

Student Perception towards Educational Institution

Dr. NVJ Rao¹, Dr. Manabhanjan Sahu², Debasis Mohapatro³, Dr. Jitendra Kumar Sahu⁴.

¹Registrar, GIET University, Gunupur, Odisha, India.

²Assistant Professor, School of Management Studies, GIET University, Gunupur, Odisha, India
 ³Assistant Professor, School of Management Studies, GIET University, Gunupur, Odisha, India
 ⁴ Professor & HoD, Sanjay Memorial Institute of Technology, Berhampur, Odisha, India.

Article Info Volume 82 Page Number: 8402 – 8422 Publication Issue: January-February 2020

Article History Article Received: 18 May 2019 Revised: 14 July 2019 Accepted: 22 December 2019 Publication: 07 February 2020

Abstract:

The researchers in this work used a tool to analyze the students' perception (financial &non financial) while selecting a specific educational institution for the purpose of a higher professional education. In specific the researchers have used Principal Component Analysis (PCA) to explore the Principal components out of a set of variables used in the analysis. This is to define the specific variables and their order of preferences in a selection process. To analyze the same we collected empirical data from 140 students from 12 different colleges from three districts, namely Rayagada, Gajapati and Ganjam form the state of Odisha, India. Out of these, only 120 are the valid responses which finally we analyzed. A pre and post test is conducted to define the final questionnaire. The collection of data from the sampel is purely on random basis. The survey was conducted in the month of September, 2019. The proposed model is used to find the principal components and the valid variables which impacts the decision making process of a student. The major finding are that, out of nine variables only six variables are found relevant while selecting an educational institution, these are in order of their importance are; placement, reference, quality teaching, brand image of institution, some other personal factors and finally a University. While the unimportant variables are; fee structure, free seat and distance from home.

Keywords:Principal Component Analysis (PCA), random sampling, perception, empirical data.

I. INTRODUCTION

Now days, education become one the basic needs of the present society. The education everybody looks for is a professional type, which could secure their life in terms of getting employments. Even though the final destination is a job, but preferences are always not given to that institution offers a placement, rather some other factors also impacts while selecting a professional educational institution. There are lists of preferences while selecting an instruction by a student, here it becomes important to understand the mind set of those. Hence educations once termed as a practice is become a business and the rate at which the new institutions are coming up every day with billions of investment, it become very important to understand the mindset of the students. What exactly a student's look for, a student's perception for an institution need to be understood first. At this context the researchers through this article tried to understand the same, and propose an insight on the student's psychology while selecting a professional educational institution for their higher education.

II. REVIEW OF LITERATURE:

These are few of the literatures; those have worked on the student's perceptions for an professional educational institution.

Senthilkumar et al. (2009) did a research on the determinants of service quality in the higher education institutions in India, in specific to the educational institutions in specific for the state of Tamil Nadu. He concluded that the major determinants are the placement, teaching quality, quality of the faculty members, physical resources and a wide range of disciplines. These in other term speak about the employability of the graduate and post graduate students in a higher education institution.

Arambewela et al. (2009) by their research on an empirical model of international student satisfaction, proposed through a theoretical model that, the perceived level of satisfaction of the students is depend upon the nature of services. This manly depends upon the educational and non educational services.

Marks et al. (2005) through the research on predictors for effective online learning by use of the Structural Equation Modeling, did an investigation on interactions among three components on education i.e. instructor, student and content. They concluded that instructor is the major component for any effective learning process.

Arulraj et al. (2007) on a study of placement (employability) as a criteria to determine the service quality of an educational institution through a SQM-HEI model revealed that there are three major components which determine the service quality of an educational institution, these are; teaching style, study environment and discipline. They developed a 30 variable instrument, which are empirically tested with the uses of AMOS 7 for structural equation model & Bayesian estimation and testing.

Pituch et al. (2006)on a study of the perception of students for an e learning system. They proposed the alternative models of learning, proposes a model consists of external variables, perceived usefulness, perceived ease of use, intention behaviour and use of system. They named it as the technology acceptance model.

Amaury Nora (1987) in its research on the determinants for retention of college students by use of structural equation modeling proposes that,

2.1. Gap in the present research:

Most of the research articles used the Factor analysis as a tool for its statistical analysis. Even there are application of AMOS as a tool for analysis and interpretation. We found no researchers using PCA as a tool to analyze the variables.

2.2. Objective of the study:

Hence, to fill the gap in the past studies, we are using the Principal Component Analysis (PCA) to find out the principal components and important variables which a student gives maximum priorities.

The objective is also to make a hierarchical order or the series of variables in accordance to the preferences.

III. RESEARCH METHODOLOGY

The methodology basis in this research paper is the survey of the student's opinion (perception) while selecting an educational institution for their higher studies. Out of 9 major questions, the researcher tries to find out the principal components (major variables) which influence their selection criteria. Hence we used the statistical model of principal component analysis (PCA) to analyze the survey.

3.1. Survey process

The survey process follows a systematic sequence of following steps.

3.2. Literature review:

Following different literature reviews and also by considering different traditional possible dimensions of student's perceptions for selecting an educational institution for higher professional education. The survey form designed consists of the following;

3.3. Design of Questionnaire:

The questionnaire designed in the survey form is having two sections, first section contains five questions speaks about the general information (Background) of the student and second section contains nine questions are related to the information about the perception of students while selecting an educational institution for pursuing a professional education. The scaling used in the questionnaire is designed as per the five point Likert scale.

