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Abstract 

It is investigated that, the effect of hall currents on the double diffusion heat transfer flow 

of a chemically reaction fluid past a stretching sheet in the presence of constant heat 

sources. The equations determining the heat flow and transfer of mass are derived by 

employing a Galerkine finite element analysis with three nodded line segments. The 

velocity, temperature and concentration are solved for G, M, m, N, Sc, a and y. The rate of 

heat and mass transfer are numerically evaluated for different variations of parameters. 
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I. INTRODUCTION 

Laminar boundary layer behavior over a 

continuously moving and stretching surface is a 

significant type of flow has considerable practical 

applications in engineering, electrochemistry. In 

particular, different metallurgical methods 

associate the cooling of continuous strips or 

filaments by drawing them through a quiescent 

fluid. 

In 1961, Sakiadis (1) who developed a 

numerical solution for the boundary layer flow 

field over a continuous solid surface moving with 

constant speed. Chen and Cher (2) have studied 

the absorption and insertion on a linearly moving 

plate under uniform wall temperature and heat 

flux. In general, using a power law velocity and 

temperature distribution at the surface was studied 

by Ali  

 

(3), Magyari et al. (4) have reported 

analytical and computational solution when the 

surface  moves with rapidly decreasing velocities 

using the self-similar method. 

In the above references, the effect of 

buoyancy force was relaxed. The above authors 

carrying the issue of a polymer sheet extruded 

continuously from a dye. It is supposed that the 

sheet is in stretchable, but in the polymer industry 

in which it is necessary to handle a stretching 

plastic sheet, as noted by Crane (5). The study of 

heat producing or absorption in moving fluids is 

significant in the problems in relation with 

chemical reactions.  Vajravelu and A. 

Hadjinicolaou (6) studied the heat characteristics 

in laminar boundary layer of a viscous fluid over a 

stretching sheet with viscous diffusion or 

frictional heating and internal heat generation.  

The effect of chemical reaction on free 

convection of viscous flow and mass transfer of 

incompressible and electrically conducting fluid 
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over a stretching sheet was investigated by Afify 

(7) in the presence of transverse magnetic field. 

Anjalidevi and Kandaswamy (8) discussed that, 

the impact of a chemical reaction on the flow 

along a semi infinite horizontal plate in the 

presence of heat transfer.  

Anjalidevi and Kandaswamy (9) have discussed 

that the effect of a chemical reaction on the flow 

in the presence of heat transfer and magnetic field. 

Raptis et al. (10), have studied the viscous flow 

over a non-linearly stretched sheet in the presence 

of a chemical reaction and magnetic field. In all 

these investigations the electrical conductivity of 

the fluid was assumed to be uniform. However, in 

an ionized fluid where the density is low over 

magnetic field is very strong. The conductivity 

normal to the magnetic field is reduced due to the 

rising of electrons and ions about the magnetic 

lines of force before collisions take place and a 

current induced in a direction normal to both the 

electric and magnetic fields.   

 The hall effect on MHD boundary layer 

flow over a continues semi-infinite flat plate 

moving with a uniform velocity in its own plane 

in an incompressible viscous and electrically 

conducting fluid in the presence of a uniform 

transverse magnetic field were investigated by 

Watanabe and Pop (11). Abo-Eldehbab (12) 

disussed that free-convective flows past a semi-

infinite vertical plate with mass transfer. Samad et 

al. (13) have discussed that, the MHD heat & 

mass transfer of free convection flow along 

vertical stretching sheet in presence of magnetic 

field with heat generation. G.C Shit (14) has 

studied Hall effects on MHD free convective flow 

on mass transfer over a stretching sheet.  

 

 

 

 

 

 

 

 

Configuration of the problem 

 

II. FORMULATION 

We deal with the steady flow of an 

incompressible, viscous and electrically 

conducting fluid past a flat surface which is 

assuming from a horizontal slit on a vertical 

surface and is stretched with a velocity 

proportional to distance from a fixed origin O. We 

take a stationary frame of reference (x, y, z) such 

that x-axis is along the direction of motion of the 

stretching surface, y-axis is normal to this surface 

and z-axis is transverse to the xy-plane.  

