

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5179 Published by: The Mattingley Publishing Co., Inc.

Cost Optimization Methods for Computational Time

and Storage Space using Compression and Crypto-

Graphical Techniques for a File in the Cloud

S. Sandhya Rani
1
, Dr. Challa Narasimham

2

1 M. Tech, Vignan’s Institute of Information Technology, India.
2 Professor, Vignan’s Institute of Information Technology, India.

sandhyaseeramsetty@gmail.com , drchallan@gmail.com

Article Info

Volume 82

Page Number: 5179 - 5185

Publication Issue:

January-February 2020

Article History

Article Received: 18 May 2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 25 January 2020

Abstract:

All the transactions are digitalized today and there is an extreme need for informa-

tion security to be available in efficient and effective way. Security plays a vital

role in this digital world. A secure connection must be established between the

sender and receiver, this paper describes through Diffie-Hellman key exchange

algorithm. Valuable data must be kept as safe as possible in order to stay away from

attacks. This can be achieved through cryptography. Reducing the amount of space

to store data we can enhance security in best and cheap way. Using various symme-

tric and asymmetric algorithms, data security can be enhanced. There are proven

results that compared to symmetric algorithms, asymmetric algorithms are the best
ones due to its advanced feature like private (secret) key. This paper narrated about

how effectively the space and computational time can be obtained in a cloud. This

is applicable in Business Organizations, Research centers, nuclear power plants,

satellites, etc.

Keywords: Text file, Compression, Decompression, Encryption, Decryption,

Cloud, time, space.

1. INTRODUCTION

Security is any action taken by an organization to

avoid and monitor unauthorized access and future

damage to private data, users or devices of the net-

work. The safety objective is for all legitimate cus-

tomers to maintain the network running secure. we

need high security for businesses, hospitals, nuclear

power plants, public agencies, satellites, etc. loss of

security may lead to damage to our lives economi-

cally.

Data compression is a reduction in the number of

bits required to represent data. Converting one form

of data into another format definitely of reduced size

is also termed as compression. Compressing data can

save storage ability, speed up file transfer, and re-

duce storage hardware and network bandwidth ex-

penses. Administrators spend less cash and less time

on storage as a consequence of compression. It is a

significant data reduction technique as data contin-

ues to evolve exponentially.

 Network security can be enhanced through crypto-

graphy. cryptography is the method of converting the

plain text into some random and irrelevant text and

reversing the process again. Through encryption and

decryption process, we can pass data from one loca-

tion to the other in the network safely. Encryption is

the method of converting plain text information into

something seemingly random and irrelevant (cipher

text). The method of turning cipher text back into

plain text is decryption.

. Data can be compressed by performing two me-

thods. They are: 1. Lossless data compression and 2.

Lossy data compression. Lossless compression me-

thod is helpful for texts. Lossy compression tech-

nique is helpful for graphics, audio, video and pic-

tures. Among these, lossless data compression me-

thod is best as there is no change of content (or)

mailto:sandhyaseeramsetty@gmail.com

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5180 Published by: The Mattingley Publishing Co., Inc.

original data meaning as we are considering text file.

Data decompression is the technique of converting

the reduced format of text to the original format of

larger size. Data which is obtained after decompres-

sion and before decompression is same. In order to

restore the original data, decompression method

must be used along with compression.

Data compression and decompression can be

achieved through various methods. They are Huff-

man coding, Shannon - Fano coding, LZ78, LZ77,

Arithmetic coding, Sequitur, Prediction with partial

match (ppm). As per the literature available, Huff-

man coding is playing vital role compres-

sion/decompression process.

Encryption and decryption are possible through

symmetric cryptography and asymmetric cryptogra-

phy. For encryption and decryption, symmetric en-

cryption algorithms use a single key which is public

key used for both encryption and decryption process.

Various symmetric key encryption algorithms in-

clude Two fish, Serpent, AES(Rijndael), Blowfish,

CAST5, RC4, DES, 3DES, Skipjack, Safer++, and

IDEA. For encryption and decryption process,

asymmetric encryption algorithms use mathematical-

ly-related key pair, one is the public key and the oth-

er is the private key. When using the public key for

encryption, the associated private key is used for

decryption and the associated public key is used for

decryption while using the private key for encryption

process. Asymmetric key cryptographic algorithms

include ELGamal, RSA, Diffie-Hellman key ex-

change, Elliptic curve cryptography, PKCS. Among

symmetric encryption and asymmetric encryption,

asymmetric encryption algorithms provide more se-

curity because of its private(secret) key nature. So, in

this paper we are using asymmetric encryption algo-

rithms. How these algorithms works are explained

below.

