot’s movement [13 – 14].

The scheme using the flag in

Procedure_SensorNotify and the scheme using

the non-flag in NonProcedure_SensorNotify

have better performance than the scheme using

the non-flag in Procedure_SensorNotify in travel

time, number of turns and number of

abnormalities. In the scheme using the non-flag

in Procedure_SensorNotify, while the procedure

is being executed by the previous event, a new

event is detected, and the executing procedure is

stopped. Then a new procedure is performed, so

the number of turns of the robot increases [15].

In the sensor programming pattern for controlling

the robot, using the flag in the procedure sensor

notify pattern or calling the procedure without

using the flag in the loop statement was found to

be more efficient.

Future research topics need to be studied to

compare the performance evaluation of how the

procedural programming method proposed in

this study is influenced by various types of

mazes.

REFERENCES

1. J. I. Chung and Y. J. Kim.Robot programming to

improve logic,Korea: Hongreung Science

Publishing, 2012.

2. http://www.helloapps.com

3. S. Y. Hong.Intelligent robot programming for

SMART creative engineering,Korea:

Bookshollic Publishing, 2012.

4. Y. J. Kim.MSRDS Simulation Environment

and External Interface, Robor and Human,

Korea Robotics Society, vol. 7, no. 2, pp. 16-22,

2010.

5. S, H. Cho.The Effect of Robotics in Education

based on STEAM, Journal of Korea Robotics

Society, vol. 8, no.1, pp. 58-65, 2013.

6. J. S. Park.Discrete-Time Sliding Mode Control

for Robot Manipulators, Journal of The Korea

Industrial Information System Society, vol 16,

no. 4, 2011.

7. S. P. Kim.Kinematic and dynamic analysis of a

spherical three degree of freedom joint

rehabilitation exercise equipment, Journal of

The Korea Industrial Information System

Society, vol. 14, no. 4, pp.16-29, 2009.

8. http://www.microsoft.com/robotics/

9. Hilkevics, S.; Semakina, V. 2019. The

classification and comparison of business ratios

analysis methods, Insights into Regional

Development 1(1): 48-57.

https://doi.org/10.9770/ird.2019.1.1(4)

November-December 2019

 ISSN: 0193-4120 Page No. 2226 - 2233

2233

Published by: The Mattingley Publishing Co., Inc.

10. Umana, S. I., Akpbio, N. O., & Mbong, S. E.

(2018). Extended Stanford University Interim

Model Loss Stanford University Interim

Propagation Loss Model for a Gmelina

Arborea Tree-Lined Road. Review of

Computer Engineering Research, 5(2), 57-63.

11. Pechancová, V., Hrbáčková, L., Dvorský, J.,

Chromjaková, F., Stojanovic, A. (2019).

Environmental management systems: an

effective tool of corporate sustainability.

Entrepreneurship and Sustainability Issues, 7(2),

825-841. http://doi.org/10.9770/jesi.2019.7.2(3)

12. J. W. Lee and J. I. Chung. Comparative

Analysis of the Performance of Robot Sensors

in the MSRDS Platform, Journal of the Korea

Industrial Information Systems Research, vol.

19, no.5, pp. 57-67, Oct. 2014.

13. Jabarullah, N. H., Jermsittiparsert, K., Melnikov,

P. A., Maseleno, A., Hosseinian, A., & Vessally,

E. (2019). Methods for the direct synthesis of

thioesters from aldehydes: a focus review.

Journal of Sulfur Chemistry,

https://doi.org/10.1080/17415993.2019.1658764

14. J. I. Chung.Comparison of Sensor

Programming Schemes in MSRDS in ICIECT,

June 2016.

15. J. I. Chung.Performance Evaluation of Sensor

Programming Patters in MSRDS,International

Journal of Engineering and Technology, vol. 7,

no.2.33, pp. 1132-1137, July 2018.

