

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9630

Published by: The Mattingley Publishing Co., Inc.

Evaluating the Performance of Training in YOLO
Deep Learning Networks with Insignificantly Small

Dataset

[1]
 T. Kavitha,

[2]
 K. Lakshmi

[1]
Research Scholar,

[2]
Professor, Computer Science and Engineering,

Periyar Maniammai Institute of Science & Technology, Thanjavur, India
[1]

 tkavitha07@yahoo.com,
[2]

lakshmi@pmu.edu

Article Info

Volume 82

Page Number: 9630 – 9637

Publication Issue:

January-February 2020

Article History

Article Received: 18 May 2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 12 February 2020

Abstract:

In the last few years, Deep Learning is the one of the top research areas in

academia as well as in industry. Every industry is now looking for a deep learning-

based solution to the problems in hand. As a researcher, learning “Deep Learning”

through practical experiments will be a very challenging task. Particularly, training

a deep learning network with huge amount of training data will make it impractical

to do this on a normal desktop computer or laptop. Even a small-scale application

in computer vision using deep learning techniques will require several days of

training the deep network model on a very higher end GPU clusters or TPU

clusters – that makes impractical to do that research on a conventional laptop.

In this work, we address the possibilities of training two versions of YOLO

deep learning networks with an in significantly small dataset. Since we are going

to design a prototype drone detection system with two different network models

which are dealing with single class classification problem, we hereby try to train

the deep learning networks only with few drone images (2 images only) and

compare their performance in terms of mean average precision (mAP) and other

suitable metrics.

The arrived results prove the possibility of training deep learning network with

very few images (or any data). According to the results, YOLOv3 performed

better than VOLOv2 and proves the possibility of training a deep learning network

with insignificantly low number of images

Keywords - Unmanned Aerial Vehicles, Computer Vision, Background

Subtraction, Frame Differencing, Optical Flow, Edge detection, Convolutional

Neural Networks.

I. INTRODUCTION

Techniques for Learning from Small Data

There are a wide variety of problems that has very small

datasets for learning. The connotation of “small dataset”

depends on the application we work with. In this context, the

small dataset means how much data required to give better

results and how many classes are to be identified from the

available data. N-Shot learning is one such technique which

makes the learning effective with small datasets. This N-shot

learning may be Few-shot or one-shot learning. In few-shot

learning, the training examples are a few normally it lies

between 0 and 5 examples. In one-shot learning, only one

example is taken for training. A set of classes with adequate

training is applied to one or more classes with few labelled

examples. It solves the small dataset problem whereby

improves the performance. Metric learning technique in which

the discriminative features are learned by the network from a

large dataset to generalize them for new classes. Another

variant of few-shot learning is meta learning in which the

examples trained from large datasets are used to learn from

small datasets.

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9631

Published by: The Mattingley Publishing Co., Inc.

It is known that deep learning techniques require a huge

amount of data for training the model and to improve its

performance. But there are certain domains in which we

cannot obtain data in enormous quantity because it involves

high cost for collecting and annotating them. Due to the

shortcoming of datasets, deep learning suffers a lot. To

eradicate such hurdle, the above discussed techniques are used

with small datasets. In such a situation, transfer learning is the

better solution in which pre-trained models on similar tasks

can be used for recognition.

Though it is useful, it is less likely suitable for medical

imaging applications which brings a large bias between the

source and target domain and for large imagery dataset where

data are mostly collected from the web which may sometimes

lead to copyright problems. But transfer learning is a technique

which provides a solution with small datasets and is applied in

many research areas using deep networks.

Obstacles in Experimenting and Doing Research on Deep

Learning [*aa]:

Deep learning is the state-of-the-art technique and is

rigorously used in many of the fields that require extensive

computation. For example, it is very much used in autonomous

self-driving car, medical imaging, image classification etc. The

deep learning usage now spreads over in almost all

applications where huge data is available such as speech

recognition, health-care and medical diagnostics, and drug

design. However, several challenges must be overcome before

its wide-spread use. The common challenges are as follows:

i. Collecting large datasets for training – a large dataset

can easily be collected from consumer applications but it still

lags in data collection from some of the industrial applications.

ii. Requirement of expensive hardware such as GPU,

TPU etc. for training the model – due to its high cost, it is not

affordable to everyone who wish to carry out the research in

deep learning.

iii. Identifying and fixing the value of the

hyperparameters - it may sometime lead to overfitting of data.

iv. Understanding the insight of network is still a

complicated one – due to its number of layers, nodes in each

layer and connections, it is difficult to understand though it

arrives at a good solution.

v. Maintaining a stable network – small inclusions or

removals in the input shall lead to incorrect results. For

example, the attacker may sometimes add noise to the data to

make the model to give incorrect solution.