Whitfield Diffie and Martin Hellman presented the

Diffie-Hellman key exchange to address the issue of

safely determining a shared key between two com-

municating parties over an insecure network. Diffie

Hellman cryptosystem, is a technique for exchanging

cryptographic keys by first creating a shared secret

key to be used for inter-communication purposes and

not for encryption or decryption process. This key

exchange method guarantees that the two sides who

have no previous knowledge of each other jointly

establish a shared secret key over the unsecure inter-

net. Key transformations ate interchanged, and both

end up with the same session key that looks like a

secret key. Then each of them can calculate a third

session key tat cannot readily be obtained from an

intruder who understands both exchanged values.

RSA is most widely used asymmetric encryption

algorithm in the world. RSA was first openly defined

by Ron Rivest, Adi Shamir and Leonard Adleman of

the Technology Institute of Massachusetts in 1977. It

can be used to encrypt a message without having to

exchange a secret key. Its security is based on the

difficulty of factoring large integers that are result of

two large prime numbers. Multiplying these two

numbers is simple, but determining the initial prime

numbers from the total (or) factoring is usually im-

practical relative to the time it would take even to-

day’s supercomputers.

Elliptical Cryptography (ECC) was found by

Whitfield Diffie and Martin Hellman in 1976 and

utilizes the issue known as the Discrete Logarithm

Problem (DLP) as its asymmetrical procedure. It is a

public key encryption method based on elliptical

curve theory that can be used to produce quicker,

lower, and more efficient cryptographic keys and is

evolved from Diffie Hellman. ECC generates keys as

the product of very large prime numbers, instead of

traditional technique of generation, through the cha-

racteristics of the elliptic curve equation.

Cloud computing is the delivery of different ser-

vices over the internet. These resources include tools

and applications such as data storage servers, data-

bases, networking, and software. In addition to main-

taining files on a proprietary hard drive or local sto-

rage device, cloud – based storage makes it possible

to save them to a remote database. To operate it, as

long as an electronic device has an access to the in-

ternet, it has access to information and software pro-

grams. A file can be uploaded into the cloud by fol-

lowing these sequences of steps. In Google Cloud

Platform Console, open the Cloud Storage Brows-

er. In the list of buckets, click on the name of the

bucket to upload an object. In the Objects tab for

the bucket, either: Drag and drop the desired files

from your desktop in the Google Cloud Platform

console. Click on the Upload Files button, select the

files you want to upload in the dialog that appears,

and clock Open.

2.EXISTING SYSTEM

Working with cloud-based data storage, the end user

data is first encrypted by using any cryptographic

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5181 Published by: The Mattingley Publishing Co., Inc.

algorithm and then stored on the cloud. Whenever

the data is required, the end user simply places a re-

quest to the cloud service provider for accessing the

data. The cloud service supplier authenticates the

user first as the genuine user and then provides the

data to the requester using any asymmetric algo-

rithm.

The above process occurs over an insecure net-

work. Attackers might attack and can theft (or) mod-

ify the data travelling over the network. There is a

loss of confidentiality and integrity to the data. RSA,

ECC asymmetric cryptographic algorithms are more

secure as it was very difficult to find the secret key

[13-18]. Attacker might unable to derive the plain

text from the obtained cipher text without the secret

key. As of now, third party cloud service providers

are concentrating more on data safety rather than low

storage space of data that would gradually decrease

the installation cost for end users. The main key is-

sues are: Time and Space. The amount of time re-

quired to store a file and the space occupied by the

file onto the cloud should be as small as possible.

Not all compression techniques are best. Based on

the type of data, various compression techniques are

used. To avoid data loses, Huffman coding has been

considered for compression and decompression

process. Based on the level of security of data, vari-

ous cloud types are chosen. To overcome these limi-

tations, the paper proposed to describe a new m3odel

to design cost effective computational time and sto-

rage space.

