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Abstract 

Navigation consisting of two essential components known as localization 

and planning is the art of steering a course through a medium. Localization 

matches an actual position in the real-world to a location inside a map; in 

other words, each location in the map refers to an actual position in the 

environment. Planning is finding a short, collision-free path from the 

starting position towards the predefined ending location. This study is a 

survey which focuses on introducing classic and heuristic-based path 

planning approaches and investigates their achievements in search 

optimization problems. The methods are categorized, their strengths and 

drawbacks are discussed, and the applications in which they have been 

utilized are explained. 

 
Keywords: Navigation, Path Planning, Cell Decomposition, Potential Field, 

Road Map, Subgoal Network, Neural Network, Genetic Algorithm, Particle 

Swarm Optimization, Ant Colony Optimization. 

 

INTRODUCTION: 

In this paper, we describe a family of heuristic-based 

planning algorithms that has been developed to address 

various challenges associated with planning in the real  

world. Each of the algorithms presented have been 

verified on real systems operating in real domains. 

However, a prerequisite for the successful general use of 

such algorithms is an analysis of the common 

fundamental elements of such algorithms, a discussion of 

their strengths and weaknesses, and guidelines for when 

to choose a particular algorithm over others. Although 

these algorithms have been documented and described 

individually, a comparative analysis of these algorithms 

is lacking in the literature. With this paper we hope to fill 

this gap. We begin by providing background on path 

planning in static, known environments and classical 

algorithms used to generate plans in this domain. We go 

on to look at how these algorithms can be extended to 

efficiently cope with partially-known or dynamic 

environments. We then intro-duce variants of these 

algorithms that can produce suboptimal solutions very 

quickly when time is limited and improve these solutions 

while time permits. Finally, we discuss an algorithm that 

combines principles from all of the algorithms previously 

discussed; this algorithm can plan in dynamic 

environments and with limited deliberation time. For all 

the algorithms discussed in this paper, we provide 

example problem scenarios in which they are very 

effective and situations in which they are less effective. 

Although our primary focus is on path planning, 

several of these algorithms are applicable in more general 

planning scenarios. Our aim is to share intuition and 

lessons learned over the course of several system 

implementations and guide readers in choosing 

algorithms for their own planning domains. 

 

PATH PLANNING 

 
Planning consists of finding a sequence of actions that 

trans-forms some initial state into some desired goal state. 

In path planning, the states are agent locations and 

transitions between states represent actions the agent can 

take, each of which has an associated cost. A path is 

optimal if the sum of its transition costs (edge costs) is 

minimal across all possible paths leading from the initial 

position (start state) to the goal position (goal state). A 
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planning algorithm is complete if it will always find a 

path in finite time when one exists, and will let us know 

in finite time if no path exists. Similarly, a planning 

algorithm is optimal if it will always find an optimal 

path. 

Several approaches exist for computing paths given 

some representation of the environment. In general, the 

two most popular techniques are deterministic, heuristic-

based algorithms.  

When the dimensionality of the planning problem is 

low, for example when the agent has only a few degrees 

of freedom, deterministic algorithms are usually favored 

because they provide bounds on the quality of the 

solution path re-turned. In this paper, we concentrate on 

deterministic algorithms. For more details on 

probabilistic techniques. 

A common technique for robotic path planning 

consists of representing the environment (or 

configuration space) of the robot as a graph G = (S, E), 

where S is the set of possible robot locations and E is a 

set of edges that represent transitions between these 

locations. The cost of each edge represents the cost of 

transitioning between the two endpoint locations. 

Planning a path for navigation can then be cast as a 

search problem on this graph. A number of classical 

graph search algorithms have been developed for 

calculating least-cost paths on a weighted graph 

algorithms return an optimal path and can be considered 

as special forms of :- 

 

ComputeShortestPath() 

01. while (argmins∈OPEN(g(s) + h(s, sgoal)) 6≠sgoal) 

2. remove state s from the front of  OPEN; 

3. for all s’ ∈ Succ(s) 

4. if (g(s’ ) > g(s) + c(s, s’ )) 

5. g(s’ ) = g(s) + c(s, s’ ); 

6. insert s’  into OPEN with value (g(s’ ) + h(s’ , 

sgoal)); 

Main() 