Challenges in constrained models are as follows:

 Mapping of input to output by a function – the amount

 of data required for approximating the unknown

 mapping function is still critical.

 Estimating the performance of the mapping function –

 it depends on the amount of data required.

 Poor approximation with the quantity of data taken to

 train the model for estimating the performance –

 overfitting or underfitting will occur based on the size

 of dataset. The performance of a model is estimated

 with test data which will give an optimistic and high

 variance [aa].

A. Hardware Requirements for Deep Learning Training

Even simple applications using deep networks cost heavily

for availing the services provided by the third-party [bb]. The

hardware required by deep networks for experimentation are

as follows:

Central Processing Unit (CPU): This processor is able to

perform different kinds of operations and memory transfers.

Graphical Processing Unit (GPU): This graphic device is

otherwise known as graphics card. Video based memory

transfers are carried out initially by GPU to reduce the burden

of CPU. In the recent years, GPUs have a large processing

power with the advent of gaming filed. GPU has a power of

parallel processing where both CPU and GPU work together

for processing and analyzing the data in an image or in any

graphic form and even in scientific computation. For example,

the processing power of GPUs are heavily used in video

rendering, image transformations, and image compression etc.

High Level Languages such as C, CUDA are used to write

programs for graphical processing.

Tensor Processing Unit (TPU): This chip is specially

designed to quicken the computations of the network. Like

GPU, TPU also works with matrices. A TPU requires a

constant flow of parameters.

TPU is a remarkable platform for training a deep network.

TPU increases the performance 15 to 30 times over the

performance with CPUs and GPUs.

The Google’s TPU can only be accessed by TPU cloud

services for training and for other computations. It cannot be

purchased from vendors because it needs a dedicated

infrastructure. But Coral edge TPU is the one available for

public, has less capability hardware compared to Google’s

TPU cloud services.

Application Specific Integrated Circuit (ASIC) is a custom-

made chip, specially designed for a fixed functionality. This is

the only chip, there is no programming involved.

B. Data Requirements for Deep Learning

Data requirements for deep learning are considerably larger

than other techniques for analysis [3].

The deep learning techniques help in extracting complex

patterns from multimedia objects such as images, video, and

audio [3] and are multidimensional data. To make this task

effective, it requires a large labeled training data sets and

access to relevant computing resources.

For complex modeling, deep-learning methods require vast

data records in order to produce better classification results

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9632

Published by: The Mattingley Publishing Co., Inc.

and, in some situations, the volume of data may exceed. By

having 5000 labelled examples per class, it is possible to attain

remarkable performance than human-level performance in one

estimate with supervised deep network learning algorithm. In

some cases where surplus of data available that is millions or

even billions of rows per dataset, the usage of AI is perfect

technique. However, if scarcity of data involves then deep

networks are suitable [3].

In many businesses, the creation of massive datasets and

labelling are difficult and challenging task. To overcome this

data bottleneck, promising new techniques based on

reinforcement learning, generative adversarial networks,

transfer learning, few-shot and one-shot learning are evolving

gradually. In these techniques, a trained model is allowed to

learn from the subject with the help of a small number of real-

world examples [3].

In addition, While modeling, we should be cautious about

overfitting - this happens with a large dataset where the model

closely matches the random features that results in poor

accuracy and underfitting - this happens with a small dataset

where the model fails to capture all relevant features [3].

II. MODELING

Components of the Learning Algorithm

To train a deep learning network model, we should choose

 a number of components such as nodes and layers

etc., and hyperparameters such as weights, loss

functions, epochs etc.

 an error function which is otherwise called as the cost

or the loss or the objective function

 a specific framework for arriving an inference with

 maximum likelihood

Under this chosen framework, cross entropy and mean squared

error loss functions are chosen for

classification and regression problems respectively.

Loss Function

A set of weights on the training examples estimates the

performance of the network model. To minimize the error, the

optimization process needs an initial point from which the

model begins its updates by repeated learning. The starting

point is defined by the primary model parameters called

weights. The starting point must be carefully chosen so that the

optimization algorithm will improve the model performance by

reducing the error surface. Though many weight initialization

methods are available to choose initial model weights, small

random values are normally chosen as initial weight.

