
January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

45

AN INTRODUCTION TO ROBOT OPERATING

SYSTEM (ROS)

Mukul Kulkarni1, Minakshi More2 , Swapnaja Patwardhan3 Darshana Yadav4
1234Department of MCA, MES Institute of Management and Career Courses, Pune, India

Article Info

Page Number: 45 - 51

Publication Issue:

Jan-June 2015

Abstract:

This paper gives an introduction to Robot Operating System. In the first

section we have focused on historical development and contributions made

through the timeline. In addition, we have also discussed about features and

functionality of ROS with open-source advancement.

Article History

Article Received: 02 Jan 2015

Revised: 12 Feb 2015

Accepted: 24 March 2015

Publication: 28 April 2015

Keywords: ROS, Robotics, Open Source, Robot, Operating System

1. INTRODUCTION

Research in the field of robotics is

increasing. For working with robots, a new open-

source operating system called Robot Operating

System (ROS) is getting recognized. This ROS has

application in both in research and commercial as

well. The major working associated with it

involves creating applications for robot which

includes hardware level access, writing device

drivers and extending to communication using

message passing. In ROS libraries are being build

everyday with community efforts and largely used

for research programs. For the process of getting

results different researchers are creating some

frameworks for rapid prototyping and

experimentation modules which are used in

academia and industry [2]

2. HISTORY

From many years’ contribution from

different developers ROS was developed. Due to

the need for an open-source collaborative

framework for the field for robotics and research

associated with it an open operating system for

robots was developed. ROS was created around

twentieth century with major efforts from scholars

at the Stanford University. With their efforts a

dynamic operating system was built with

functioning for flexible prototyping and

integration.

Initially projects like STanford AI Robot

(STAIR) and the Personal Robots (PR) were

developed within institution as a prototype for

robots operating software’s. Willow Garage, in the

year 2007 further develop this and created

software program which can be used with any

robot. Many research scholars contributed to his

work and current ROS was evolved. Gradually it

was completely moved from prototype to

completely open source. [1]

ROS was truly collaborative environment

from beginning. It was developed by contribution

from multi-institutional scholars. Even though it

was collaborative, still they manage they allowed

user to start new repository for code.

This flexibility was initially available due to less

restrictions and there was no need for permission

making it truly open-source work. [1]

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

46

3. TIMELINE DEVELOPMENT IN ROS [1]

Date Development Details

May 1, 2007 Switchyard at

Stanford

Before the ideas fully coalesced to become ROS, several robotics

software frameworks were prototyped in research projects at

Stanford, including the STanford Artificial Intelligence Robot

(STAIR) and the Personal Robotics (PR) program

November

1, 2007

ROS at Willow

Garage

Willow Garage begins their Personal Robotics project, and ROS

becomes a formal entity.

January 1,

2008

Churn The ROS team goes through many iterations at Willow Garage

and Stanford, aggressively building (and discarding) various

design and implementation concepts

January 1,

2009

ROS 0.4 Release ROS gradually starts taking shape into the framework we are

now familiar with

June 1,

2009

Willow Garage

Milestone 2 Reached

Relying heavily on ROS, the PR2 alpha robot navigated through

eight doors and plugged its power cord into nine outlets (aka

"Milestone 2").

January 22,

2010

ROS 1.0 Following an extensive phase of documentation and user testing

(aka "Milestone 3"), ROS 1.0 is released, establishing many of

the components and APIs that are still used today.

March 1,

2010

ROS Box Turtle

Release

The first ROS distribution, code-named ROS Box Turtle, is

released. The distribution is now a key concept for ROS, with

most users relying on a specific distribution.

June 29,

2010

11 PR2s Ship to Beta

Program Recipients

With the goal of furthering ROS and robotics development in

general, Willow Garage sends eleven PR2s to industry and

university labs around the world

August 3,

2010

ROS C Turtle Release ROS C Turtle, the second distribution, is released. The first

batch of PR2s ship with a pre-release version of C Turtle.