3. DESIGN METHODOLOGY FOR COST

EFFECTIVE TIME AND SPACE FOR CLOUD-

BASED DATA
Secure and reliable connection establishment be-

tween the sender and receiver would result in safe

data transfer over insecure network. Diffie-Hellman

key exchange algorithm is widely used to establish a

secure and reliable connection between the two au-

thenticating parties. data compression will definitely

decrease the storage space. Cloud service providers

does not concentrate much on choosing of efficient

algorithm. Choosing the best asymmetric algorithm

for storing data on cloud will definitely reduce the

amount paying to the cloud service provider by the

end user.

Fig 3.1: Design Flow chart

Design method 1:

A text file of size 128KB is chosen, which is com-

pressed using Huffman compression technique. The

compressed file size is obviously smaller than the

original file size. Then the compressed file is en-

crypted using public key cryptographic algorithm

i.e., RSA. The encrypted file of same size is then

start

Establish secure

connection

compress orig-

inal file

Encrypt com-

pressed file

Upload encrypted

file to cloud

decrypt

Decompress

decrypted file

Original file

stop

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5182 Published by: The Mattingley Publishing Co., Inc.

uploaded to the cloud. As per the user request, the

compressed encrypted file is retrieved back to the

user system. On the user machine, the file is then

decrypted using RSA decryption algorithm. Again,

the decrypted file is decompressed using Huffman

decompression technique. The resultant file then

obtained is same as the file that was uploaded at the

beginning. This is how, the space required to store a

file onto the cloud is reduced. So, pay-as-you go pol-

icy is more efficient for customers who are wishing

to store data safely on cloud with low cost.

 Fig 3.2 Design Model for RSA

Design Method 2:

A text file of size 128KB is chosen, which is com-

pressed using Huffman compression technique. The

compressed file size is obviously smaller than the

original file size. Then the compressed file is en-

crypted using public key cryptographic algorithm

i.e., ECC(Elliptic Curve Cryptography). The en-

crypted file of same size is then uploaded to the

cloud. As per the user request, the compressed en-

crypted file is retrieved back to the user system. On

the user machine, the file is then decrypted using

ECC decryption algorithm. Again, the decrypted file

is decompressed using Huffman decompression

technique. The resultant file then obtained is same as

the file that was uploaded at the beginning. This is

how, the space required to store a file onto the cloud

is reduced. So, pay-as-you go policy is more effi-

cient for customers who are wishing to store data

safely on cloud with low cost.

 Original Text File Huffman compressed file ECC Encrypted file

 Huffman Decompressed file ECC Decrypted file Cloud

 Original Text File

 Fig. 3.3 Design model for ECC

In the above three cases, various compression and

compression techniques were used for the same file

of the same size. Performance metrics were calcu-

lated in each case and then compared to decide the

best public-key cryptographic algorithm to store data

on cloud efficiently and effectively.

128KB

128 KB

retrieve

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5183 Published by: The Mattingley Publishing Co., Inc.

4.DESIGN METHODOLOGY FOR

EFFECTIVE COMPUTATIONAL TIMINGS

AND SPACE

In this paper, it is going to narrate and compare the

compression and decompression times as well as

encryption and decryption times for various asym-

metric algorithms. Storage space of each outcoming

file is also compared with the original file. The main

key issues in the cryptography are time and space.

To propose a best and effective technique, it must be

time -effective and space-efficient.

Storage space before compression: The original

file size is calculated. Using Huffman compression

algorithm the storage space before compression is

noted down.

 sts-bef-compHuff

Storage space after compression: The file size af-

ter compression is calculated. Using Huffman com-

pression algorithm the storage space before com-

pression is noted down.

 sts-aftr-copmHuff

a. Using RSA cryptosystem - computational

time

 Encryption and decryption time: The amount of

time required to encrypt a particular text file and the

amount of time required to decrypt a particular text

file using an RSA algorithm are calculated indivi-

dually. encryption and decryption times and the total

time for both the processes are noted down.

 TctRSA = EtRSA + DtRSA

 TctRSA = total computational time for a file

storing on cloud using RSA algorithm.

EtRSA = encryption time after compression.

DtRSA = decryption time before compression.

 b. Using RSA cryptosystem - Storage space

c. Using ECC cryptosystem - computational time

Encryption and decryption time: The amount of

time required to encrypt a particular text file and the

amount of time required to decrypt a particular text

file using an ECC algorithm are calculated indivi-

dually. Encryption and decryption times and the total

time for both the processes are noted down.