A uniform magnetic field in the presence 

of fluid flow induces the current ),0,( zx JJ . When 

the strength of the magnetic field is very large, we 

include the hall current so that the generalized 

Ohm’s law (CF. Cowling(1975)) is modified to 

)( HxqEHxJJ eee                          (1) 

where J is the current density vector, e is the 

cyclotron frequency, e  is the electron collision 

time, q is the velocity vector, H is the magnetic 

field intensity vector, E is the electric field,  is 

the fluid conductivity and e is the magnetic 

permeability.  
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The effect of hall current gives to a force 

in the z-direction which in turn produces a cross 

flow velocity in this direction and thus the flow 

becomes three-dimensional. To simplify the 

analysis, we consider that the flow quantities does 

not change along z-direction and this will be valid 

if the surface is of very width along the z-

direction. Neglecting the electron pressure 

gradient, ion-slip and thermo-electric effects and 

assuming the electric field E=0, we have  

wHJHmj ezx 00                (2) 

uHJHmJ exz 00                (3) 

 

here  m = ee  be the hall parameter. 

From the equations (2) & (3), we obtain  

 )(
1 2

22
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Here, u and w are the velocity components along 

x and z directions respectively. 

 

The Continuity equation is  
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The equation of the energy is  

Q
y

T
k

z

T
w

x

T
uC fp 






















2

2

               (9) 

The euation of a diffusion is 
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The equation of state is  

)()(0 



  CCTT              (11) 

Substituting Jx and Jz from equations (4) & (5) in 

equations (7) & (8),  we obtain  
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where, the temperature is T, the concentration in 

the fluid is C, the coefficient of thermal expansion 

is  ,  is the volumetric expansion with 

concentration and  Q is the strength of the heat 

source. 

 

where, the boundary conditions are 

0,,,0,  yatCCTTwvbxu ww             (14) 

  yasCCTTwu ,,,0                   (15) 

where b > 0. 

The boundary conditions on the velocity for (2.14) 

are the no-slip conditions at the surface at y = 0, 

while the boundary conditions on the velocity as 

y , there is no flow far away from the 

stretching surface. The temperature and 

concentration are maintained at a prescribed 

constant values Tw and Cw at the sheet and are 

assumed to vanish far away from the sheet. 

 

On introducing the similarity variables 

 y
b


  ,  )(fbxu  , 

 )( fbv   ,  
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Equations (9), (10), (12) & (13) reduce to 
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 0  fP             (19) 

 0)(   fSc            (20) 

 

and the boundary conditions (14) & (15) are 

obtained from (2.16) as 

0)0()0(,0)0(,1)0(  ff             (21) 

 0)()()(  gf            (22) 

 

III. VARIATIONAL FORMULATION 

The variational form with the equations 

(17) to (20) over a typical two nodded linear 

element ( ), 1ee  is given by 
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where the arbitrary test functions are w1, w2, w3, 

w4 and w5 and regarded as the variations in f, h, g, 

 and  respectively. 

 

III. (i) FINITE ELEMENT FORMULATION 

 From the equations (23) to (27), by 

substituting finite element approximations of the 

form 
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From (29), the equations (23) to (27) reduces to  
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Using “Galerkine weighted residual method” and 

“integration by parts method” to the equations 

(30) to (34),  we have 
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By showing “ kkkk hf  &,, ”  in terms of local 

nodal values, then the equations (36) to (39), we 

have  
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selecting different 
j

ji  corresponding to 

each element e in the equation (40) yields a local 

stiffness matrix of order 3x3 in the form 
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(44) 

Likewise the equations (41), (42) & (43) give rise 

to stiffness matrices 
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where, )( ,

k

jif , )( ,

k

jig , )( ,

k

ji , )( ,

k

ji , )( ,

k

jie , )( ,

k

jil  are 

3x3 matrices and  
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are matrices  of order 3 X 1 and such stiffness 

matrices (44) to (47) are local nodes to get the 

coupled global matrices of the global nodal values 

of  “h, f, g,  and  ”.  

In case, we select n quadratic elements 

then the global matrices are of order 2n+1. To find 

the unspecified global values of velocity, 

temperature and concentration in the fluid region,  

we solve the ultimate coupled global matrices.   

 An iteration method adopted to solve 

these equations to involve the boundary effects in 

the porous medium. 

