
November/December 2020

ISSN: 0193-4120 Page No. 36- 45

36 Published by: The Mattingley Publishing Co., Inc.

Study And Development Of Various Techniques For Path Planning And

Optimization Of Differential Drive Wheel Robot

 Shailesh Verma1, D. D. Mishra2, Rahul Mishra3 , V. C. Jha4, Mukesh Kumar Verma5

 1 Research Scholar, Mechanical Engineering Department, Kalinga University, Raipur
2 Research Scholar, Mechanical Engineering Department, Kalinga University, Raipur

3 Mechanical Engineering Department, Kalinga University, Raipur
4 Mechanical Engineering Department, Kalinga University, Raipur

5 Mechanical Engineering Department, Professional Institute of Engineering & Technology, Raipur

Article Info

Volume 83

Page Number: 36-45

Publication Issue:

November/December 2020

Article History

Article Received: 25 October 2020

Revised: 22 November 2020

Accepted: 10 December 2020

Publication: 31 December 2020

Abstract

Navigation consisting of two essential components known as localization

and planning is the art of steering a course through a medium. Localization

matches an actual position in the real-world to a location inside a map; in

other words, each location in the map refers to an actual position in the

environment. Planning is finding a short, collision-free path from the

starting position towards the predefined ending location. This study is a

survey which focuses on introducing classic and heuristic-based path

planning approaches and investigates their achievements in search

optimization problems. The methods are categorized, their strengths and

drawbacks are discussed, and the applications in which they have been

utilized are explained.

Keywords: Navigation, Path Planning, Cell Decomposition, Potential Field,

Road Map, Subgoal Network, Neural Network, Genetic Algorithm, Particle

Swarm Optimization, Ant Colony Optimization.

INTRODUCTION:

In this paper, we describe a family of heuristic-based

planning algorithms that has been developed to address

various challenges associated with planning in the real

world. Each of the algorithms presented have been

verified on real systems operating in real domains.

However, a prerequisite for the successful general use of

such algorithms is an analysis of the common

fundamental elements of such algorithms, a discussion of

their strengths and weaknesses, and guidelines for when

to choose a particular algorithm over others. Although

these algorithms have been documented and described

individually, a comparative analysis of these algorithms

is lacking in the literature. With this paper we hope to fill

this gap. We begin by providing background on path

planning in static, known environments and classical

algorithms used to generate plans in this domain. We go

on to look at how these algorithms can be extended to

efficiently cope with partially-known or dynamic

environments. We then intro-duce variants of these

algorithms that can produce suboptimal solutions very

quickly when time is limited and improve these solutions

while time permits. Finally, we discuss an algorithm that

combines principles from all of the algorithms previously

discussed; this algorithm can plan in dynamic

environments and with limited deliberation time. For all

the algorithms discussed in this paper, we provide

example problem scenarios in which they are very

effective and situations in which they are less effective.

Although our primary focus is on path planning,

several of these algorithms are applicable in more general

planning scenarios. Our aim is to share intuition and

lessons learned over the course of several system

implementations and guide readers in choosing

algorithms for their own planning domains.

PATH PLANNING

Planning consists of finding a sequence of actions that

trans-forms some initial state into some desired goal state.

In path planning, the states are agent locations and

transitions between states represent actions the agent can

take, each of which has an associated cost. A path is

optimal if the sum of its transition costs (edge costs) is

minimal across all possible paths leading from the initial

position (start state) to the goal position (goal state). A

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

37 Published by: The Mattingley Publishing Co., Inc.

planning algorithm is complete if it will always find a

path in finite time when one exists, and will let us know

in finite time if no path exists. Similarly, a planning

algorithm is optimal if it will always find an optimal

path.

Several approaches exist for computing paths given

some representation of the environment. In general, the

two most popular techniques are deterministic, heuristic-

based algorithms.

When the dimensionality of the planning problem is

low, for example when the agent has only a few degrees

of freedom, deterministic algorithms are usually favored

because they provide bounds on the quality of the

solution path re-turned. In this paper, we concentrate on

deterministic algorithms. For more details on

probabilistic techniques.

A common technique for robotic path planning

consists of representing the environment (or

configuration space) of the robot as a graph G = (S, E),

where S is the set of possible robot locations and E is a

set of edges that represent transitions between these

locations. The cost of each edge represents the cost of

transitioning between the two endpoint locations.

Planning a path for navigation can then be cast as a

search problem on this graph. A number of classical

graph search algorithms have been developed for

calculating least-cost paths on a weighted graph

algorithms return an optimal path and can be considered

as special forms of :-

ComputeShortestPath()

01. while (argmins∈OPEN(g(s) + h(s, sgoal)) 6≠sgoal)

2. remove state s from the front of OPEN;

3. for all s’ ∈ Succ(s)

4. if (g(s’) > g(s) + c(s, s’))

5. g(s’) = g(s) + c(s, s’);

6. insert s’ into OPEN with value (g(s’) + h(s’ ,

sgoal));

Main()

07. for all s ∈ S

8. g(s) = ∞;

9. g(sstart) = 0;

10. OPEN = ∅;

11. insert sstart into OPEN with value (g(sstart) +

h(sstart, sgoal));