 TctECC = EtECC + DtECC

 TctECC = total computational time for a file

storing on cloud using ECC algorithm.

 EtECC = encryption time after compression.

 DtECC = decryption time before compression.

Based on the type of encryption algorithm used to

encrypt the file, the encryption spaces may vary for

various algorithms of same file size. So, for various

algorithms, the total computational time for storing a

file on cloud is calculated and noted down.

5.IMPLEMENTATION AND ANALYSIS

By computing encryption and decryption times,

compression and decompression times and compar-

ing those results would define which asymmetric

algorithm is efficient for storing data on the cloud.

Huffman procedure:

a. Procedure to compute CtHuf:

 long startTime = System.currentTimeMillis();

 if (choice.startsWith("c")) {

 startTime = compress();

 System.out.println("Compressing ...");

 long startTime = System.currentTimeMillis();

 tree.compress(charListFromFile(input), bitOut);

 long elapsed = System.currentTimeMillis() -

startTime;

 System.out.println("\nDone. (" + elapsed +

"ms)");

b. Procedure to compute DctHuf:

long startTime = System.currentTimeMillis();

else if (choice.startsWith("d"));

 startTime = decompress();

System.out.println("Decompressing " + inputFile-

Name + " ...");

tree.decompress(bitIn, bitOut);

if (outputFileName.length() > 0) {

output.close();

long elapsed = System.currentTimeMillis() - start-

Time;

 System.out.println("\nDone. (" + elapsed + "ms)");

RSA procedure:

a. Procedure to compute EtRSA:

 static private void doEncrypt(String[] args)

 long time1 = System.nanoTime();

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5184 Published by: The Mattingley Publishing Co., Inc.

 Cipher cipher = Ci-

pher.getInstance("RSA/ECB/PKCS1Padding");

 cipher.init(Cipher.ENCRYPT_MODE, pvt);

 processFile(cipher, inputFile, inputFile + ".enc");

 long time2 = System.nanoTime();

 double enctime = time2 - time1;

 System.out.println("encryption time is

"+enctime);
b. Procedure to compute DtRSA:

 private static void doDecrypt(String[] args)

 long time1 = System.nanoTime();

 Cipher cipher = Ci-

pher.getInstance("RSA/ECB/PKCS1Padding");

 cipher.init(Cipher.DECRYPT_MODE, pub);
 processFile(cipher, inputFile, inputFile + ".ver");
 long time2 = System.nanoTime();
 double enctime = time2 - time1;
 System.out.println("decryption time is
"+dectime);

ECC procedure:

a. Procedure to compute EtECC:

Cipher aCipher = Ci-

pher.getInstance(aSecretKey.getAlgorithm());

aCipher.init(Cipher.ENCRYPT_MODE, aSe-

cretKey);

 byte[] encText = aCipher.doFinal(getBytes());

 Sys-

tem.out.println(Base64.encodeBase64String(encText

));

 System.out.println(encText);

b. Procedure to compute DtECC:

Cipher aCipher = Ci-

pher.getInstance(aSecretKey.getAlgorithm());

aCipher.init(Cipher.DECRYPT_MODE, aSe-

cretKey);

byte[] decText = aCi-

pher.doFinal(Base64.decodeBase64("0wwerdjkHbV

hYI+YPxUnmw==".getBytes())); String text =

new String(decText);

System.out.println("Decoded="+text);

Table 1: Time Characteristic Table (File Size :128 KB)

Algorithm Encryption Time Decryption Time

RSA 4.132675E8 7.82966E7

ECC 11.26453E8 2.34528E8

OBSERVATIONS : As compared to the above

encryption and decryption times, RSA algorithm

gives best results while performing encryption when

compared to ECC algorithm. ECC algorithm gives

best results while performing decryption when com-

pared to RSA algorithm. So, RSA algorithm works

well when the total computational time is calculated.

CONCLUSION:

This paper described how effectively the secure con-

nection could be established between the two parties.

The PKCS like RSA and ECC implementation for

encryption and decryption process has been imple-

mented and the computational timings for the cor-

responding techniques has been measured. Further,

this paper utilized the best compres-

sion/decompression process implementation through

Diffie Hellman and uploaded to the cloud.