The shape functions are 
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IV. STIFFNESS MATRICES 

The global matrix for  is 

               A3X3=B3 

The global matrix for   is 

               A4X4=B4 

The global matrix for h is 

   A5X5=B5 

The global matrix for f is 

                            A6X6=B6 

The global matrix for g is 

                            A7X7=B7 

 

V.  DISCUSSION OF THE NUMERICAL   

RESULTS 

The system of ordinary differential 

equations (17) to (20) subject to the boundary 

conditions (21) and (22) are solved numerically by 

employing finite element analysis with three 

nodded line segments. 

 For numerical computations, the following 

values of the physical parameters have been 

considered according the data used in (Afify 

2004). 

Pr = 0.71, G = 10
2
, N = 1, 2, -0.5, -0.5,  

Sc = 0.24 – 2.01, n = 1, 2, 3, M = 0 to 5, m = 0 to 

3, 

  = 0.1, 0.5, 1.0 
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From Fig. 1, we conclude that, more the 

Lorentz force lesser the axial velocity and for 

more Lorentz forces larger the axial velocity.   
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Figure 1 : Variation of h with M, m 

           I       II    III IV V       VI 

M       2       4     6 10 2         2 

m     1.5    1.5   1.5 1.5      0.5      2.5 

From fig. 2, the change of fwith buoyancy 

ratio N shows that, the molecular buoyancy force 

dominates over the thermal buoyancy force . 
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Figure 2 : Variation of h with N 

  I II III IV 

N 1 2 -0.5 -0.8 

From fig. 3, the change of fwith heat source 

parameter  shows that fenhances with increase 

in >0 and reduces with ||  
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Figure 3 : Variation of h with  

I            I       II    III   IV V         VI

      2      4    6  -2 -4       -6 

From Fig. 4, the effect of chemical reaction  on 

fis shown. The axial velocity fincreases in the 

degenerating chemical reaction and reduces in the 

generating case.  

Fig. 4 : Variation of h with   

                I      II     III       IV       V   VI 

            0.5     1     1.5      2.5    -0.5    -1.5

  

From Fig. 5, we know that, for higher the 

Lorentz force larger f () and for higher Lorentz 

force lesser f.  
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Figure 5 : Variation of f with M, m 

         I      II III      IV      V      VI     VII 

M     2     4  6       10       2       2     2 

m   0.5    0.5 0.5     0.5      1     1.5    2.5  
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From Fig. 6, we know that the transverse 

velocity increases with increase in N > 0 and 

decreases with N < 0 in the entire flow region 
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Figure 6 : Variation of f with N 

            I II III IV 

N 1 2 -0.5 -0.8 

Fig. 7 represents that, change of f with M 

and m. We seen that g increases with M  4 and 

decreases with M  6. And g increases with 

increase in the Hall parameter m  1.5 and 

decreases with m  2.5.  
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Figure 7 : Variation of g with M, m 

         I        II       III      IV       V     VI     VII   

M    2        4        6      10       2      2        2 

m    0.5    0.5      0.5     0.5       1      1.5      2.5 

From Fig. 8, the change of g with N shows 

the cross flow velocity decreases with N > 0 and 

increases with |N| <0. 
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Figure 8 : Variation of g with N 

 

                    I II III IV 

 N 1 2           -0.5        -0.8  

From Fig. 9, enhance in the strength of the 

heat source increases the cross flow and also        

higher ||  6, get a reduction in |g| in the entire 

flow region.  
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Figure 9 : Variation of g with  

I         II       III     IV   V VI 

            2        4        6      -2 -4 -6 

From Fig. 10, we know that,  the cross flow 

increases with increase in ||  1.5 and for higher 

||  2.5, the cross flow velocity decreases in the 

flow region. 
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Figure 10 : Variation of g with  

I       II      III      IV    V VI 

        0.5      1      1.5     2.5  -0.5 -1.5  

 From Fig. 11, the temperature increases 

with   4 and decreases with ||  6, it decreases 

in the case of heat source and increases in the case 

of heat source.    
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Figure 11 : Variation of  with  

          I       II       III       IV       V      VI VII 

       2      4        6         10       -2 -4 -6 

From Fig. 12, we know that, the temperature 

increases in the degenerating chemical reaction 

case and depreciate in the generating case. 
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Figure 12 : Variation of  with  

I       II      III    IV   V VI 
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