12. ComputeShortestPath();

Figure 1: The A* Algorithm (forwards version)

dynamic programming. A* operates essentially the same

as This algorithm except that it guides its search towards

the most promising states, potentially saving a

significant amount of computation. A* plans a path from

an initial state sstart ∈ S to a goal state sgoal ∈ S, where S

is the set of states in some finite state space. To do this, it

stores an estimate g(s) of the path

cost from the initial state to each state s. Initially, g(s) =

for all states s ∈ S. The algorithm begins by updating the

path cost of the start state to be zero, then places this state

onto a priority queue known as the OPEN list. Each

element s in this queue is ordered according to the sum of

its current path cost from the start, g(s), and a heuristic

estimate of its path cost to the goal, h(s, sgoal). The state

∞ with the minimum such sum is at the front of the

priority queue. The heuristic h(s, sgoal) typically

underestimates the cost of the optimal path from s to sgoal

and is used to focus the search.

The algorithm then pops the state s at the front of the

queue and updates the cost of all states reachable from

this state through a direct edge: if the cost of state s, g(s),

plus the cost of the edge between s and a neighboring

state s’, c(s, s,), is less than the current cost of state s’,

then the cost of s, is set to this new, lower value. If the

cost of a neighboring state s’ changes, it is placed on the

OPEN list. The algorithm continues popping states off the

queue until it pops off the goal state. At this stage, if the

heuristic is admissible, i.e. guaranteed to not overestimate

the path cost from any state to the goal, then the path cost

of sgoal is guaranteed to be optimal. The complete

algorithm is given in Figure 1.

It is also possible to switch the direction of the search in

A*, so that planning is performed from the goal state to-

wards the start state. This is referred to as ‘backwards’

A*, and will be relevant for some of the algorithms

discussed in the following sections.

RELATED WORKS

Basic Mathematical Model. The path planning problem

of UCAV can be modeled as a constrained optimization

problem. Before searching track, flight condition and

elements (like terrain, threats, climate, etc.) of relevant

path planning are represented as symbol information.

Let (XL,YL ,ZL) be longitude, latitude, and height

of a certain point in state space. T he path planning space

can be represented as a set: {(XL,YL ,ZL) | 0 ≤ XL

≤max XL , 0≤ YL≤ max YL, 0≤ ZL ≤ max ZL }, which

represents a space district. In practical planning, the

planning space is divided into two-dimensional grids or

three-dimensional grids; a series of nodes are acquired

and built into a network graph. The path planning

problem can be simply attributed to a combinational

optimization problem for getting the shortest path of the

network graph. That is to say, when UCAV is flying

along the path formed by some nodes of the network

graph, a certain kind of path takes minimum cost.

Supposing the nodes of network graph form a set

S = { s1, s2, s3... sm} (1)

Define a set that includes all paths from the start point to

the end point as E:

E = (e1,,e2 , e3 , …, en) (2)

Let si and sj be two adjacent nodes on the path ek , the

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

38 Published by: The Mattingley Publishing Co., Inc.

connecting line between two nodes can be expressed by

V (si, sj), the cost value of the connecting line between

two nodes can be expressed by uij and the path planning

problems of UCAV are defined as follows:

Min f(ek) = ∑ 𝑢𝑖𝑗(𝑠𝑖,𝑠𝑗)𝑐𝑒𝑘

As can be seen from the above content, the

performance constraint of UCAV is not reflected in the

planning. If the nodes in the network graph are feasible

points which take performance constraint of UCAV into

account, the path with the performance constraint of

UCAV can be reflected from solving the above

optimization problems. This is a new mathematical

model. Compared with, our new mathematical model

takes more constraints into account. And simulation

result shows that it is highly useful for the approximate

optimal solution. Besides, it is also good at processing

path planning in complicated conditions.

Basic Constraint Conditions of Path Planning. There

are many factors that influence the result of path

planning. These factors, which include terrain features,

threat locations, and mission requirements, are basic

constraints in mathematical modeling. Path planning

should meet basic constraints, and they mainly include

the following constraints.

Minimum Route Length. Aircraft generally does not

want to weave and turn constantly, because this adds to

fuel cost and increases navigational errors.

Maximum Turning Angle. The turning angle of the

aircraft does not exceed maximum turning angle. For

instance, the aircraft cannot make severe turns without a

greater risk of collision in formation fight.

Route Distance Constraint. The length of the route does

not exceed maximum distance because of fuel restriction.

Specific Approaching Angle to Target Point. This

constrains UCAV to approach the hostile aircraft from a

predetermined angle to ensure UCAV defend the weak

part.

Path Planning Cost. On the premise that some

constraints’ are met, the UCAV path planning aims to

generate Trajectory with the highest survival rate.

Therefore, threat locations in battle field should be fully

taken into account. Threat factors and fuel restriction are

mainly taken into account when calculating trajectory

cost.

Models of Threats
Threat Model of Radar. The factors that influence the

probability of radar detection mainly includes earth

curvature, atmospheric refraction and absorption, ground

clutter interference, distance between aircraft and radar,

radar cross section, radar performance, and ground

multipath effect. For the sake of simplification, here we

mainly take the distance from aircraft to radar and radar

performance into account. Supposing the flying height is

ℎ, the horizontal distance from aircraft to radar is, radar

maximal horizontal range is max, radar performance

coefficient is, and the probabilistic model of radar

detection can be presented.