Under the Five point Likert scale, the points represents as follows;

Point 1 for very unimportant

Point 2 for unimportant

Point 3 for cannot say

Point 4 for important

Point 5 for very important

3.4. Pre-test & Post-test

The questionnaire was first pretested on 20 numbers of students from five different colleges belonging to the district of Rayagada to check whether the language & text used in it is under stood clearly or not and also other structural issues in it. The questionnaire was then further adjusted as per the desired levels of the changes it required and finally the revised format was tested one more time on same number of students from same colleges, hence a post test is also done on the questionnaire before we move to the final collection and analysis of the data . Basically it is used to check the communality issues in the research. It ensures that the final research is having all the expressions are true on its consistency and nature.

3.5. Questionnaire format items:

The questionnaire contains the following five general information items and nine perception related items in Table 1.

Table:	1.	Questionnaire	format
--------	----	---------------	--------

-	
BACKGROUNDL	SOURCE
INFORMATION:	
Name	Author
Age	Author
Place	Author
Qualification	Author
Family income	Author
PERCEPTION	SOURCE
RELATED	
INFORMATION	
University	Author and past
	literature studies
Distance	Author and past
	literature studies
Placement	Author and past
	literature studies
Reference	Author and past
	literature studies
Teaching faculties	Author and past
	literature studies
Free seat	Author and past
	literature studies
brand image	Author and past
(Reputation)	literature studies
Course Fees	Author and past
	literature studies
Others	Author and past
	literature studies
Source: Author	

Source: Author

3.6. Data collection

The survey area is the three districts of the state Odisha i.e. Ganjam ,Gajapati and Rayagada. Students are the targeted sample, mostly the students from the higher secondary education schools and colleges those who are expected to opt for a further higher education, in specific the professional education. A face to face personal interview is done with the use a structured close end questions. The sample size was 140 numbers of students belongs to 12 different higher secondary and graduation schools and colleges. The selections of the schools are

purely random in nature, as well the selection of students. There are 120 valid responses out of these 140 responses by excluding some of the outliers. Hence the valid response rate is about 86% of the responses, which is good enough to validate and generalize the research outcome.

3.7. Research framework

Once the data is collected the real analysis begins with a sequence of steps, and in our research it follows basic five steps.

- 1. Standardization of data
- 2. Computing the covariance matrix

3. Calculate the Eigen vectors and values

4. Computing principal components

5. Reducing the dimensions of data set

3.7.1. Step: 1.

Under the process of standardization of data, it deals with scaling of the data in such a way that there is a common / similar range under which all the variables and its range will fall. It is calculated by subtracting the variable value from the mean, and the whole is divided by its standard deviation. It is observed on the basis of the Z value that, the data maintains a standard scale between + 2 SD to - 2 SD.

3.7.2. Step: 2.

It is necessary to identify the highly correlated variables as they may destruct the overall data structure and information (biasness & reluctant), hence it is necessary to find the correlation and dependencies among the variables. By the help of the covariance matrix we could find out the such variables and treat those accordingly.

As per the mathematical calculation it uses P X P and Q X Q matrix, where P explains the dimensions of the data and Q represents the quantile. Under P X P Matrix, each of the entries represents the corresponding variable's covariance i.e. the codependence between the variables. If the covariance is negative it signifies that there s a negative or indirectly proportionate relation between the variables, while a positive value signifies the opposite. Besides the values of covariance represents the strength of relation between the variables.

3.7.3. Step: 3.

Normally the data is scattered randomly with different degree of variances and along different dimensions, hence it is required to concentrate the scattered the data around some distinct dimensions. This concentrating the data in to different dimensions is done with the help of Eigen vectors, which represents the dimension along which the data need to be concentrated. In the context of Principal Component Analysis, an Eigen value represents the scalars of the respective Eigen vectors, which is normally taken as one. Hence these eigen vectors and values represents the number of principal components in a data set.

Note: the objective of the PCA is to find out the principal components (new set of limited variables from the existing all variables) which are significantly different from each other by compressing and processing the most important and distinct information when the data is scattered randomly.

3.7.4. Step: 4.

Having the computed values of Eigen vectors and values, the next step is to order them in a descending manner to enable the most significant variables to be the principal components among the set of variables. Highest the Eigen values is the highest most significant, and lowest the value is the lowest significant. It is to noted that, the variables having the Eigen value more than one is considered as the number of different dimensions, and also is the number of principal components. hence the principal component having less significant are removed so as to reduce the dimension of the data set. This computing the principal components meant for construct a matrix called as Future matrix, which contains all the significant variables containing maximum of the information.

3.7.5. Step: 5.

This is the final step of performing PCA, which deals with the reorganize the variables along with the principal components so as to minimize the number of variables and maximize the chances of its representation of information. To re organize the variables PCA follows a simple multiplication of the transpose of initial data with the obtained transpose of calculated Feature vector.

IV. ANALYSIS AND INTERPRETATIONS:4.1. Descriptive Data Analysis:

The data (table 2) shows that, the students emphasizes all the attributes as more than the average rating (3) on a liker type scaling. Also among the nine attributes, teaching quality (quality of the teachers) is ranked the highest with an average rating of 3.96, and free seat is ranked the lowest with an average rating of 3.44.

			Near						
Attributes			to	Job		Teaching	Free	Brand	
	University	Fees	home	placement	Reference	quality	seat	name	Others
Factor	F1	F2	F3	F4	F5	F6	F7	F8	F9
Average									
Rating	3.75	3.78	3.49	3.57	3.50	3.96	3.44	3.80	3.53
Average									
Ranking	4	3	8	5	7	1	9	2	6

Table: 2. Rating and Ranking:

Source: Author

The major three attributes besides *teaching quality* are; institution *Brand image/reputation* and *courseFee structure*. With these major three considerations, the students select an institution offering a higher professional course.