February 3,

2011

ROS 3D Contest Following the release and subsequent hacking of the Microsoft

Kinect, Willow Garage sponsors a contest to spur development

of cool demonstrations of what can be done with ROS and a

low-cost 3D sensor

February

15, 2011

ROS Answers Debuts To better support the burgeoning developer and user

community, a dedicated Q&A forum is launched. ROS Answers

is now an indispensable community resource, with over 10,000

questions.

February

16, 2011

ROS Day @ ISR

Coimbra

Roboticists at the ISR University of Coimbra organize a "ROS

Day" to introduce their colleagues to ROS.

March 2,

2011

ROS Diamondback

Release

ROS Diamondback, the third distribution, is released.

April 18,

2011

TurtleBot Launch To reach a broader audience than the PR2 ever could, the low-

cost TurtleBot is introduced. The hardware specification is

released under an open source license, allowing for individuals

and companies to build, customize, and share (or sell) their own

versions of TurtleBot.

August 30,

2011

ROS Electric Emys

Release

ROS Electric Emys, the fourth distribution, is released.

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

47

April 23,

2012

ROS Fuerte Release ROS Fuerte, the fifth distribution, is released.

May 19,

2012

ROSCon 2012 The inaugural edition of ROSCon, the ROS developers'

conference, is held in St. Paul, Minnesota. Over 200 people come

together to spend the weekend getting to know each other and

discussing ROS.

August 20,

2012

ROS RoboCup

Rescue Summer

School

A summer school is held in Graz, Austria to foster the

development of common software components and architectures

for the RoboCup Rescue League based on ROS.

September

17, 2012

Rethink Robotics

Releases Baxter

Rethink Robotics releases Baxter, a ROS-based robot for

industry

November

1, 2012

Cotesys-ROS Fall

School

Willow Garage teams up with the Technical University of

Munich (with help from others) to run a week-long hands-on

class to introduce students from around Europe to ROS.

November

18, 2012

"ROS By Example"

Published

The first book on ROS appears, authored by Patrick Goebel.

December

31, 2012

ROS Groovy

Galapagos Release

ROS Groovy Galapagos, the sixth distribution, is released.

February

11, 2013

ROS moves to the

Open-Source Robotics

Foundation

Responsibility for core development and maintenance of ROS

transfers from Willow Garage to the still-young Open-Source

Robotics Foundation.

March 20,

2013

ROS-Industrial

Consortium kicks off

Spearheaded by the Southwest Research Institute, the newly-

founded ROS-Industrial Consortium aims to bring ROS-based

capabilities to industrial robots used in production

environments.

May 11,

2013

ROSCon 2013 The second edition of the ROS developers' conference is held in

Stuttgart, Germany. Approximately 300 people come together

to meet and discuss ROS

July 22,

2013

ROS Summer School

at FH Aachen

Localization, Mapping, Navigation, RGBD cameras, Laser

Range Finders, Arduino hardware, Image processing, SLAM,

IMUs and a lot more. The FH Aachen is offering a ROS

Summer School for all interested students in the field of

Robotics, Mechatronics and Mechanical Engineering.

September

1, 2013

"Learning ROS for

Robotics

Programming"

Published

The second book on ROS appears, authored by Aaron Martinez

and Enrique Fernández.

September

9, 2013

ROS Hydro Medusa

Release

ROS Hydro Medusa, the seventh distribution, is released.

September

16, 2013

TEDUSAR ROS

Summer School

The second edition of the TEDUSAR summer school is held at

the University of Maribor in Slovenia.

November

23, 2013

ROS Workshop at

Shanghai Jiatong

University

The Future of ROS and its applications. This workshop aims to

discuss recent developments within ROS, and how they can be

best utilized by Robotics researchers in China.

April 12,

First ROS Japan User

Scheduled to be held every month.

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

48

2014 Group Meeting

June 6,

2014

ROS Kong The first international ROS user group meeting

June 14,

2014

Summer School at

Middlesex University

Middlesex University London is running an Introduction to

ROS summer school in Lundon, June 14th-18th. It will be a

practical hands on class with 10 turtlebot 2 robots and a Baxter

Research Robot.

June 26,

2014

ROS Industrial

Europoe Kickoff

The ROS Industrial Consortium Europe heald it's kickoff event

in Stuttgart Germany

July 22,

2014

ROS Indigo Igloo

Released

ROS Indigo Igloo, the eigth release, is released. This is the first

Long Term Support release

September

1, 2014

The Robonaut 2

aboard the ISS runs

ROS

With the latest upgrades to the Robonaut 2 aboard the ISS it is

now running ROS.