INCREMENTAL REPLANNING ALGORITHMS

The above approaches work well for planning an initial

path through a known graph or planning space. However,

when operating in real world scenarios, agents typically

do not have perfect information. Rather, they may be

equipped with incomplete or inaccurate planning graphs.

In such cases, any path generated using the agent’s initial

graph may turn out to be invalid or suboptimal as it

receives updated information. For example, in robotics

the agent may be equipped with an onboard sensor that

provides updated environment information as the agent

moves. It is thus important that the agent is able to update

its graph and replan new paths when new information

arrives.

One approach for performing this replanning is simply

to replan from scratch: given the updated graph, a new

optimal path can be planned from the robot position to the

goal using A*, exactly as described above. However,

replanning from scratch every time the graph changes can

be very computationally expensive. For instance, imagine

that a change occurs in the graph that does not affect the

optimality of the current solution path. Or, suppose some

change takes place that does affect the current solution,

but in a minor way that can be quickly fixed. Replanning

from scratch in either of these situations seems like a

waste of computation. Instead, it may be far more

efficient to take the previous solution and repair it to

account for the changes to the graph.

D* and D* Lite are extensions of A* able to cope with

changes to the graph used for planning. The two

algorithms are fundamentally very similar; we restrict our

attention here to D* Lite because it is simpler and has

been found to be slightly more efficient for some

navigation tasks. D* Lite initially constructs an optimal

solution path from the initial state to the goal state in

exactly the same manner as backwards A*. When changes

to the planning graph are made (i.e., the cost of some

edge is altered), the states whose paths to the goal are

immediately affected by these changes have their path

costs updated and are placed on the planning queue

(OPEN list) to propagate the effects of these changes to

the rest of the state space. In this way, only the affected

portion of the state space is pro-cessed when changes

occur. Furthermore, D* Lite uses a heuristic to further

limit the states processed to only those states

whose change in path cost could have a bearing on the

path cost of the initial state. As a result, it can be up to

two orders of magnitude more efficient than planning

from scratch using A* (Koenig & Likhachev 2002).

In more detail, D* Lite maintains a least-cost path from a

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

39 Published by: The Mattingley Publishing Co., Inc.

start state sstart ∈ S to a goal state sgoal ∈ S, where S is

again the set of states in some finite state space. To do

this, it stores an estimate g(s) of the cost from each state

s to the goal. It also stores a one-step lookahead cost

rhs(s) which satisfies:

 rhs(s)

=

{0 if s = sgoal

mins’∈Succ(s)(c(s, s’) + g(s’)) otherwise,

here Succ(s) ∈ S denotes the set of successors of s and

c(s, s’) denotes the cost of moving from s to s’ (the edge

cost). A state is called consistent iff its g-value equals its

rhs-value, otherwise it is either over consistent (if g(s) >

rhs(s)) or under consistent (if g(s) < rhs(s)).

Like A*, D* Lite uses a heuristic and a priority queue

to focus its search and to order its cost updates

efficiently. The heuristic h(s, s’) estimates the cost of

moving from state s to s’, and needs to be admissible and

(backward) consistent: h(s, s’) ≤ c∗(s, s’) and h(s, s’0) ≤

h(s, s’) + c∗(s’, s’0) for all states s, s’, s’0 ∈ S, where

c∗(s, s’) is the cost associated with a least-cost path from

s to s’. The priority queue OPEN always holds exactly

the inconsistent states; these are the states that need to be

updated and made consistent.
The priority, or key value, of a state s in the queue is:

key(s) = [k1(s), k2(s)]

 =[min(g(s), rhs(s)) + h(sstart, s),

min(g(s), rhs(s))].

A lexicographic ordering is used on the priorities, so that

pri0ority key(s) is less than or equal to priority key(s’),

denoted key(s) ≤˙ key(s’), iff k1(s) < k1(s’) or both k1(s) =

k1(s’) and k2(s) ≤ k2(s’). D* Lite expands states from the

queue in increasing priority, updating their g-values and

their pre-decessors’ rhs-values, until there is no state in

the queue with a priority less than that of the start state.

Thus, during its generation of an initial solution path, it

performs in exactly the same manner as a backwards A*

search.

To allow for the possibility that the start state may

change over time D* Lite searches backwards and

consequently fo-cusses its search towards the start state

rather than the goal state. If the g-value of each state s

was based on a least-cost path from sstart to s (as in

forward search) rather than from s to sgoal, then when the

robot moved every state would have to have its cost

updated. Instead, with D* Lite only the heuristic value

associated with each inconsistent state needs to be

updated when the robot moves. Further, even this step

can be avoided by adding a bias to newly inconsistent

states being added to the queue (see (Stentz 1995) for

details).

key(s)

1. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s),

rhs(s)))];

UpdateState(s)

02. if s was not visited before

3. g(s) = ∞;

4. if (s 6= sgoal) rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’));

5. if (s ∈ OPEN) remove s from OPEN;

6. if (g(s) 6= rhs(s)) insert s into OPEN with key(s);

ComputeShortestPath()