07. for all s ∈ S 

8. g(s) = ∞; 

9. g(sstart) = 0; 

10. OPEN = ∅; 

11. insert sstart into OPEN with value (g(sstart) + 

h(sstart, sgoal)); 

12. ComputeShortestPath(); 

Figure 1: The A* Algorithm (forwards version) 

 

dynamic programming. A* operates essentially the same 

as This algorithm except that it guides its search towards 

the most promising states, potentially saving a 

significant amount of computation. A* plans a path from 

an initial state sstart ∈ S to a goal state sgoal ∈ S, where S 

is the set of states in some finite state space. To do this, it 

stores an estimate g(s) of the path 

cost from the initial state to each state s. Initially, g(s) = 

for all states s ∈ S. The algorithm begins by updating the 

path cost of the start state to be zero, then places this state 

onto a priority queue known as the OPEN list. Each 

element s in this queue is ordered according to the sum of 

its current path cost from the start, g(s), and a heuristic 

estimate of its path cost to the goal, h(s, sgoal). The state 

∞ with the minimum such sum is at the front of the 

priority queue. The heuristic h(s, sgoal) typically 

underestimates the cost of the optimal path from s to sgoal 

and is used to focus the search. 

The algorithm then pops the state s at the front of the 

queue and updates the cost of all states reachable from 

this state through a direct edge: if the cost of state s, g(s), 

plus the cost of the edge between s and a neighboring 

state s’, c(s, s, ), is less than the current cost of state s’, 

then the cost of s, is set to this new, lower value. If the 

cost of a neighboring state s’ changes, it is placed on the 

OPEN list. The algorithm continues popping states off the 

queue until it pops off the goal state. At this stage, if the 

heuristic is admissible, i.e. guaranteed to not overestimate 

the path cost from any state to the goal, then the path cost 

of sgoal is guaranteed to be optimal. The complete 

algorithm is given in Figure 1. 

It is also possible to switch the direction of the search in 

A*, so that planning is performed from the goal state to-

wards the start state. This is referred to as ‘backwards’ 

A*, and will be relevant for some of the algorithms 

discussed in the following sections. 

RELATED WORKS 

Basic Mathematical Model. The path planning problem 

of UCAV can be modeled as a constrained optimization 

problem. Before searching track, flight condition and 

elements (like terrain, threats, climate, etc.) of relevant 

path planning are represented as symbol information. 

Let (   XL,YL  ,ZL   ) be longitude, latitude, and height 

of a certain point in state space. T he path planning space 

can be represented as a set: {(   XL,YL  ,ZL   ) | 0 ≤ XL 

≤max XL , 0≤ YL≤ max YL, 0≤ ZL ≤ max ZL }, which 

represents a space district. In practical planning, the 

planning space is divided into two-dimensional grids or 

three-dimensional grids; a series of nodes are acquired 

and built into a network graph. The path planning 

problem can be simply attributed to a combinational 

optimization problem for getting the shortest path of the 

network graph. That is to say, when UCAV is flying 

along the path formed by some nodes of the network 

graph, a certain kind of path takes minimum cost. 

Supposing the nodes of network graph form a set 

S = { s1,  s2,  s3... sm}    (1) 

Define a set that includes all paths from the start point to 

the end point as E: 

E = (e1,,e2 , e3 , …, en )    (2) 

Let  si and  sj  be two adjacent nodes on the path ek , the 
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connecting line between two nodes can be expressed by 

V (si, sj ), the cost value of the connecting line between 

two nodes can be expressed by uij and the path planning 

problems of UCAV are defined as follows:  

 

Min f(ek) = ∑ 𝑢𝑖𝑗(𝑠𝑖,𝑠𝑗)𝑐𝑒𝑘  

 

As can be seen from the above content, the 

performance constraint of UCAV is not reflected in the 

planning. If the nodes in the network graph are feasible 

points which take performance constraint of UCAV into 

account, the path with the performance constraint of 

UCAV can be reflected from solving the above 

optimization problems. This is a new mathematical 

model. Compared with, our new mathematical model 

takes more constraints into account. And simulation 

result shows that it is highly useful for the approximate 

optimal solution. Besides, it is also good at processing 

path planning in complicated conditions. 