September

12, 2014

ROSCon 2014 The third ROS developers' conference was held in Chicago,

Illinois

4. FEATURES OF ROS [1]

ROS is the middleware operating environment. It

provides below mentioned robot specific features.

It also provides libraries and tools. Details are

mentioned in the following table.

Features Particulars

Message Passing A communication system is often one of the first needs to arise when implementing a

new robot application. ROS's built-in and well-tested messaging system saves you time

by managing the details of communication between distributed nodes via the

anonymous publish/subscribe mechanism. Another benefit of using a message passing

system is that it forces you to implement clear interfaces between the nodes in your

system, thereby improving encapsulation and promoting code reuse. The structure of

these message interfaces is defined in the message IDL (Interface Description

Language).

Recording and

Playback of

Messages

Because the publish/subscribe system is anonymous and asynchronous, the data can be

easily captured and replayed without any changes to code. Say you have Task A that

reads data from a sensor, and you are developing Task B that processes the data

produced by Task A. ROS makes it easy to capture the data published by Task A to a

file, and then republish that data from the file at a later time. The message-passing

abstraction allows Task B to be agnostic with respect to the source of the data, which

could be Task A or the log file. This is a powerful design pattern that can significantly

reduce your development effort and promote flexibility and modularity in your system.

Remote Procedure

Calls

The asynchronous nature of publish/subscribe messaging works for many

communication needs in robotics, but sometimes you want synchronous

request/response interactions between processes. The ROS middleware provides this

capability using services. Like topics, the data being sent between processes in a

service call are defined with the same simple message IDL.

Distributed

Parameter System

The ROS middleware also provides a way for tasks to share configuration information

through a global key-value store. This system allows you to easily modify your task

settings, and even allows tasks to change the configuration of other tasks

Standard Robot Years of community discussion and development have led to a set of standard message

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

49

Messages formats that cover most of the common use cases in robotics. There are message

definitions for geometric concepts like poses, transforms, and vectors; for sensors like

cameras, IMUs and lasers; and for navigation data like odometry, paths, and maps;

among many others. By using these standard messages in your application, your code

will interoperate seamlessly with the rest of the ROS ecosystem, from development

tools to libraries of capabilities.

Robot Geometry

Library

TF visualization

A common challenge in many robotics projects is keeping track of where different

parts of the robot are with respect to each other. For example, if you want to combine

data from a camera with data from a laser, you need to know where each sensor is, in

some common frame of reference. This issue is especially important for humanoid

robots with many moving parts. We address this problem in ROS with the tf

(transform) library, which will keep track of where everything is in your robot system.

Designed with efficiency in mind, the tf library has been used to manage coordinate

transform data for robots with more than one hundred degrees of freedom and update

rates of hundreds of Hertz. The tf library allows you to define both static transforms,

such as a camera that is fixed to a mobile base, and dynamic transforms, such as a joint

in a robot arm. You can transform sensor data between any pair of coordinate frames in

the system. The tf library handles the fact that the producers and consumers of this

information may be distributed across the network, and the fact that the information is

updated at varying rates.

Robot Description

Language

Another common robotics problem that ROS solves for you is how to describe your

robot in a machine-readable way. ROS provides a set of tools for describing and

modeling your robot so that it can be understood by the rest of your ROS system,

including tf, robot_state_publisher, and rviz. The format for describing your robot in

ROS is URDF (Unified Robot Description Format), which consists of an XML

document in which you describe the physical properties of your robot, from the lengths

of limbs and sizes of wheels to the locations of sensors and the visual appearance of

each part of the robot.

Once defined in this way, your robot can be easily used with the tf library, rendered in

three dimensions for nice visualizations, and used with simulators and motion planners

Preemptable

Remote Procedure

Calls

While topics (anonymous publish/subscribe) and services (remote procedure calls)

cover most of the communication use cases in robotics, sometimes you need to initiate

a goal-seeking behavior, monitor its progress, be able to preempt it along the way, and

receive notification when it is complete. ROS provides actions for this purpose.