07. while (mins∈OPEN(key(s)) <˙ key(sstart) OR rhs(sstart)

6= g(sstart))

8. remove state s with the minimum key from OPEN;

9. if (g(s) > rhs(s))

10. g(s) = rhs(s);

11. for all s’ ∈ P red(s) UpdateState(s’);

12. else

13. g(s) = ∞;

14. for all s’ ∈ P red(s) ∪ {s} UpdateState(s’);

Main()

15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;

16. rhs(sgoal) = 0; OPEN = ∅;

17. insert sgoal into OPEN with key(sgoal);

18. forever

19. ComputeShortestPath();

20. Wait for changes in edge costs;

21. for all directed edges (u, v) with changed edge costs

22. Update the edge cost c(u, v);

23. UpdateState(u);

Figure 2: The D* Lite Algorithm (basic version).

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

40 Published by: The Mattingley Publishing Co., Inc.

When edge costs change, D*Lite updates the rhs

values of each state immediately affected by the changed

edge costs and places those states that have been made

inconsistent onto the queue. As before, it then expands

the states on the queue in order of increasing priority

until there is no state in the queue with a priority less

than that of the start state. By incorporating the value

k2(s) into the priority for state s, D*Lite ensures that

states that are along the current path and on the queue are

processed in the right order. Combined with the

termination condition, this ordering also ensures that a

least-cost path will have been found from the start state

to the goal state when processing is finished. The basic

version of the algorithm (for a fixed start state) is given

in Figure 2.

D*Lite is efficient because it uses a heuristic to restrict

attention to only those states that could possibly be

relevant to repairing the current solution path from a

given start state to the goal state. When edge costs

decrease, the incorporation of the heuristic in the key

value (k1) ensures that only those newly-over consistent

states that could potentially decrease the cost of the start

state are processed. When edge costs increase, it ensures

that only those newly-under consistent states that could

potentially invalidate the current cost of the start state are

processed.

In some situations the process of invalidating old costs

Because the optimizations of D*Lite can significantly

speed up the algorithm, for an efficient implementation

of D*Lite please refer to that paper. may be unnecessary

for repairing a least-cost path. For ex-ample, such is the

case when there are no edge cost de-creases and all edge

cost increases happen outside of the current least-cost

path. To guarantee optimality in the future, D* Lite

would still invalidate portions of the old search tree that

are affected by the observed edge cost changes even

though it is clear that the old solution remains optimal.

To overcome this a modified version of D* Lite has

recently been proposed that delays the propagation of

cost increases as long as possible while still guaranteeing

optimality. Delayed D* is an algorithm that initially

ignores under consistent states when changes to edge

costs occur. Then, after the new values of the over

consistent states have been adequately propagated

through the state space, the resulting solution path is

checked for any under-consistent states. All under

consistent states on the path are added to the OPEN list

and their updated values are propagated through the state

space. Because the current propagation phase may alter

the solution path, the new solution path needs to be

checked for under consistent states. The en-tire process

repeats until a solution path that contains only consistent

states is returned.

APPLICABILITY: REPLANNING

ALGORITHMS

Delayed D* has been shown to be significantly more

efficient than D*Lite in certain domains, Typically, it is

most appropriate when there is a relatively large distance

between the start state and the goal state, and changes are

being observed in arbitrary locations in the graph (for

example, map updates are received from a satellite). This

is because it is able to ignore the edge cost increases that

do not involve its current solution path, which in these

situations can lead to a dramatic decrease in over-all

computation. When a robot is moving towards a goal in a

completely unknown environment, Delayed D* will not

pro-vide much benefit over D*Lite, as in this scenario

typically the costs of only few states outside of the current

least-cost path have been computed and therefore most

edge cost in-creases will be ignored by both algorithms.

There are also scenarios in which Delayed D* will do

more processing than D*Lite: imagine a case where the

processing of under consistent states changes the solution

path several times, each time producing a new path

containing under consistent states. This results in a

number of replanning phases, each potentially updating

roughly the same area of the state space, and will be far

less efficient than dealing with all the under-consistent

states in a single replanning episode. However, in realistic

navigation scenarios, such situations are very rare.

In practice, both D*Lite and Delayed D* are very

effective for replanning in the context of mobile robot

navigation. Typically, in such scenarios the changes to the

graph are happening close to the robot (through its

observations), which means their effects are usually

limited. When this is the case, using an incremental

replanner such as D* Lite will be far more efficient than

planning from scratch. However, this is not universally

true. If the areas of the graph being changed are not

necessarily close to the position of the robot, it is possible

for D*Lite to be less efficient than A*. This is because it

is possible for D*Lite to process every state in the

environment twice: once as an under consistent state and

once as an over consistent state. A*, on the other hand,

will only ever process each state once. The worst-case

scenario for D*Lite, and one that illustrates this

possibility, is when changes are being made to the graph

in the vicinity of the goal. It is thus common for systems

using D* Lite to abort the replanning process and plan

from scratch whenever either major edge cost changes are

detected or some predefined threshold of replanning

processing is reached.