On the contrary, the least three attributes besides free seat are; Distance of institution from the home and Reference. A third attributes; Job Placement (campus interview) lies at the middle of the rank with an average rating score of 3.57. The other two attributes above and below this middle attribute are; student prefer an University over a college and some other factor respectively while selecting an educational institution for their higher education.

Attributes	s/variables	university	Fees	distance	reference	faculties	free	reputation	others	placement
		F1	F2	F3	F4	F5	F6	F7	F8	F9
Ν	Valid	120	120	120	120	120	120	120	120	120
	Missing	0	0	0	0	0	0	0	0	0
Me	ean	3.75	3.78	3.49	3.50	3.96	3.44	3.80	3.53	3.57
rat	ing	4	3	8	7	1	9	2	6	5
Std. Error	r of Mean	.116	.109	.123	.108	.125	.100	.129	.126	.114
Me	dian	4.00	4.00	4.00	4.00	4.50	4.00	4.00	4.00	4.00
Mo	ode	5	4	5	4	5	4	5	5	5
Std. De	eviation	1.265	1.197	1.347	1.181	1.374	1.091	1.418	1.378	1.248
Vari	iance	1.601	1.432	1.815	1.395	1.889	1.190	2.010	1.899	1.559
Skev	vness	908	-1.068	559	529	-1.208	796	808	563	339
Std. Error o	of Skewness	.221	.221	.221	.221	.221	.221	.221	.221	.221

Table: 3. Descriptive Analyses:

Kurtosis	115	.503	730	518	.146	.171	752	934	-1.050
Std. Error of Kurtosis	.438	.438	.438	.438	.438	.438	.438	.438	.438
Range	4	4	4	4	4	4	4	4	4
Sum	450	454	419	420	475	413	456	423	428

Source: Author

The data in above table (3) represents, median of 4 for all the attributes except quality of faculties having the median of 4.5. In response to the mode (the maximum of cases) where the students very highly agreed that, these attributes are highly significant for selecting an educational institution are; University, Distance, quality faculties, brand value, placement and some others. While they expressed that, fees, reference and free seat plays a significant role in their decision. The Z value of the kursosis and skewness represents there are few attributes which shows a level of Kurtosis &skewness, but its range lies between + 1.96 to -1.96. this represents that the data is normally distributed. The further demonstrate that the variances from the means of the attributes are not same.

Below chart (1) is a graphical presentation of the means of the attributes, where we could find that, the attributes like; quality of the faculties, brand value, fees and Univesiity showing a very higher range of mean in comarison to others. The attribute like; distance, placement, free seat and other factors shows a lower mean. The diagram aslo represents the standard erros of these means.

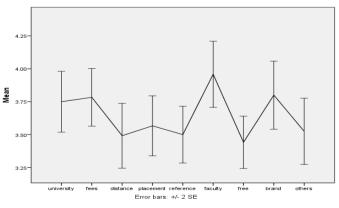


Chart: 1. Mean and Standard error:

4.2. Distribution of Data set:

The distribution of the data set shall be further analyzed by use of a P-P plot, which will enable us to understand and compare cumulative distribution function of the empirical data against a standard (theoretical) distribution function. A P-P Plot data set model is presented in the blow table (4)

Model Description	n			
Model Name		Student		
WIGGET Maille		preference		
	1	university		
	2	fees		
	3	distance		
	4	placement		
Series or Sequence	5	reference		
	6	faculty		
	7	free		
	8	brand		
	9	others		
Transformation		Natural logarithm		
Non-Seasonal Diff	erencing	1		
Seasonal Difference	ing	0		
Length of Seasonal	l Period	No periodicity		
Standardization		Applied		
	Туре	Normal		
Distribution	Location	estimated		
	Scale	estimated		
Fractional Rank Es	timation Method	Tukey's		
Rank Assigned to	Гies	Mean rank of tied values		
Applying the model spe	ecifications from St	udent preference		
Source: Author				

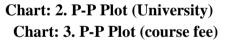
The final P-P Plot model description allows us the following information; there are 9 series of events, transformation through a natural logarithm, standardization is applied, distribution is normal, scaling is appropriate, liker 5 point scale with ordinal data, application of Tukey's Fractional rank estimation method and finally the rank is assigned on the basis of mean rank of the tied values.

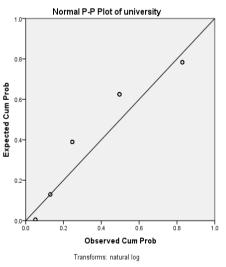
Table: 4. P-P Plot for the data set

Source: Author

Table: 6. Case Processing Summary

		university	fees	distance	placement	reference	faculty	free	brand	others
Series or Sequence Leng	ries or Sequence Length			120	120	120	120	120	120	120
Number of Missing	Negative or Zero Before Log Transform	0	0	0	0	0	0	0	0	0
Values in the Plot	User-Missing	0	0	0	0	0	0	0	0	0
	System-Missing	0	0	0	0	0	0	0	0	0


There are no missing values in the data collected and analyzed.


Source: Author

		university	fees	distance	placement	reference	faculty	free	brand	others	
Normal	Location	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
Distribution	Distribution Scale 1.000000 1.00000 1.00000										
	The cases are unweighted.										

Source: Author

The P-P Plot of individual items in its graphical presentation, further provide a clear view of the cumulative distribution function of variables. The same is presented in 9 different graphs (chart 2-9) below.