Weight Initialization.

To optimize the network model, we have to choose the

initial weight from which the model starts its learning. Weight

initialization should be properly done. A procedure by which a

model weight is assigned with an initial small random value at

the beginning of the training process. The model error or loss

is calculated while updating the model from a number of

training examples in the training dataset. During training, it is

possible to use either all the training examples in the training

dataset when smaller dataset is used or a single example where

the data changes frequently or the examples are streamed. In

hybrid approach, to estimate the error gradient, the number of

examples from the training dataset are chosen and these

examples describes the batch size.

Batch Size

It is a hyperparameter of gradient descent that defines the

number of training examples from the training dataset to work

through before updating the internal parameters of the network

model. Once the batch size is assigned, training is done

iteratively and compares the predicted value with an expected

output value and correspondingly the error is calculated. The

calculated error is reduced by repeated updates in the model

parameters to optimize the performance.

We can split the training dataset into one or more batches.

It can be classified as follows:

i. When all the training examples are kept in one batch,

 the learning algorithm is called batch gradient descent.

ii. When the batch size is one, the learning algorithm is

 called stochastic gradient descent.

iii. When the batch size is greater than one example but

 less than the size of the training dataset, the learning

 algorithm is called mini-batch gradient descent.

 The most popular batch sizes for mini-batch gradient

descent are 32, 64, and 128 examples.

Learning Rate

The rate at which the parameters in the learning algorithm

is updated in every iteration in the training dataset. The fine-

tuned model parameters are obtained by repeated training

process. During training, the total number of iterations in

training dataset depends on the complete number of passes

which occurs before the training process terminates.

Epochs

The number of passes required before the training process

completes.

The learning algorithm is greatly controlled by these five

hyperparameters in deep neural networks.

III. OBJECT DETECTION USING DEEP YOLOV2 AND

YOLOV3

There are many different algorithms available for object

detection and these algorithms are categorized into two types

based on their processing ability.

The algorithms based on classification work in two steps.

At first, the interesting regions of the image are selected then

next the objects within those regions are classified using

Convolutional Neural Networks (CNN). The algorithms under

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9633

Published by: The Mattingley Publishing Co., Inc.

this category are too slow and are less suitable for real-time

situations.Region based Convolutional Neural Network (R-

CNN) is one such example of this category.

i. The algorithms based on regression, scan the entire image and

predicts the objects in an image which includes localization,

detection, and classification. These algorithms are faster and

are suitable for real-time object detection. You Only Look

Once (YOLO) follows regression based approach.

YOLO Object Detection

There is a progressive growth in deep learning networks.

The recent development is You Only Look Once (YOLO)

which is a network in which object detection is performed by

deep learning algorithms. Object detection is done by

classifying the objects present in an image after detecting and

localizing it with bounding boxes.

YOLO differs from the previous region-based detection

methods such as R-CNN, Fast R-CNN, and Faster R-CNN

etc., which focus on a particular region in an image for

detecting the objects by training each individual component

separately.

This multi-step process is very time-consuming due to the

region selection and it also uses selective algorithm for

detection. Hence, there is no learning performed in detection.

These methods are very slow and optimization is harder They

are not suitable for real-time detection.

YOLO is faster and easier to optimize because the

algorithm uses the network only once to run all the

components of the task.

YOLO Architecture

The YOLO for object detection is clearly understood only

after knowing its components thoroughly.

An algorithm, the network, and the loss functions are the

three important components of YOLO network.
i.

The YOLO Object Detection Algorithm

The computing process is divided into the following steps:

Step1: Split the input image into an S×S grid.

Step2: Predict B bounding boxes from each grid cell

which encloses an object and the corresponding confidence

scores to find out whether the predicted bounding box has

an object. It is symbolized as

, where Pr(Object) is the

probability that the current position is a valid object class,

IOU is the overlap probability between the predicted(Pr)

bounding box and the ground truth(Gt). The x, y is the

center coordinate and the w, h is the size of the box.

Step 3: Calculate the conditional probability of prediction

 class in each grid .