Also, when navigating through completely unknown

environments, it can be much more efficient to search

forwards from the agent position to the goal, rather than

backwards from the goal. This is because we typically

assign optimistic costs to edges whose costs we don’t

know. As a result, areas of the graph that have been

observed have more expensive edge costs than the

unexplored areas. This means that, when searching

forwards, as soon as the search exits the observed area it

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

41 Published by: The Mattingley Publishing Co., Inc.

can rapidly progress through the unexplored area directly

to the goal. However, when searching backwards, the

search initially rapidly progresses to the observed area,

then once it encounters the more costly edges in the

observed area, it begins expanding large portions of the

unexplored area trying to find a cheaper path. As a result,

it can be significantly more efficient to use A* rather

than backwards A* when replanning from scratch.

Because the agent is moving, it is not possible to use a

forwards-searching incremental re-planner, which means

that the computational advantage of using a replanning

algorithm over planning from scratch is reduced.

As mentioned earlier, these algorithms can also be

applied to symbolic planning problems. However, in

these cases it is important to consider whether there is an

available predecessor function in the particular planning

domain. If not, it is necessary to maintain for each state s

the set of all states s’ that have used s as a successor state

during the search, and treat this set as the set of

predessors of s. This is also useful when such a

predecessor function exists but contains a very large

number of states; maintaining a list of just the states that

have actually used s as a successor can be far more

efficient than generating all the possible predecessors.

In the symbolic planning community it is also

common to use inconsistent heuristics since problems are

often infeasible to solve optimally. The extensions to

D*Lite presented in enable D*Lite to handle in-

consistent heuristics. These extensions also allow one to

vary the tie-breaking criteria when selecting states from

the OPEN list for processing. This might be important

when a problem has many solutions of equal costs and

the OPEN list contains a large number of states with the

same priori-ties.

Apart from the static approaches (A*), all of the

algorithms that we discuss in this paper attempt to reuse

previous results to make subsequent planning tasks

easier. However, if the planning problem has changed

sufficiently since the previous result was generated, this

result may be a burden rather than a useful starting point.

For instance, it is possible in symbolic domains that

altering the cost of a single operator may affect the path

cost of a huge number of states. As an example,

modifying the cost of the load operator in the rocket

domain may completely change the nature of the

solution. This can also be a problem when path planning

for robots with several degrees of freedom: even if a

small change occurs in the environment, it can cause a

huge number of changes in the complex con-figuration

space. As a result, replanning in such scenarios can often

be of little or no benefit.

ANYTIME ALGORITHMS

When an agent must react quickly and the planning

problem is complex, computing optimal paths as

described in the previous sections can be infeasible, due

to the sheer number of states required to be processed in

order to obtain such paths. In such situations, we must be

satisfied with the best solution that can be generated in

the time available.

A useful class of deterministic algorithms for

addressing this problem are commonly referred to as

anytime algorithms. Anytime algorithms typically

construct an initial, possibly highly suboptimal, solution

very quickly, then improve the quality of this solution

while time permits. Heuristic-based anytime algorithms

often make use of the fact that in many domains inflating

the heuristic values used by A* (resulting in the weighted

A* search) often pro-vides substantial speed-ups at the

cost of solution optimality. Further, if the heuristic used is

consistent2, then multiplying it by an inflation factor > 1

will produce a solution guaranteed to cost no more than

times the cost of an optimal solution. this property to

develop an anytime algorithm that performs a succession

of weighted A* searches, each with a decreasing inflation

factor, Their approach provides suboptimality bounds for

each successive search and has been shown to be much

more efficient than competing approaches .

This algorithm, Anytime Repairing A* (ARA*), limits

the processing performed during each search by only

considering those states whose costs at the previous

search may not be valid given the new value. It begins by

performing an A* search with an inflation factor 0, but

during this search it only expands each state at most

once3. Once a state s has been expanded during a

particular search, if it becomes inconsistent (i.e., g(s) 6=

rhs(s)) due to a cost change associated with a neighboring

state, then it is not reinserted into the queue of states to be

expanded. Instead, it is placed into the INCONS list,

which contains all inconsistent states already expanded.

Then, when the current search terminates, the states in the

INCONS list are inserted into a

A (forwards) heuristic h is consistent if, for all s ∈ S,

h(s, sgoal) ≤ c(s, s’) + h(s’ , sgoal) for any successor s’ of s,

and h(sgoal, sgoal) = 0.
3 It is proved in (Likhachev, Gordon, & Thrun 2003)

that this still guarantees an 0 suboptimality bound.

key(s)

01. return g(s) + · h(sstart, s);

ImprovePath()

02. while (mins∈OPEN(key(s)) < key(sstart))

3. remove s with the smallest key(s) from OPEN;

4. CLOSED = CLOSED ∪ {s};

5. for all s’ ∈ P red(s)

6. if s’ was not visited before

7. g(s’) = ∞;

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

42 Published by: The Mattingley Publishing Co., Inc.

8. if g(s’) > c(s’, s) + g(s)

9. g(s’) = c(s’, s) + g(s);

10. if s’ 6 CLOSED

11. insert s’ into OPEN with key(s’);

12. else

13. insert s’ into INCONS;

Main()

14. g(sstart) = ∞; g(sgoal) = 0;

15. = 0;

16. OPEN = CLOSED = INCONS = ∅;

17. insert sgoal into OPEN with key(sgoal);

18. ImprovePath();

19. publish current -suboptimal solution;

20. while > 1

21. decrease ;

22. Move states from INCONS into OPEN;

23. Update the priorities for all s ∈ OPEN according

to key(s);

24. CLOSED = ∅;

25. ImprovePath();

26. publish current -suboptimal solution;

Figure 3: The ARA* Algorithm (backwards

version).

fresh priority queue (with new priorities based on the

new inflation factor) which is used by the next search.