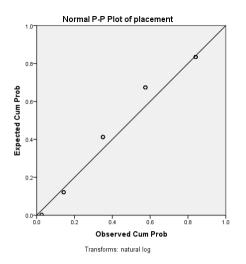



Chart: 4. P-P Plot (placement) Chart: 5. P-P Plot (distance)

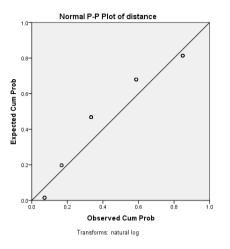


Chart: 6. P-P Plot (reference) Chart: 7. P-P Plot (free seat)

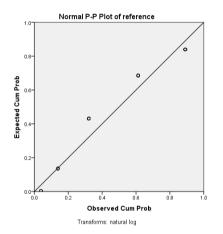
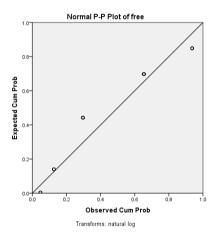
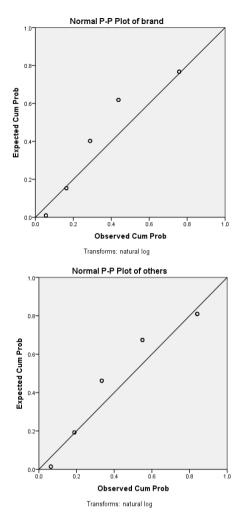




Chart: 8. P-P Plot (brand image) Chart: 9. P-P Plot (other cause)

All sources: Author from SPSS

4.3. Correlation Matrix:

Correlation matrix (table.5) represents the correlation between different attributes of selection of an educational institution, bigger the correlation value, the better correlation is. All the attributes are correlated to rest other attributes to an extend depending on the responses presented by the respondents. The significance level of the attributes also presented in the matrix speaks about the level of significance to which this correlation is valid. The responses having the value greater than + or -3 shall be considered in this case.

The significance level is on one tailed test of significance. The attributes showing less than 0.005 is considered as a significance value. i.e. there is a significant relation between the attributes at 95% level of significance.

Correlation N	latrix ^ª									
		university	fees	distance	placement	reference	faculty	free	brand	others
	university	1.000	.352	.324	.660	.647	.724	.282	.581	.471
	fees	.352	1.000	.280	.235	.416	.485	003	.306	.452
	distance	.324	.280	1.000	.253	.441	.234	.125	.184	.082
	placement	.660	.235	.253	1.000	.576	.655	.345	.558	.407
Correlation	reference	.647	.416	.441	.576	1.000	.691	.447	.552	.467
	faculty	.724	.485	.234	.655	.691	1.000	.293	.694	.486
	free	.282	003	.125	.345	.447	.293	1.000	.221	.281
	brand	.581	.306	.184	.558	.552	.694	.221	1.000	.540
	others	.471	.452	.082	.407	.467	.486	.281	.540	1.000
	university		.000	.000	.000	.000	.000	.001	.000	.000
	fees	.000		.001	.005	.000	.000	.486	.000	.000
	distance	.000	.001		.003	.000	.005	.086	.022	.188
	placement	.000	.005	.003		.000	.000	.000	.000	.000
Sig. (1-tailed)	reference	.000	.000	.000	.000		.000	.000	.000	.000
	faculty	.000	.000	.005	.000	.000		.001	.000	.000
	free	.001	.486	.086	.000	.000	.001		.008	.001
	brand	.000	.000	.022	.000	.000	.000	.008		.000
	others	.000	.000	.188	.000	.000	.000	.001	.000	
a. Determinant	t = .012	•								•

Table: 5. Correlation Matrix

Source: Author

~

...

The above table finally has shown a determinant value of 0.012 and as per the theory any determinant value greater than 0.0001 shall be considered as there a gross correlation between the variable in a data det.

4.4. Test of Sampling adequacy:

The KMO and Bartlett's test (table.6) further confirms that there is a sampling adequacy and sphericity of the data, by its value of 0.830 and 0.00005 respectively.

Table:	6.	KMO	and	Bartlett's Test
--------	----	-----	-----	------------------------

KMO and Bartlett's Test									
Kaiser-Meyer Adequacy.	r-Olkin	Mea	asure of Sampling	.830					
D d ul	T (c	Approx. Chi-Square	507.552					
Bartlett's Test Sphericity		of	df	36					
sphericity			Sig.	.000					

Source: Author

Note: KMO value above .9 is marvelous, .8 to .9 is meritorious, .7 to .8 is middling, .6 to .7 is mediocre, .5 to .6 is miserable, and less than .5 is unacceptable. It is the entire correlation of the samples. Further for any value smaller than 0.001 on Bartlett's test is the confirmation of significant relationship among the values of the attributes.

Hence the sample shows meritorious values which assure that the data is sufficient enough for further analysis and treatments.

4.4. Test of Communalities:

To understand the how much the attributes are correlated on the basis of the questionnaire designed and clarity in understanding while answering, the test of communalities is applied.

The above table on communalities represents there the data is significant as the communalities is more than the minimum expected. On this parameter; distance shows the maximum, while other factors show the least.