 

Basic Constraint Conditions of Path Planning. There 

are many factors that influence the result of path 

planning. These factors, which include terrain features, 

threat locations, and mission requirements, are basic 

constraints in mathematical modeling. Path planning 

should meet basic constraints, and they mainly include 

the following constraints. 

Minimum Route Length. Aircraft generally does not 

want to weave and turn constantly, because this adds to 

fuel cost and increases navigational errors. 

Maximum Turning Angle. The turning angle of the 

aircraft does not exceed maximum turning angle. For 

instance, the aircraft cannot make severe turns without a 

greater risk of collision in formation fight. 

Route Distance Constraint. The length of the route does 

not exceed maximum distance because of fuel restriction. 

Specific Approaching Angle to Target Point. This 

constrains UCAV to approach the hostile aircraft from a 

predetermined angle to ensure UCAV defend the weak 

part. 

Path Planning Cost. On the premise that some 

constraints’ are met, the UCAV path planning aims to 

generate Trajectory with the highest survival rate. 

Therefore, threat locations in battle field should be fully 

taken into account. Threat factors and fuel restriction are 

mainly taken into account when calculating trajectory 

cost. 

Models of Threats 
Threat Model of Radar. The factors that influence the 

probability of radar detection mainly includes earth 

curvature, atmospheric refraction and absorption, ground 

clutter interference, distance between aircraft and radar, 

radar cross section, radar performance, and ground 

multipath effect. For the sake of simplification, here we 

mainly take the distance from aircraft to radar and radar 

performance into account. Supposing the flying height is 

ℎ, the horizontal distance from aircraft to radar is, radar 

maximal horizontal range is max, radar performance 

coefficient is, and the probabilistic model of radar 

detection can be presented. 
 

INCREMENTAL REPLANNING ALGORITHMS 

 

The above approaches work well for planning an initial 

path through a known graph or planning space. However, 

when operating in real world scenarios, agents typically 

do not have perfect information. Rather, they may be 

equipped with incomplete or inaccurate planning graphs. 

In such cases, any path generated using the agent’s initial 

graph may turn out to be invalid or suboptimal as it 

receives updated information. For example, in robotics 

the agent may be equipped with an onboard sensor that 

provides updated environment information as the agent 

moves. It is thus important that the agent is able to update 

its graph and replan new paths when new information 

arrives. 

One approach for performing this replanning is simply 

to replan from scratch: given the updated graph, a new 

optimal path can be planned from the robot position to the 

goal using A*, exactly as described above. However, 

replanning from scratch every time the graph changes can 

be very computationally expensive. For instance, imagine 

that a change occurs in the graph that does not affect the 

optimality of the current solution path. Or, suppose some 

change takes place that does affect the current solution, 

but in a minor way that can be quickly fixed. Replanning 

from scratch in either of these situations seems like a 

waste of computation. Instead, it may be far more 

efficient to take the previous solution and repair it to 

account for the changes to the graph. 

D* and D* Lite are extensions of A* able to cope with 

changes to the graph used for planning. The two 

algorithms are fundamentally very similar; we restrict our 

attention here to D* Lite because it is simpler and has 

been found to be slightly more efficient for some 

navigation tasks.  D* Lite initially constructs an optimal 

solution path from the initial state to the goal state in 

exactly the same manner as backwards A*. When changes 

to the planning graph are made (i.e., the cost of some 

edge is altered), the states whose paths to the goal are 

immediately affected by these changes have their path 

costs updated and are placed on the planning queue 

(OPEN list) to propagate the effects of these changes to 

the rest of the state space. In this way, only the affected 

portion of the state space is pro-cessed when changes 

occur. Furthermore, D* Lite uses a heuristic to further 

limit the states processed to only those states 

whose change in path cost could have a bearing on the 

path cost of the initial state. As a result, it can be up to 

two orders of magnitude more efficient than planning 

from scratch using A* (Koenig & Likhachev 2002). 

In more detail, D* Lite maintains a least-cost path from a 
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start state sstart ∈ S to a goal state sgoal ∈ S, where S is 

again the set of states in some finite state space. To do 

this, it stores an estimate g(s) of the cost from each state 

s to the goal. It also stores a one-step lookahead cost 

rhs(s) which satisfies: 

        rhs(s) 

= 

{0 if s = sgoal 

mins’∈Succ(s)(c(s, s’) + g(s’)) otherwise, 

   

here Succ(s) ∈ S denotes the set of successors of s and 

c(s, s’) denotes the cost of moving from s to s’ (the edge 

cost). A state is called consistent iff its g-value equals its 

rhs-value, otherwise it is either over consistent (if g(s) > 

rhs(s)) or under consistent (if g(s) < rhs(s)). 