This improves the efficiency of each search in two ways.

Firstly, by only expanding each state at most once a

solution is reached much more quickly. Secondly, by

only reconsidering states from the previous search that

were inconsistent, much of the previous search effort can

be reused. Thus, when the inflation factor is reduced

between successive searches, a relatively minor amount

of computation is required to generate a new solution. A

simplified, backwards-searching version of the algorithm

is given in Figure 3. Here, the priority of each state s in

the OPEN queue is computed as the sum of its cost g(s)

and its inflated heuristic value ·h(sstart, s). CLOSED

contains all states already expanded once in the current

search and INCONS contains all states that have already

been expanded and are inconsistent.

APPLICABILITY: ANYTIME ALGORITHMS

ARA* has been shown to be much more efficient than

com-peting approaches and has been applied successfully

to path planning in high-dimensional state spaces, such as

kinematic robot arms with 20 links. It has thus effectively

extended the applicability of the backwards-searching

version is shown because it will be useful when

discussing the algorithm’s similarity to D* Lite.

deterministic planning algorithms into much higher

dimensions than previously possible. It has also been used

to plan smooth trajectories for outdoor mobile robots in

known environments. Figure 4 shows an outdoor robotic

system that has used ARA* for this purpose. Here, the

search space involved four dimensions: the (x, y) position

of the robot, the robot’s orientation, and the robot’s

velocity. ARA* is able to plan suboptimal paths for the

robot very quickly, then improve the quality of these

paths as the robot begins its traverse (as the robot moves

the start state changes and therefore in between search

iterations the heuristics are re-computed for all states in

the OPEN list right before their priorities are updated).

ARA* is well suited to domains in which the state space

is very large and suboptimal solutions can be generated

efficiently. Although using an inflation factor usually

expedites the planning process, this is not guaranteed. In

fact, it is possible to construct pathological examples

where the best-first nature of searching with a large can

result in much longer processing times. The larger is, the

more greedy the search through the space is, leaving it

more prone to get-ting temporarily stuck in local minima.

In general, the key to obtaining anytime behavior with

ARA* is finding a heuristic function with shallow local

minima. For example, in the case of robot navigation a

local minimum can be a U-shaped obstacle placed on the

straight line connecting a robot to its goal (assuming the

heuristic function is Euclidean distance) and the size of

the obstacle determines how many states weighted A*,

and consequently ARA*, will have to process before

getting out of the minimum.

Depending on the domain one can also augment ARA*

with a few optimizations. For example, in graphs with

considerable branching factors the OPEN list can grow

prohibitively large. In such cases, one can borrow an

interesting idea from the OPEN list whose priorities based

on un-inflated heuristic are already larger than the cost of

the current solution (e.g., g(sgoal) in the forwards-

searching version).

However, because ARA* is an anytime algorithm, it is

only useful when an anytime solution is desired. If a

solution with a particular suboptimality bound of d is

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

43 Published by: The Mattingley Publishing Co., Inc.

desired, and no intermediate solution matters, then it is

far more efficient to perform a weighted A* search with

an inflation factor of d than to use ARA*.

Further, ARA* is only applicable in static planning do-

mains. If changes are being made to the planning graph,

ARA* is unable to reuse its previous search results and

must replan from scratch. As a result, it is not

appropriate for dynamic planning problems. It is this

limitation that motivated research into the final set of

algorithms we discuss here: any-time replanners.

ANYTIME REPLANNING ALGORITHMS

Although each is well developed on its own, there has

been relatively little interaction between the above two

areas of research. Replanning algorithms have

concentrated on finding a single, usually optimal,

solution, and anytime algorithms have concentrated on

static environments. But some of the most interesting

real world problems are those that are both dynamic

(requiring replanning) and complex (requiring anytime

approaches).

As a motivating example, consider motion planning for a

kinematic arm in a populated office area. A planner for

such a task would ideally be able to replan efficiently

when new information is received indicating that the

environment has changed. It would also need to generate

suboptimal solutions, as optimality may not be possible

given limited deliberation time.

This developed Anytime Dynamic A* (AD*), an

algorithm that combines the replanning capability of

D*Lite with the anytime performance of ARA*. AD*

performs a series of searches using decreasing inflation

factors to generate a series of solutions with improved

bounds, as with ARA*. When there are changes in the

environment affecting the cost of edges in the graph,

locally affected states are placed on the OPEN queue to

propagate these changes through the rest of the graph, as

with D*Lite. States on the queue are then processed until

the solution is guaranteed to be -suboptimal.

The algorithm is presented in Figures 5 and 6. AD* be-

gins by setting the inflation factor to a sufficiently high

value 0, so that an initial, suboptimal plan can be

generated quickly. Then, unless changes in edge costs

are detected, is gradually decreased and the solution is

improved until it is guaranteed to be optimal, that is, = 1.