Table: 7. Communalitie

Communalities					
	Initial	Extraction			
university	1.000	.696			
fees	1.000	.742			
distance	1.000	.902			
placement	1.000	.651			
reference	1.000	.766			
faculty	1.000	.782			
free	1.000	.719			
brand	1.000	.669			
others	1.000	.629			
Extraction Method:		Principal Component			
Analysis.	Analysis.				
Source: Author					

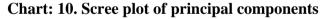
Note: Communality very low for an item, it usually represents the variables are completely unrelated. The items are poorly designed i.e. poorly drafted or not understood. It represents the biasness if low communality. Initial value is 1 while the Extraction values good close to 1

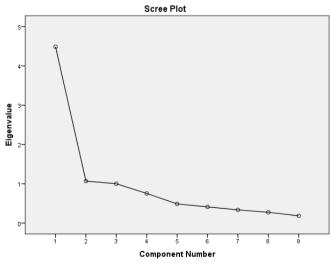
V. EXTRACTION METHODS:

5.1. Total variance explained

Purpose of PCA is to explain as much as the variance in the model, its contribution to the total variance in the model is expressed in form of Eigen value. We used Eigen value as 1; hence any component having the Eigen value more than 1 represents the Principal components.

Component one, two and three combined represents 72.847 % of variables of which component one stands for almost 50 % of variables (49.857), component two represents 11.118% and component three represents 11.118 of variances


Total Variance Explained							
Componen		Initial Eigen	Initial Eigen values Extraction Sums of Squared Loadings Rotation Sums of		Rotation Sums of		
t							Squared Loadings ^a
	Total	% of	Cumulative	Total	% of Variance	Cumulative %	Total
		Variance	%				
1	4.487	49.857	49.857	4.487	49.857	49.857	4.309
2	1.069	11.873	61.730	1.069	11.873	61.730	1.160
3	1.001	11.118	72.847	1.001	11.118	72.847	1.914
4	.753	8.372	81.219				
5	.487	5.410	86.629				
6	.411	4.563	91.191				
7	.335	3.727	94.919				
8	.273	3.038	97.956				
9	.184	2.044	100.000				
	Extraction Method: Principal Component Analysis.						
a. Whe	a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.						


Table: 8. Total Variance Explained

Source: Author

By the above calculation, there are three components are being extracted from the list of components.

The same also further confirmed by use of a scree plot. On this scree plot there is a point of deflection, which divides all the components in to two parts. The components above the delfection are considered are the principal components and the components below the scree plot are non principal components.

Source: Author

The deflection point in the scree plot represents the number of components to retain, hence there are utmost three components to be retained.

5.2. Computing principal components: 5.2.1. Component matrix

By the help of component matrix, the Principal component analysis has extracted three components, 1, 2 and 3.by the un-rotated values of the factor loading. The components having higher values are found suitable to be included under the components. Under component one the factors having higher and near equal values are grouped on one, these are from factor 1, 2, 3, 4, 5 and 6. While component 2 has two factors i.e. factor 5 and 6, but these are negatively correlated. Component 3 has two, these are factor 6 and 9, and of these factors 9 is having higher positive value, while factor 6 is having an insignificant lower and negative value. It shows that all the variables under different components shows a significant value to be considered for analysis.

Published by: The Mattingley Publishing Co., Inc.

Component Matrix ^a				
Component				
3				
.411				
804				
Extraction Method: Principal Component Analysis.				
a. 3 components extracted.				

Table: 9. Component matrix

Source: Author

Note: Factor analysis has identified three components

component 3 is having variable 6 & 9 but are in not similar values.

5.2.1.1. Factor loading of items

The extraction under the principal component analysis, the pattern matrix is derived by rotated oblimin with Kaiser Method of normalization, it gave 9 iterations. Rotation is oblimin believing that the factors are not independent; rather they all are correlated to each other. With this matrix it is found that, variables from 1 to 6 are having a almost near value to be grouped under the component 1. While component 2 is having variable number 7 & 8 and

5.2.1.2. Pattern Matrix (3 components)

Pattern matrix describes the pattern of the items, which are extracted by a Principal component analysis and by following an oblimin rotation with Kaiser Normalization. The pattern matrix is presented in the below table (10)

	Pattern Matrix ^a				
		Compo	nent		
-	1	2	3		
faculty	.855				
Brand	.843				
others	.834				
university	.736				
placement	.692				
reference	.628		.394		
Free		758			
Fees	.534	.619			
distance			.973		

	Table:	10.	Pattern	matrix
--	--------	-----	---------	--------

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization. a. Rotation converged in 9 iterations. Source: Author

5.2.1.3. Component correlation (3 components):

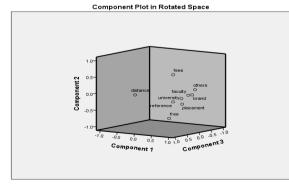

The next step is to do an analysis of component correlation analysis, under this it is found that there is very low degree of correlation between the component 1 & 2. There is small correlation between the component 1 and 3. The rotation for normalization is once again by the Oblimin with Kaiser Method for the extraction under principal component analysis.

Table: 11. Component correlation Matrix

Component C	orrelation Ma	itrix	
Component	1	2	3
1	1.000	085	.317
2	085	1.000	068
3	.317	068	1.000
Extraction Met	hod: Principal	Component	Analysis.
Rotation Meth	od: Oblimin w	ith Kaiser N	ormalization.

The same is presented in form of a 3 D model, which also further confirm that 6 variables are good enough to be considered under one component i.e. component 1.

Chart: 11. 3D plot of component correlation matrix

Source: Author

Published by: The Mattingley Publishing Co., Inc.

5.2.2. Component Matrix (2 components)

With reference to the above analysis, the researchers have decided to ignore three component analyses to practices, and a two component analysis is introduced.