Like A*, D* Lite uses a heuristic and a priority queue 

to focus its search and to order its cost updates 

efficiently. The heuristic h(s, s’) estimates the cost of 

moving from state s to s’, and needs to be admissible and 

(backward) consistent: h(s, s’) ≤ c∗(s, s’) and h(s, s’0) ≤ 

h(s, s’) + c∗(s’, s’0) for all states s, s’, s’0 ∈ S, where 

c∗(s, s’) is the cost associated with a least-cost path from 

s to s’. The priority queue OPEN always holds exactly 

the inconsistent states; these are the states that need to be 

updated and made consistent. 
The priority, or key value, of a state s in the queue is: 

key(s) = [k1(s), k2(s)] 

            =[min(g(s), rhs(s)) + h(sstart, s),  

min(g(s), rhs(s))]. 

 

A lexicographic ordering is used on the priorities, so that 

pri0ority key(s) is less than or equal to priority key(s’), 

denoted key(s) ≤˙ key(s’), iff k1(s) < k1(s’) or both k1(s) = 

k1(s’) and k2(s) ≤ k2(s’). D* Lite expands states from the 

queue in increasing priority, updating their g-values and 

their pre-decessors’ rhs-values, until there is no state in 

the queue with a priority less than that of the start state. 

Thus, during its generation of an initial solution path, it 

performs in exactly the same manner as a backwards A* 

search. 

To allow for the possibility that the start state may 

change over time D* Lite searches backwards and 

consequently fo-cusses its search towards the start state 

rather than the goal state. If the g-value of each state s 

was based on a least-cost path from sstart to s (as in 

forward search) rather than from s to sgoal, then when the 

robot moved every state would have to have its cost 

updated. Instead, with D* Lite only the heuristic value 

associated with each inconsistent state needs to be 

updated when the robot moves. Further, even this step 

can be avoided by adding a bias to newly inconsistent 

states being added to the queue (see (Stentz 1995) for 

details). 

key(s) 

1. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), 

rhs(s)))]; 

 

UpdateState(s) 

 

02. if s was not visited before 

 

3. g(s) = ∞; 

 

4. if (s 6= sgoal) rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’)); 

5. if (s ∈ OPEN) remove s from OPEN; 

 

6. if (g(s) 6= rhs(s)) insert s into OPEN with key(s); 

 

ComputeShortestPath() 

07. while (mins∈OPEN(key(s)) <˙ key(sstart) OR rhs(sstart) 

6= g(sstart)) 

8. remove state s with the minimum key from OPEN; 

 

9. if (g(s) > rhs(s)) 

 

10. g(s) = rhs(s); 

 

11. for all s’ ∈ P red(s) UpdateState(s’); 

 

12. else 

 

13. g(s) = ∞; 

 

14. for all s’ ∈ P red(s) ∪ {s} UpdateState(s’); 

 

Main() 

 

15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞; 

 

16. rhs(sgoal) = 0; OPEN = ∅; 

17. insert sgoal into OPEN with key(sgoal); 

 

18. forever 

 

19. ComputeShortestPath(); 

 

20. Wait for changes in edge costs; 

 

21. for all directed edges (u, v) with changed edge costs 

 

22. Update the edge cost c(u, v); 

 

23. UpdateState(u); 

 
Figure 2: The D* Lite Algorithm (basic version). 
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When edge costs change, D*Lite updates the rhs 

values of each state immediately affected by the changed 

edge costs and places those states that have been made 

inconsistent onto the queue. As before, it then expands 

the states on the queue in order of increasing priority 

until there is no state in the queue with a priority less 

than that of the start state. By incorporating the value 

k2(s) into the priority for state s, D*Lite ensures that 

states that are along the current path and on the queue are 

processed in the right order. Combined with the 

termination condition, this ordering also ensures that a 

least-cost path will have been found from the start state 

to the goal state when processing is finished. The basic 

version of the algorithm (for a fixed start state) is given 

in Figure 2. 