This phase is exactly the same as for ARA*: each time is

decreased, all inconsistent states are moved from

INCONS to OPEN and CLOSED is made empty. When

changes in edge costs are detected, there is a chance that

the current solution will no longer be -suboptimal. If the

changes are substantial, then it may be computation-ally

expensive to repair the current solution to regain -

suboptimality. In such a case, the algorithm increases so

As with D*Lite the optimizations can be used to

substantially speed up AD* and are recommended for an

efficient implementation of the algorithm.

key(s)

1. if (g(s) > rhs(s))

2. return [min(g(s), rhs(s)) + · h(sstart, s); min(g(s), rhs(s)))];

3. else

4. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

UpdateState(s)

05. if s was not visited before

6. g(s) = ∞;

7. if (s 6= sgoal) rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’));

8. if (s ∈ OPEN) remove s from OPEN;

9. if (g(s) 6= rhs(s))

10. if s6∈CLOSED

11. insert s into OPEN with key(s);

12. else

13. insert s into INCONS;

ComputeorImprovePath()

14. while (mins∈OPEN(key(s)) <˙ key(sstart) OR rhs(sstart) 6= g(sstart))

15. remove state s with the minimum key from OPEN;

16. if (g(s) > rhs(s))

17. g(s) = rhs(s);

18. CLOSED = CLOSED ∪ {s};

19. for all s’ ∈ P red(s) UpdateState(s’);

20. else

21. g(s) = ∞;

22. for all s’ ∈ P red(s) ∪ {s} UpdateState(s’);

Figure 5: Anytime Dynamic A*: ComputeorIm-

provePath function.

Main()

1. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;

2. rhs(sgoal) = 0; = 0;

3. OPEN = CLOSED = INCONS = ∅;

4. insert sgoal into OPEN with key(sgoal);

5. ComputeorImprovePath();

6. publish current -suboptimal solution;

7. forever

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

44 Published by: The Mattingley Publishing Co., Inc.

8. if changes in edge costs are detected

9. for all directed edges (u, v) with changed edge costs

10. Update the edge cost c(u, v);

11. UpdateState(u);

12. if significant edge cost changes were observed

13. increase or replan from scratch;

14. else if > 1

15. decrease ;

16. Move states from INCONS into OPEN;

17. Update the priorities for all s ∈ OPEN according to key(s);

18. CLOSED = ∅;

19. ComputeorImprovePath();

20. publish current -suboptimal solution;

21. if = 1

22. wait for changes in edge costs;

Figure 6: Anytime Dynamic A*: Main function.

that a less optimal solution can be produced quickly.

Because edge cost increases may cause some states to

become under consistent, a possibility not present in

ARA*, states need to be inserted into the OPEN queue

with a key value reflecting the minimum of their old cost

and their new cost. Further, in order to guarantee that

under consistent states propagate their new costs to their

affected neighbors, their key values must use admissible

heuristic values. This means that different key values

must be computed for under consistent states than for

over consistent states.

By incorporating these considerations, AD* is able to

handle both changes in edge costs and changes to the

inflation factor. Like the replanning and anytime

algorithms we’ve looked at, it can also be slightly

modified to handle the situation where the start state sstart

is changing, as is the case when the path is being

traversed by an agent. This allows the agent to improve

and update its solution path while it is being traversed.

Applicability: Anytime Replanning Algorithms

AD* has been shown to be useful for planning in

dynamic, complex state spaces, such as 3 DOF robotic

arms operating in dynamic environments . It has also

been used for path-planning for outdoor mobile robots.

In particular, those operating in dynamic or partially-

known outdoor environments, where velocity

considerations are important for generating smooth,

timely trajectories. As discussed earlier, this can be

framed as a path planning problem over a 4D state space,

and an initial suboptimal solution can be generated using

AD* in exactly the same manner as ARA*.

Once the robot starts moving along this path, it is likely

that it will discover inaccuracies in its map of the

environment. As a result, the robot needs to be able to

quickly re-pair previous, suboptimal solutions when new

information is gathered, then improve these solutions as

much as possible given its processing constraints.

AD* has been used to provide this capability for two

robotic platforms currently used for outdoor navigation:

an ATRV and a Segway Robotic Mobility Platform

(Segway RMP), To direct the 4D search in each case, a

fast 2D (x, y) planner was used to provide the heuristic

values.

Acknowledgments

I shailesh verma would like to express my deep and

sincere gratitude to my research supervisor, for giving me

the opportunity to do research and providing invaluable

guidance throughout the research.

REFERENCES

1. Li, X. Ma, Y. Feng, X. (2013). Self-adaptive autowave

pulse-coupled neural network for shortest-path problem,

Neuro computing 115, pp. 63−71.

2. Zhang, Y. Wu, L. Wei, G. Wang, S. (2011). A novel

algorithm for all pairs shortest path problem based on

matrix multiplication and pulse coupled neural network,

Digital Signal Processing 21, pp. 517−521.

Lilly, J. H. (2007). Evolution of a negative-rule fuzzy obstacle

avoidance controller for an autonomous
3. vehicle, IEEE Trans. Fuzzy Systems, Vol.15, pp. 718−728.