The component matrix has shown a significant value for further pattern matrix analysis.

Component Matrix ^a				
	(Componer	nt	
		1	2	
faculty		874		
reference		843		
university		834		
placement		774		
brand		773		
others		674		
distance		415		
free		443	696	
fees		547	.662	
Extraction M	ethod: I	Principal	Component	
Analysis.				
a. 2 components extracted.				
Course A suffrage				

 Table: 12. Component Matrix (2 component)

Source: Author

5.2.2.1. Pattern Matrix (2 components):

The pattern matrix values are also significant; hence it is further exposed to the structure matrix.

Table:	13.	Pattern	matrix
--------	-----	---------	--------

Pattern Matrix ^a			
	Component		
	1	2	
faculty	.872		
reference	.846		
university	.835		

placement	.788		
brand	.774		
others	.669		
distance	.397		
free	.485	697	
fees	.506	.663	
Extraction Metho	d: Principal	Component	
Analysis.			
Rotation Method:	Oblimin	with Kaiser	
Normalization.			
a. Rotation converged in 6 iterations.			

Source: Author

5.2.2.3. Structure Matrix (2 Components):

Under the structure matrix all the variables are significant. It is further exposed to correlation matrix between component 1 & 2.

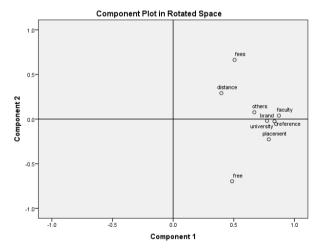
Structure Matrix				
	Component			
	1	2		
faculty	.874			
reference	.843			
university	.834			
placement	.774			
brand	.773			
others	.674			
distance	.415	.315		
fees	.546	.694		
free	.443	667		
Extraction Me	thod: Principal	Component		
Analysis.				
Rotation Meth	od: Oblimin	with Kaiser		
Normalization.				

Table: 14. Structure matrix

Source: Author

5.2.2.4. Component Correlation Matrix (2 **Components**):

Under the component correlation matrix method, it is found that there is 61% correlation between component 1 & 2.


Table: 15. Component correlation Matrix					
Component Correlation Matrix					
Component	1	2			
1	1.000	.061			
2	.061	1.000			
Extraction N	Aethod: Pri	ncipal Comp	onent		
Analysis.					
Rotation Me	ethod: Obli	min with l	Kaiser		
Normalization.					

Source: Author

5.2.2.5. Component plot-Rotated 2 (**Components**)

The component plot is designed to express the same in a pictorial presentation. It is found that component one is having 6 variables concentrated in one space and rest three (fees, distance and free) are scattered and could be considered under component 2.

Chart: 12. Scattered plot of component correlation matrix

Source: Author

5.3. Results

We finally we got list of variables under the principal component one and two are as follows;

Principal component 1 includes 6 variables i.e.

- 1. University
- 2. Placement
- 3. Reference

- 4. Faculty
- 5. Brand image
- 6. Others

While, the Principal component 2, includes 3 variables i.e.

- 1. Distance
- 2. Course fees
- 3. Free seat

VI. RELIABILITY TEST:

The next step is to do a reliability study of these two components.

6.1. Reliability statistics for component one (1)

6.1.1. Summary of Principal component one.

A reliability study starts from a case processing summary, which is as follows (Table 1);

There are 120 valid responses, no missing values, and a list wise deletion of variables procedure is applied.

	Case Pro	ocessing Summary	
		Ν	%
	Valid	120	100.0
Cases	Excluded ^a	0	.0
-	Total	120	100.0
a.	Listwise deletion base	ed on all variables in the p	procedure.

Table: 16. Case Processing Summary of component one

Source: Author

6.1.2. Reliability statistics of Principal component one:

The reliability statistics is expressed in form a Cronbach's alpha, the same is used to measure the internal consistency (coefficient of reliability) of the data i.e. the how closely the items are correlated as a set of item and also as a group.

It is to note that, ahigher value of alpha represents a higher degree of internal consistency i.e. they are related to each other very closely.

The value of cronbach's Alpha derived (Table 17) is .891 which is significant enough to conclude that there is a very high degree or internal consistency between the items and within the groups.

Reliability Statistics				
Cronbach's	Cronbach's Alpha Based on	N of		
Alpha	Standardized Items	Items		
.891	.893	6		
	Source: Author			

6.1.3. Inter-item correlation of Principal component one:

The inter item correlation is found to be significant, being the values are positive and on higher values.

	Inter-Item Correlation Matrix							
	placeme	referen	facult	bran	others	university		
	nt	ce	у	d				
placeme nt	1.000	.576	.655	.558	.407	.660		
referenc e	.576	1.000	.691	.552	.467	.647		
faculty	.655	.691	1.000	.694	.486	.724		
brand	.558	.552	.694	1.00 0	.540	.581		
others	.407	.467	.486	.540	1.000	.471		
universit y	.660	.647	.724	.581	.471	1.000		

Table: 18. Inter-Item Correlation Matrix of component one.

Source: Author

The inter item correlations reveals the following information;

With Item Placement, item faculty quality is best correlated

With item reference, item faculty quality again best correlated

With item faculty, Item University is best correlated.

With item brand image, item faculty is best correlated

With item other cause, Item University is best correlated

With item university, item faculty is best correlated.

Table: 19. Inter-Item Covariance Matrix of component one.