Actions are like services except they can report progress before returning the final

response, and they can be preempted by the caller. So, for example, you can instruct

your robot to navigate to some location, monitor its progress as it attempts to get there,

stop or redirect it along the way, and be told when it has succeeded (or failed). An

action is a powerful concept that is used throughout the ROS ecosystem.

Diagnostics ROS provides a standard way to produce, collect, and aggregate diagnostics about your

robot so that, at a glance, you can quickly see the state of your robot and determine

how to address issues as they arise.

Pose Estimation,

Localization, and

Navigation

ROS also provides some "batteries included" capabilities that help you get started on

your robotics project. There are ROS packages that solve basic robotics problems like

pose estimation, localization in a map, building a map, and even mobile navigation.

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

50

Whether you are an engineer looking to do some rapid research and development, a

robotics researcher wanting to get your research done in a timely fashion, or a hobbyist

looking to learn more about robotics, these out-of-the-box capabilities will help you do

more, with less effort.

Tools One of the strongest features of ROS is the powerful development toolset. These tools

support introspecting, debugging, plotting, and visualizing the state of the system being

developed. The underlying publish/subscribe mechanism allows you to spontaneously

introspect the data flowing through the system, making it easy to comprehend and

debug issues as they occur. The ROS tools take advantage of this introspection

capability through an extensive collection of graphical and command line utilities that

simplify development and debugging.

Command-Line

Tools

Do you spend all of your time remotely logged into a robot? ROS can be used 100%

without a GUI. All core functionality and introspection tools are accessible via one of

our more than 45 command line tools. There are commands for launching groups of

nodes; introspecting topics, services, and actions; recording and playing back data; and

a host of other situations. If you prefer to use graphical tools, rviz and rqt provide

similar (and extended) functionality.

rviz Perhaps the most well-known tool in ROS, rviz provides general purpose, three-

dimensional visualization of many sensor data types and any URDF-described robot.

rviz can visualize many of the common message types provided in ROS, such as laser

scans, three-dimensional point clouds, and camera images. It also uses information

from the tf library to show all of the sensor data in a common coordinate frame of your

choice, together with a three-dimensional rendering of your robot. Visualizing all of

your data in the same application not only looks impressive, but also allows you to

quickly see what your robot sees, and identify problems such as sensor misalignments

or robot model inaccuracies.

Rqt ROS provides rqt, a Qt-based framework for developing graphical interfaces for your

robot. You can create custom interfaces by composing and configuring the extensive

library of built-in rqt plugins into tabbed, split-screen, and other layouts. You can also

introduce new interface components by writing your own rqt plugins

he rqt_graph plugin provides introspection and visualization of a live ROS system,

showing nodes and the connections between them, and allowing you to easily debug

and understand your running system and how it is structured.

With the rqt_plot plugin, you can monitor encoders, voltages, or anything that can be

represented as a number that varies over time. The rqt_plot plugin allows you to

choose the plotting backend (e.g., matplotlib, Qwt, pyqtgraph) that best fits your needs.

For monitoring and using topics, you have the rqt_topic and rqt_publisher plugins. The

former lets you monitor and introspect any number of topics being published within the

system. The latter allows you to publish your own messages to any topic, facilitating ad

hoc experimentation with your system.

For data logging and playback, ROS uses the bag format. Bag files can be created and

January-June 2015

ISSN: 0193-4120 Page No. 45 - 51

51

accessed graphically via the rqt_bag plugin. This plugin can record data to bags, play

back selected topics from a bag, and visualize the contents of a bag, including display

of images and plotting of numerical values over time.

5. SUMMARY

We have reviewed Robot Operating system (ROS)

in this paper. We were able to list all the historical

moments related to development of it and its

globalization. The object of this paper is to spread

the information about Asian Continent more

specific to Indian region. We are expecting with

this paper increase in the awareness about open-

source contribution, research and collaboration.

REFERENCES

1. "history," [Online]. Available:

http://www.ros.org/history/.

2. J. Kramer and M. Scheutz, "Development

environments for autonomous mobile robots: A

survey," Autonomous Robots, vol. 22, pp. 101-132,

2007.