4. A. Zhu, S. X. Yang, A Fuzzy Logic Approach to Reactive

Navigation of Behavior-based Mobile Robots, IEEE

International Conference on Robotics and Automation

(ICRA), New Orleans, LA, pp. 5045−5050, 2004.

5. Ahmed, F. Deb, K. (2013) Multi-objective optimal path

planning using elitist non-dominated sorting genetic

algorithms, Soft Computing, Vol. 17, pp.1283−1299.

6. Sleumer Nora, Tschichold-Gurmann, Nadine. “Exact cell

decomposition ofvarrangements used for path planning in

robotics”, technical report/ETH zürich. Department of

Computer Science; 1999. https://doi.org/10.3929/ ethz-a-

006653440.

7. Cai Chenghui, Ferrari Silvia. Information-driven sensor

path planning by approximate cell decomposition. IEEE

Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) June 2009;39(3). https://doi.org/10.1109/

TSMCB.2008.2008561.

8. Kubota, N., Moriokab, T., Kojimac, F., & Fukudad, T.

(2001). Learning of mobile robots using perceptionbased

genetic algorithm. Measurement, 29, 237–248.

https://doi.org/10.3929/
https://doi.org/10.1109/

November/December 2020

ISSN: 0193-4120 Page No. 36- 45

45 Published by: The Mattingley Publishing Co., Inc.

9. Wang, J., Zhang, Y., & Xia, L. (2010, March 13–14).

Adaptive genetic algorithm enhancements for path

planning of mobile robots. In International conference on

measuring technology and mechatronics automation

(ICMTMA),Changsha,China (Vol. 3, pp. 416–419). IEEE.

doi:10.1109/ICMTMA.2010.44

10. Yun, S. C., Ganapathy, V., & Chong, L. O. (2010,

December 7–10). Improved genetic algorithms based

optimum path planning for mobile robot. In 11th

international conference on control, automation, robotics

and vision, Singapore (pp. 1565–1570). IEEE.

doi:10.1109/ICARCV.2010.5707781.

11. Alfaro, H. M., & Garcia, S. G. (1998). Mobile robot path

planning and tracking using simulated annealing and

fuzzy logic control. Expert Systems with Applications, 15,

421–429.

12. Chen, X., Kong, Y., Fang, X., & Wu, Q. (2013). A fast

two-stage ACO algorithm for robotic path planning.

Neural Computing and Applications, 22, 313–319.

13. Parhi, D. R., & Pothal, J. K. (2010). Intelligent navigation

of multiple mobile robots using an ant colony

optimization technique in a highly cluttered environment.

Proceedings of IMechE Part C: Journal Mechanical

Engineering Science, 225, 225–232.

14. Liu, C., Gao, Z., & Zhao, W. (2012, June 23–26). A new

path planning method based on firefly algorithm. In Fifth

international joint conference on computational sciences

and optimization (CSO), Harbin, China (pp. 775–778).

IEEE. doi:10.1109/CSO.2012.174

15. Juang, C. F., & Chang, Y. C. (2011). Evolutionary-group-

based particle-swarm-optimized fuzzy controller with

application to mobile-robot navigation in unknown

environments. IEEE Transactions on Fuzzy Systems, 19,

379–391.

16. Lu, L., & Gong, D. (2008, October 18–20). Robot path

planning in unknown environments using particle swarm

optimization. In Fourth international conference on

natural computation, Jinan (pp. 422–426). IEEE.

doi:10.1109/ICNC.2008.923.

17. Meng Wang and James N. K. Liu (2008), “Fuzzy Logic

Navigation in Unknown Environment with Dead Ends”,

Robotics and Atonomous Systems, 56: 625-643.

18. Kundu, S., & Parhi, D. R. (2016). Navigation of

underwater robot based on dynamically adaptive harmony

search algorithm. Memetic Computing, 8(2), 125-146.

19. Mohanty, P. K., & Parhi, D. R. (2013). Controlling the

motion of an autonmous mobile robot using various

techniques: a review. Journal of Advance Mechanical

Engineering, 1(1), 24-39.

20. Singh, M. K., & Parhi, D. R. (2009, January). Intelligent

neuro controller for navigation of mobile robot.In

Proceedings of the International conference on advances

in computing, communication and control (pp.13-

128).ACM.

21. Pradhan, S. K., Parhi, D. R., & Panda, A. K. (2006).

Navigation of multiple mobile robots using rule-based

neuro-fuzzy technique. International Journal of

Computational Intelligence, 3(2), 142-152.

22. Toda M., Kitani O., Okamoto T. and Torii T. (1999),

“Navigation Method for a Mobile Robot via Sonar Based

Crop Row Mapping and Fuzzy Logic Control”, Journal of

Agricultural Engineering Research, 72 (4): 299–309.

23. Jena, P. K., & Parhi, D. R. (2015). A modified particle

swarm optimization technique for crack detection in

Cantilever Beams. Arabian Journal for Science and

Engineering, 40(11), 3263-3272.

24. Parhi, D. R., & Mohanty, P. K. (2016). IWO-based

adaptive neuro-fuzzy controller for mobile robot navigation

in cluttered environments. The International Journal of

Advanced Manufacturing Technology, 83(9-12), 1607-

1625.