Step 4: Step 4: Multiply both the conditional probability

 of a class and confidence while predicting the object as

Gt

i

Gt

i IOUClassIOUObjectObjectClass PrPr)Pr()Pr()|Pr(

When a large object is encountered, it is necessary to

perform non-maximally suppressed operations. Since the

bounding box B has a value of 2, a grid will return only

two boxes which means that a grid will have only one

category. If multiple categories present in a grid, there is a

problem. YOLO gives good results for small objects.

ii.

iii. The Network

YOLO network involves convolutional layers, max pool

layers, and two fully connected CNN layers.

 The Loss Function

Yolo uses sum-squared error for the loss function because

it is easy to optimize. This function calculates the error equally

for small and large boxes.

Since two bounding boxes are found in each of the grid cell,

the loss function in YOLO is used to compute the loss for each

true positive. The bounding box with highest Intersection of

Union (IoU) with Ground Truth makes the error function

effective.

Different Versions of YOLO

Each version of YOLO is only improving the accuracy in

the performance of detecting objects. They have so far created

three versions of YOLO. The current version of YOLO is

YOLOv3.

Though we are not going to evaluate YOLOv1, we

compare its architecture with other versions.

YOLO v1

YOLOv1 uses a limited darknet framework. There are

many restrictions with this version. One such restriction was

that YOLOv1 cannot identify a group of small objects say for

example a flock of birds and was inefficient in generalizing

objects with different dimensions other than the trained image.

Hence, it led to poor localization of objects within the input

image.

Table 1. Tiny YOLOv1

No. Layer

Name

Kernel

s

Kernel

Size /

Stride

Input Size Output Size BFLO

Ps

0 conv 16 3x3/1 448x448x3 448x448x16 0.173

1 max 2x2/2 448x448x16 224x224x16 0.003

2 conv 32 3x3/1 224x224x16 224x224x32 0.462

3 max 2x2/2 224x224x32 112x112x32 0.002

4 conv 64 3x3/1 112x112x32 112x112x64 0.462

5 max 2x2/2 112x112x64 56x56x64 0.001

6 conv 128 3x3/1 56x56x64 56x56x128 0.462

7 max 2x2/2 56x56x128 28x28x128 0.000

8 conv 256 3x3/1 28x28x128 28x28x256 0.462

9 max 2x2/2 28x28x256 14x14x256 0.000

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9634

Published by: The Mattingley Publishing Co., Inc.

10 conv 512 3x3/1 14x14x256 14x14x512 0.462

11 max 2x2/2 14x14x512 7x7x512 0.000

12 conv 1024 3x3/1 7x7x512 7x7x1024 0.462

13 conv 256 3x3/1 7x7x1024 7x7x256 0.231

14 connected 12544 539

15 Detection

 Total BFLOPs 3.185

YOLO v2

YOLOv2 is otherwise known as YOLO9000. YOLOv2

uses darknet-19 for object detection. YOLOv2 has been

designed to show better object detection scores and this

framework is used in Faster Region based CNN and Single

Shot multi-box Detector (SSD).

Table 2. Tiny YOLOv2

No. Layer

Name

Kernel

s

Kernel

Size /

Stride

Input Size Output Size BFLO

Ps

0 conv 16 3x3/1 416x416x3 416x416x16 0.150

1 max 2x2/2 416x416x16 208x208x16 0.003

2 conv 32 3x3/1 208x208x16 208x208x32 0.399

3 max 2x2/2 208x208x32 104x104x32 0.001

4 conv 64 3x3/1 104x104x32 104x104x64 0.399

5 max 2x2/2 104x104x64 52x52x64 0.001

6 conv 128 3x3/1 52x52x64 52x52x128 0.399

7 max 2x2/2 52x52x128 26x26x128 0.000

8 conv 256 3x3/1 26x26x128 26x26x256 0.399

9 max 2x2/2 26x26x256 13x13x256 0.000

10 conv 512 3x3/1 13x13x256 13x13x512 0.399

11 max 2x2/1 13x13x512 13x13x512 0.000

12 conv 1024 3x3/1 13x13x512 13x13x1024 1.595

13 conv 512 3x3/1 13x13x1024 13x13x512 1.595

14 conv 30 1x1/1 13x13x512 13x13x30 0.005

15 Detection

 Total BFLOPs 5.344

Comparison between YOLO v2 and YOLO v1

 YOLOv2 uses a high-resolution classifier so, mean

Average Precision (mAP) has been improved in

YOLOv2. The input size increases from 224x224 to

448x448 and improved the mAP to 2%.