	Inter-Item Covariance Matrix							
	placeme	referen	facult	brand	others	university		
	nt	ce	У					
placeme nt	1.559	.849	1.125	.988	.700	1.042		
referenc e	.849	1.395	1.122	.924	.761	.966		
faculty	1.125	1.122	1.889	1.353	.921	1.258		
brand	.988	.924	1.353	2.010	1.055	1.042		
others	.700	.761	.921	1.055	1.899	.821		
universit y	1.042	.966	1.258	1.042	.821	1.601		
			Source · A	uthor				

Source: Author

6.1.4. Summary statistics of principal component one (1)

Summary of the statistics is presented below (table 20) reveals the following information;

Mean value is 3.683 which is much convincing; about 58.1%. inre item covariance is about 99.5 %. Correlation is

rule. 20. Summary rule studies of component one.								
Summary Item Statistics								
	Mean	Minimu	Maximu	Rang	Maximum /	Varianc	N of	
		m	m	e	Minimum	e	Items	
Item Means	3.683	3.500	3.958	.458	1.131	.033	6	
Item Variances	1.725	1.395	2.010	.615	1.441	.058	6	
Inter-Item Covariances	.995	.700	1.353	.653	1.933	.031	6	
Inter-Item Correlations	.581	.407	.724	.317	1.778	.009	6	

Table: 20. Summary Item Statistics of component one.

Source: Author

On the individual item analysis, all the 6 variables found having Cronbach's alpha much higher i.e. coefficient is more than .855 and as high as .895.

6.1.5. Item-Total Statistics of component one.

	Item-Total Statistics							
	Scale Mean if	Scale	Corrected Item-	Squared	Cronbach's Alpha			
	Item Deleted	Variance if	Total	Multiple	if Item Deleted			
		Item Deleted	Correlation	Correlation				
placement	18.5333	29.243	.697	.520	.874			
reference	18.6000	29.570	.720	.543	.871			
faculty	18.1417	26.761	.813	.691	.855			
brand	18.3000	27.472	.722	.549	.870			
others	18.5750	29.793	.566	.345	.895			
university	18.3500	28.347	.762	.614	.864			

 Table: 21. Item-Total Statistics of component one.

Source: Author

6.1.6. Intra-class Correlation:

The intra-class correlation (table 22) with single measure is 0.577 and with average measure is 0.891.

Note: the intra class correlation coefficient at its lower side must be above .7, more the coefficient is more the correlation.

Hence we could find that there is a higher degree of intra class correlation between the items. As it is higher than .7 and it is almost .9 hence there is a very high degree of correlation. Also on its lower bound it is .858 which is large enough to conclude the same, and its upper bound it is .919. These all signifies that there is a very high degree of correlation within the class.

The significant F value is 0.0001 which is less than .001, which represents that there is a significant relation between the items.

Table: 22. Intra-class Correlation Coefficient of component one

Intraclass Correlation Coefficient							
	IntraclassCorrelation ^b	95% Confider	nce Interval	F Test with True Value 0			
		Lower	Upper	Value	df1	df2	Sig
		Bound	Bound				
Single Measures	.577 ^a	.501	.653	9.179	119	595	.000
Average	.891 [°]	.858	.919	9.179	119	595	.000
Measures	.891	.050	.919	9.179	119	595	.000
Two-way mixed ef	fects model where people eff	fects are rando	m and measure	s effects a	re fixe	d.	
a. The estimator is the same, whether the interaction effect is present or not.							
b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is							
excluded from the	denominator variance.						

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. *Source: Author*

Source: Author

6.2. Reliability statistics for component two (2)

6.2.1. Case Processing Summary

Case summary is similar to the component 1

Table:23.CaseProcessingSummary ofcomponent two.

Case Processing Summary					
		N	%		
	Valid	120	100.0		
Cases	Excluded ^a	0	.0		
	Total	120	100.0		
a. List	wise deletion	based on a	ll variables in the		
procedure.					

Source: Author

6.2.2. Reliability statistics:

Reliability statistics for internal consistency through Cronbach's alpha gave the coefficient value of .333 which is much lesser than .07, hence these is an issue of internal consistency in the data set. We should not proceed for any further analysis. Still we believe to re test on other dimensions.

Table:24. Reliability Statistics of component two

Reliability Statistics						
Cronbach	Cronbach's	Alpha	N of Items			
's Alpha	Based	on				
.333	.317		3			
n	4 . 7					

Source: Author

6.2.3. Inter-item correlation:

The inter item correlation is also very poor i.e. less than .280 and even negative. Further rejects any type of inter item correlation.

Table:	25.	Inter-Item	Correlation	Matrix	of
compo	nent	two			

Inter-Item Correlation Matrix						
	fees	distance	free			
fees	1.000	.280	003			
distance	.280	1.000	.125			
free	003	.125	1.000			

Source: Author

6.2.4. Inter-item covariance:

Same issue with the inter item covariance. It's not significant

Table: 26. Inter-Item Covariance Matrix

Inter-Item Covariance Matrix					
	fees	distance	free		
fees	1.432	.452	004		
distance	.452	1.815	.184		
free	004	.184	1.190		

Source: Author

6.2.5. Summary item statistics

The summary stamen says, there is no issue with the item means, but the correlation and covariance is not significant.

Summary Item Statistics								
	Mean	Minimum	Maximum	Range	Maximum /	Variance	N of Items	
					Minimum			
Item Means	3.572	3.442	3.783	.342	1.099	.034	3	
Item Variances	1.479	1.190	1.815	.625	1.525	.099	3	
Inter-Item Covariances	.211	004	.452	.456	-104.097	.042	3	
Inter-Item Correlations	.134	003	.280	.284	-84.283	.016	3	

Table: 27. Summary Item Statistics

Source: Author

6.2.6. Item Total statistics:

The individual item also shows a negative or very low coefficient of Cronbach'salpha, that means the internal consistency of the individual item is also

not significant. This violates the reliability model further.