REFERENCES:

[1] Leena Khanna, Anant Jaiswal, “Cloud

Computing: Security Issues and Description

of Encryption Based Algorithms to Over-

come Them”, IJARCSSE 2013

[2] G Devi, Pramod Kumar “Cloud Computing:

A CRM service Based on a Separate En-

cryption and Decryption using Blowfish

Algorithm” IJCTT 2012

[3] Simarjeet Kaur “Cryptography and Encryp-

tion in Cloud Computing”, VSRD Interna-

tional Journal of CS and IT,2012

[4] Nelson Gonzalez, Charles Miers, Fernando

Redigolo Marcos Simplicio, Tereza Carval-

January - February 2020

ISSN: 0193 - 4120 Page No. 5179 - 5185

5185 Published by: The Mattingley Publishing Co., Inc.

ho, Mats Naslund, Makan Pourzandi “A

quantitative analysis of current security

concerns and solutions for cloud compu-

ting”, Springer 2012.

[5] Wayne Jansen, Timothy Grance “Guide-

lines on Security and Privacy in public

Cloud Computing”, National Institute of

Standards and Technology 2011

[6] Ayan Mahalanobis, “Diffie-Hellman Key

Exchange Protocol, Its Generalization and

Nilpotent Groups.” 2005

[7] Ansah Jeelani Zargar, Mehreen Manzoor,

Taha Mukhtar “Encryption/Decryption us-

ing Elliptical Curve Cryptography”,

IJARCSSE 2017

[8] Dr. E. Laxmi Lydia, K. Vijaya Kumar, P.

Amaranatha Reddy, D. Ramya, “Text Min-

ing with Hadoop: Document Clustering

with TF-IDF and Measuring Distance Using

Euclidean”, Journal of advanced research in

dynamical & control systems, Vol.10,14-

Special Issue, 2018.

[9] Dr. E. Laxmi Lydia, B. Prasanna Kumar, D.

Ramya, “Generation of dynamic energy

management using data mining techniques

basing on big data analytics issues in smart

grids”, International Journal of Engineering

& Technology, 7(2.26), 2018, 85-89.

[10] E. Laxmi Lydia, P. Govindaswamy, SK.

Lakshmanaprabu, D. Ramya, “Document

Clustering based on Text mining K-means

algorithm using Euclidean distance similar-

ity”, Journal of advanced research in dy-

namical & control systems, vol. 10, 02-

special issue, 2018.

[11] E. Laxmi Lydia, D. Ramya, “Text Mining

with Lucene and Hadoop: Document clus-

tering with updated rules of NMF Non-

Negative Matrix Factorization”, Interna-

tional Journal of Pure and Applied Mathe-

matics, vol 118(7), 191-198, 2018.

[12] E. Laxmi Lydia, P. Krishna Kumar, K.

Shankar, S.K. Lakshmanaprabu, R. M.

Vidhyavathi, Andino Maseleno, “Charis-

matic Document Clustering through novel

K-means non-Negative Matrix Factoriza-

tion (KNMF) algorithm using Key Phrase

extraction”, International Journal of parallel

programming, 2018.

[13] Shankar, K. (2018). An optimal RSA en-

cryption algorithm for secret images. Inter-

national Journal of Pure and Applied

Mathematics, 118(20), 2491-2500.

[14] Shankar, K., Devika, G., & Ilayaraja, M.

(2017). Secure and efficient multi-secret

image sharing scheme based on boolean op-

erations and elliptic curve cryptography. In-

ternational Journal of Pure and Applied

Mathematics, 116(10), 293-300.

[15] Shankar, K., & Eswaran, P. (2016). RGB-

based secure share creation in visual cryp-

tography using optimal elliptic curve cryp-

tography technique. Journal of Circuits,

Systems and Computers, 25(11), 1650138.

[16] Elhoseny, M., & Shankar, K. (2019). Reli-

able data transmission model for mobile ad

hoc network using signcryption technique.

IEEE Transactions on Reliability.

[17] Shankar, K., Lakshmanaprabu, S. K.,

Gupta, D., Khanna, A., & de Albuquerque,

V. H. C. (2018). Adaptive optimal multi

key based encryption for digital image secu-

rity. Concurrency and Computation: Prac-

tice and Experience, e5122.

[18] Shankar, K., & Ilayaraja, M. (2018, Janu-

ary). Secure Optimal k-NN on Encrypted

Cloud Data using Homomorphic Encryption

with Query Users. In 2018 International

Conference on Computer Communication

and Informatics (ICCCI) (pp. 1-7). IEEE.