 An image is divided into 13 x 13 grid to detect and

localize smaller objects.

 It has improved the detection result of images with

varying sizes once the training with images of different

scales, is given to the algorithm.

 In YOLOv2, anchor boxes provides a single framework

for both classification and prediction.

YOLOv3

YOLOv3 is an enhanced version of YOLOv2. It consists of

totally 106 layers. Out of which, one set of 53 layers trained on

ImageNet dataset and another set of 53 layers used for

detecting the object. Its detection speed is reduced from 45 fps

to 30 fps but it gives better accuracy than previous versions.

Comparison between YOLOv3 and YOLOv2

 Improved bounding box prediction: A confidence value is

predicted for all the objects in a bounding box by logistic

regression.

 More accurate class predictions: To label each class of objects,

logistic classifiers are used.

 Improved abilities at different scales: three predictions are

found for every location in an input image by up-sampling

for getting fine-grained semantic information so that the

quality of the output is improved.

Table 3. Tiny YOLOv3

No. Layer

Name

Kernel

s

Kernel

Size /

Stride

Input Size Output Size BFLOPs

0 conv 16 3x3/1 416x416x3 416x416x16 0.150

1 max 2x2/2 416x416x16 208x208x16 0.003

2 conv 32 3x3/1 208x208x16 208x208x32 0.399

3 max 2x2/2 208x208x32 104x104x32 0.001

4 conv 64 3x3/1 104x104x32 104x104x64 0.399

5 max 2x2/2 104x104x64 52x52x64 0.001

6 conv 128 3x3/1 52x52x64 52x52x128 0.399

7 max 2x2/2 52x52x128 26x26x128 0.000

8 conv 256 3x3/1 26x26x128 26x26x256 0.399

9 max 2x2/2 26x26x256 13x13x256 0.000

10 conv 512 3x3/1 13x13x256 13x13x512 0.399

11 max 2x2/1 13x13x512 13x13x512 0.000

12 conv 1024 3x3/1 13x13x512 13x13x1024 1.595

13 conv 256 1x1/1 13x13x1024 13x13x256 0.089

14 conv 512 3x3/1 13x13x256 13x13x512 0.399

15 conv 18 1x1/1 13x13x512 13x13x18 0.003

16 yolo

17 route 13

18 conv 128 1x1/1 13x13x256 13x13x128 0.011

19 upsamp

le

 2x13x

1

3x128 26x26x128

20 route 198

21 conv 256 3x3/1 26x26x384 26x26x256 1.196

22 conv 18 1x1/1 26x26x256 26x26x18 0.006

23 yolo

 Total

BFLOPs

5.448

IV. IMPLEMENTATION RESULTS AND DISCUSSION

The Small Dataset Used for Training.

In this work, we have used 2 images to form a tiny “2 image

dataset” from [*ee] and used it for training. Along with the

image, the ground truth bounding box information is available.

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9635

Published by: The Mattingley Publishing Co., Inc.

The deep learning network is trained with this information

repeatedly by introducing the 2 images as training images.

Deep Network Design using Darknet

The open source framework Darknet is used to train the neural

network which is written in C and CUDA. It serves as the basis

for modeling YOLO deep network. The darknet framework is

useful for real-time object detection. Darknet displays

information when it loads the config file and weights, then it

classifies the image and finally prints the classes for the image.

Recurrent Neural Networks are powerful models for

representing data that changes over time and Darknet can

handle them without making use of CUDA or OpenCV.

In this work, we used Alexey’s [13] implementation of

Darknet which is a part of Joseph Redmon’s original Darknet

[14] implementation. Since it is based on C, and it contains

features to use YOLO, we opted to use it as the best choice for

designing our fast, real-time drone detection system.

The Experimental Setup

We used a Normal Core i7 Laptop with 16Gb RAM. We

have not used any higher capability GPU and we only depend

on the computing power of the CPU. We used 64bit version of

Lubuntu 16.04 as the operating system on our laptop.

We used Alexey’s implementation of Darknet from [11]

and compiled. It uses the maximum CPU power of our Laptop.

While compiling Darknet, the following Make file

parameters are used:

GPU=0

CUDNN=0

CUDNN_HALF=0

OPENCV=0

AVX=0

OPENMP=1

LIBSO=0

ZED_CAMERA=0

We have disabled GPU option and Enabled Multi-Processing

option. So, our experiments can be repeated on any 64bit

laptop without any other additional GPU/TPU hardware or any

other computing resources.