Item-Total Statistics							
	Scale Mean if	Scale	Corrected Item-	Squared	Cronbach's Alpha if		
	Item Deleted	Variance if	Total Correlation	Multiple	Item Deleted		
		Item Deleted		Correlation			
fees	6.9333	3.374	.204	.080	.219		
distance	7.2250	2.613	.292	.095	007 ^a		
free	7.2750	4.151	.081	.017	.436		
a. The value is negative due to a negative average covariance among items. This violates							
1. 1. 11.	1 1			1.			

reliability model assumptions. You may want to check item codings.

Source: Author

6.2.7. Intra-class Correlation:

To check the intra class correlation, we found the correlation coefficient is .333 which much lower than the desired value of 0.7. and on 95% confidence level it shows only .095 on its lower side and .561 on its higher side. Hence we could definitely say that

there is no intra class correlation. To justify the same again, the F test value also reject the same with the significant value of .005, which is much lower than the critical value of .001

Intra-class Correlation Coefficient								
	Intra-class Correlation ^b	95% Confiden	F Test with True Value 0					
		Lower Bound	Upper Bound	Value	df1	df2	Sig	
Single Measures	.142 ^a	.034	.262	1.498	119	238	.005	

Table: 29. Intra-class Correlation Coefficient

Average Measures	.333 ^c	.095	.516	1.498	119	238	.005	
Two-way mixed effects model where people effects are random and measures effects are fixed.								
a. The estimator is the same, whether the interaction effect is present or not.								
b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is								
excluded from the denominator variance.								
c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise.							erwise.	

VII. FINDINGS & SUGGESTIONS:

7.1. Research Findings:

The model validates that, out of nine items (variables) selected for this study only 6 are the valid cases which impacts positively while a student select a specific institution for its higher professional educations. These variables in order of their preferences are as follows;

Placement, Reference, Quality faculty, Brand image, some other factors and finally the University.

It is also can be concluded that the items are also correlated to each other in many ways, i.e. intra item and inter item. There are few best fit of first order could be determined. These are as follows;

With Item Placement, item faculty quality is best correlated

With item reference, item faculty quality again best correlated

With item faculty, Item University is best correlated.

With item brand image, item faculty is best correlated

With item other cause, Item University is best correlated

With Item University, item faculty is best correlated.

It further found that the variables like, Distance, Fees and free seats have never attract a student for pursuing its post further professional education.

7.2. Suggestions:

The research suggests the following points;

A professional educational institution shall give more importance on the activities related employability activities, these shall include all employability capacity enhancing skills i.e. all skill related to industry and market demands. It further suggest that the students, the parents of the students and their friends and relatives shall be satisfied with the services offered by the institution, so that they will refer the information seeking students to get admission.

Quality of the faculties also acts as a best part of the human resource, who play a major role in attact the students to get admitted. The quality in terms of both intellectual as well as human skills are the basis of measurement.

Brand image is such an intangible thing which comes automatically by consistent performance of the institution in all dimensions of performance. Hence there is no short cut to get the brand image overnight.

There are some other factors which are hidden, sometimes they follow an ideal person who is studying or going to joi. It is also group of friend they take decision as a whole group, they move in a mass.

People also prefer a university due to its flexibility on curriculums and other facilities which a university only can offer to its students. Hence being a University, an institution gets the advantage by its own benefits.

VIII. CONCLUSION AND SCOPE FOR FURTHER RESEARCH:

Conclusion;

The model of principal component analysis is used in this research article to evaluate the principal components which affect the decision making process of a student while he/ she is going to pursue a professional higher education. There are 9 items initially selected and among the items, we could construct only two principal components. The Principal component 1 contains 6 items and

component 2 contains 3 items. The items under component 1 justified the selection perceptions and component 2 fails to do so.

Scope for further research:

This study is open for further more inter related studies by its analysis and application. Few of these are follows;

The study on basis of gender preferences is still open for this research article

Instead PCA, a Factor analysis model could be applied to measure the items.

Instead of SPSS, some other statistical tool could be used to test the same. E.g. R Analytics, AMOS etc

REFERENCES

- Senthilkumar, N., &Arulraj, A. (2011). SQM-HEI–determination of service quality measurement of higher education in India. Journal of Modelling in Management, 6(1), 60-78.
- Arambewela, R., & Hall, J. (2009). An empirical model of international student satisfaction. Asia Pacific journal of marketing and logistics, 21(4), 555-569.
- Marks, Ronald B., Stanley D. Sibley, and John BenardArbaugh. "A structural equation model of predictors for effective online learning." Journal of management education 29.4 (2005): 531-563.
- 4. Marks, Ronald B., Stanley D. Sibley, and John BenardArbaugh. "A structural equation model of predictors for effective online learning." Journal of management education 29.4 (2005): 531-563.
- Senthilkumar, Nakkeeran, and A. Arulraj. "Role of placement in determination of service quality measurement of higher education in India." International Journal of Management Research and Technology 3.1 (2009): 293-307.
- Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
- Nora, A. (1987). Determinants of retention among Chicano college students: A structural model. Research in higher education, 26(1), 31-59.
- 8. Sahu, J. K., &Sahu, M. (2016). Service Quality

of Public Sector Banks in India A Gap Between Perception and Expectation. International Journal of Engineering and Management Research (IJEMR), 6(2), 573-578.