Images Used for Training and Testing

Table 4. The Two Drone Images from [11] are Used for Training

Table 5. The 20 Different Size Drone Images from [11] are used for Testing.

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9636

Published by: The Mattingley Publishing Co., Inc.

About the Batch Size and Epochs

As far as these two-image small dataset is concerned, the
Batch Size, subdivisions size and Epochs are too important for
successful training.

To make the training as a successful and progressive
process, we used the batch size of 2 and subdivisions size of 1.
It means that we train both the images in each epoch and
repeated it for 700 epochs.

Number of Training Images : 2
Number of Test Images : 20
Number of Epochs of Training : 800
* We have trained both the models upto 800 epochs and

saved the weight at each 100 epoch steps and used the weights
which gave the highest performance in terms of mAP. In our
case, we achieved the best performance at the 700

th
 epochs in

both the network models.

M
o

d
el

T
o

ta
l

D
et

ec
ti

o
n

T
im

e
(s

ec
)

P
re

ci
si

o
n

R
ec

al
l

F
1

-S
co

re

av
er

ag
e

Io
U

 (
%

)

A
v

er
ag

e

D
et

ec
ti

o
n

 T
im

e

(s
ec

)

Tiny YOLOv2 0.37 0.35 0.36 23.14 0.28 0.25

Tiny YOLOv3 0.54 0.35 0.42 34.79 0.40 0.3

Performance in Terms of Precision, Recall and F1-Score

0.37 0.35 0.36

0.64

0.45
0.53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F1-Score

Performance

M
e
t
r
i
c

.

Tiny YOLOv2 Tiny YOLOv3

23.14

38.17

0

5

10

15

20

25

30

35

40

45

Tiny YOLOv2 Tiny YOLOv3

Io
U
 (
%
)

 .

Network Model

Performance in Terms of IoU

Performance in Terms of mAP

0.283613

0.486513

0

0.1

0.2

0.3

0.4

0.5

0.6

Tiny YOLOv2 Tiny YOLOv3

Network Model

m
A

P

.

Performance in Average Detection Time

0.25

0.3

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Tiny YOLOv2 Tiny YOLOv3

Network Model

D
e
t
e
c
t
i
o

n

T

i
m

e
/
I
m

a
g

e
(
s
e
c
)

.

Generally, deep learning network will consume

several hours or days even weeks for getting some meaningful
training to give high precision in detection even at the very
higher end hardware such as GPU and TPU clouds. But the
scope of this work is to complete the same kind of training
process with in the limitations of a conventional CPU.

January - February 2020

ISSN: 0193 - 4120 Page No. 9630 - 9637

9637

Published by: The Mattingley Publishing Co., Inc.

We observed that the training of YOLOv2 with two images
consumed less than 30 minutes and YOLOv3 with two images
consumed less than 20 minutes. So, we proved that it is
possible to train a deep learning network within an hour and
get some meaningful testing / detection performance in terms
of mAP.

V. CONCLUSION
In this work, we successfully implemented a drone

detection system with two different Tiny YOLO models and
demonstrated the possibility of training a deep learning
network with insignificantly small number of training images.
In our experiment, we have used only 2 drone images to train
the Tiny YOLOv1 and Tiny YOLOv2 network and achieved
an acceptable detection performance. To prove the successful
detection, we used a small test image set with 20 drone images
and measured the performance with different metrics. As
shown in the results of previous section, our work proves the
possibility of training a deep learning images only with very
few images per class. The achieved results in terms of different
metrics shows the successful training with a few images.

Our results proved that any research on deep learning can
be done on a normal computer without any sophisticated
hardware such as GPU and TPU and giving solutions for the
hardware related obstacles in front of Deep Learning
Research. Generally, even with GPU and TPU clouds, the
training process of deep learning will consume several days or
even months since there will be huge dataset for training. In
our work, we showed the possibility of training a huge deep
learning network on a insignificant hardware (CPU) with a
dataset of insignificant size.

We demonstrated that it is possible to train a deep learning
network with in an hour and get some meaningful
testing/detection performance in terms of mAP. So anyone
who starts a deep learning research and trying to implement a
complex deep learning system can really able to complete a
simple prototype if they try to do the initial experiments with
very low number of samples (images or any data).

REFERENCES

1. Jason Brownlee, “A Gentle Introduction to the Challenge
of Training Deep Learning Neural Network Models,
February 15, 2019 in Deep Learning Performance,
machinelearningmastery.com

2. Jason Brownlee, “Impact of Dataset Size on Deep Learning
Model Skill And Performance Estimates”, January 2, 2019
in Deep Learning Performance,
machinelearningmastery.com

3. Michael Chui et al., "Notes from the AI frontier: Insights
from hundreds of use cases ,McKinsey Global Institute,
Discussion Paper, April 2018

4. *aa Shriram Ramanathan, Senior analyst, artificial
intelligence and big data analytics at Lux Research "Five

Challenges for Deep Learning", An article at eetimes.com
5. *bb Colin Adams, "Expensive, Labour-Intensive, Time-

Consuming: How Researchers Overcome Barriers in
Machine Learning" , July, 2019, An Article at
journal.binarydistrict.com

6. *cc Himanshu Singh, "Everything you Need to Know
About Hardware Requirements for Machine Learning", An
article at einfochips.com, Feb 2019

7. *dd https://missinglink.ai/guides/computer-vision/yolo-
deep-learning-dont-think-twice/

8. Deep Cross-Domain Flying Object Classification for
Robust UAV Detection, Arne Schumann, Lars Sommer,
Johannes Klatte, Tobias Schuchert, Jurgen Beyerer, IEEE
August 2017.

9. Object Motion Detection Based on Perceptual Edge
Tracking, Gao Q, Parslow A,Tan M, IEEE 2016.

10. Unified, Real-Time Object Detection, Joseph Redmon,
Santosh Divvala, Ross Girshick, Ali Farhadi, IEEE 2016.

11. Using Deep Networks for Drone Detection, Cemal Aker,
Sinan Kalkan, IEEE July 2017.

12. FlowNet: Learning Optical Flow with Convolutional
Networks, Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg,
Philip Hausser, Caner Hazirbas and Vladimir Golkov,
IEEE 2015.

13. Detection and Tracking of Moving Object Based on PTZ
Camera, Xinghua Li, Qinglei Chen and Haiyang Chen,
IEEE 2012.

14. Moving Object Detection and Locating Based on Region
Shrinking Algorithm, Zhihui Li, Haibo Liu and Di Sun,

IEEE 2012.
15. A Survey on Different Background Subtraction Method for

Moving Object Detection, Rajkumari Bidyalakshmi Devi
and Khumanthem Manglem, IEEE 2016.

16. A Study on Detecting Drones Using Deep Convolutional
Neural Networks, Muhammad Saqib, abin Sharma, Sultan
Daud Khan and Michael Blumenstein, IEEE 2017.

17. A Moving Objects Detection Algorithm in Video
Sequence,Mingyang Yang, IEEE 2014

18. Christian Reiser, Bounding box detection of drones (small
scale quadcopters) with CNTK Fast R-CNN,
https://github.com/creiser/drone-detection

19. Chuan-en Lin, “drone-net”,
https://github.com/chuanenlin/drone-net

20. Alexey, “Windows and Linux version of Darknet Yolo v3
& v2 Neural Networks for object detection”,
https://github.com/AlexeyAB/darknet

21. Joseph Redmon, "Darknet: Open Source Neural Networks
in C", http://pjreddie.com/darknet/,2013-2016

22. Miasnikov, E., Threat of Terrorism Using Unmanned
Aerial
Vehicles: Technical Aspects. Center for Arms Control,
Energy
 and Environmental Studies, Moscow Institute of Physics
and
 Technology, Moscow, 2015.

23. Humpreys, T., Statement on the Security Threat Posed
by Unmanned Aerial Systems and Possible
Countermeasures. Statement to the Subcommittee on
Oversight and Management Efficiency of the House
Committee on Homeland Security, 18 March 2015,
Washington D.C.,2015.

24. Dinesh Sathyamoorthy, "A Review of Security Threats of
Unmanned Aerial Vehicles and Mitigation Steps", Article
Published at ResearchGate.net, October 2019.

https://missinglink.ai/guides/computer-vision/yolo-deep-learning-dont-think-twice/
https://missinglink.ai/guides/computer-vision/yolo-deep-learning-dont-think-twice/
https://github.com/creiser/drone-detection
https://github.com/chuanenlin/drone-net
https://github.com/AlexeyAB/darknet
http://pjreddie.com/darknet/,2013-2016