D*Lite is efficient because it uses a heuristic to restrict 

attention to only those states that could possibly be 

relevant to repairing the current solution path from a 

given start state to the goal state. When edge costs 

decrease, the incorporation of the heuristic in the key 

value (k1) ensures that only those newly-over consistent 

states that could potentially decrease the cost of the start 

state are processed. When edge costs increase, it ensures 

that only those newly-under consistent states that could 

potentially invalidate the current cost of the start state are 

processed. 

In some situations the process of invalidating old costs 

Because the optimizations of D*Lite can significantly 

speed up the algorithm, for an efficient implementation 

of D*Lite please refer to that paper. may be unnecessary 

for repairing a least-cost path. For ex-ample, such is the 

case when there are no edge cost de-creases and all edge 

cost increases happen outside of the current least-cost 

path. To guarantee optimality in the future, D* Lite 

would still invalidate portions of the old search tree that 

are affected by the observed edge cost changes even 

though it is clear that the old solution remains optimal. 

To overcome this a modified version of D* Lite has 

recently been proposed that delays the propagation of 

cost increases as long as possible while still guaranteeing 

optimality. Delayed D*  is an algorithm that initially 

ignores under consistent states when changes to edge 

costs occur. Then, after the new values of the over 

consistent states have been adequately propagated 

through the state space, the resulting solution path is 

checked for any under-consistent states. All under 

consistent states on the path are added to the OPEN list 

and their updated values are propagated through the state 

space. Because the current propagation phase may alter 

the solution path, the new solution path needs to be 

checked for under consistent states. The en-tire process 

repeats until a solution path that contains only consistent 

states is returned. 

APPLICABILITY: REPLANNING 

ALGORITHMS 
 

Delayed D* has been shown to be significantly more 

efficient than D*Lite in certain domains, Typically, it is 

most appropriate when there is a relatively large distance 

between the start state and the goal state, and changes are 

being observed in arbitrary locations in the graph (for 

example, map updates are received from a satellite). This 

is because it is able to ignore the edge cost increases that 

do not involve its current solution path, which in these 

situations can lead to a dramatic decrease in over-all 

computation. When a robot is moving towards a goal in a 

completely unknown environment, Delayed D* will not 

pro-vide much benefit over D*Lite, as in this scenario 

typically the costs of only few states outside of the current 

least-cost path have been computed and therefore most 

edge cost in-creases will be ignored by both algorithms. 

There are also scenarios in which Delayed D* will do 

more processing than D*Lite: imagine a case where the 

processing of under consistent states changes the solution 

path several times, each time producing a new path 

containing under consistent states. This results in a 

number of replanning phases, each potentially updating 

roughly the same area of the state space, and will be far 

less efficient than dealing with all the under-consistent 

states in a single replanning episode. However, in realistic 

navigation scenarios, such situations are very rare. 

In practice, both D*Lite and Delayed D* are very 

effective for replanning in the context of mobile robot 

navigation. Typically, in such scenarios the changes to the 

graph are happening close to the robot (through its 

observations), which means their effects are usually 

limited. When this is the case, using an incremental 

replanner such as D* Lite will be far more efficient than 

planning from scratch. However, this is not universally 

true. If the areas of the graph being changed are not 

necessarily close to the position of the robot, it is possible 

for D*Lite to be less efficient than A*. This is because it 

is possible for D*Lite to process every state in the 

environment twice: once as an under consistent state and 

once as an over consistent state. A*, on the other hand, 

will only ever process each state once. The worst-case 

scenario for D*Lite, and one that illustrates this 

possibility, is when changes are being made to the graph 

in the vicinity of the goal. It is thus common for systems 

using D* Lite to abort the replanning process and plan 

from scratch whenever either major edge cost changes are 

detected or some predefined threshold of replanning 

processing is reached. 

Also, when navigating through completely unknown 

environments, it can be much more efficient to search 

forwards from the agent position to the goal, rather than 

backwards from the goal. This is because we typically 

assign optimistic costs to edges whose costs we don’t 

know. As a result, areas of the graph that have been 

observed have more expensive edge costs than the 

unexplored areas. This means that, when searching 

forwards, as soon as the search exits the observed area it 
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can rapidly progress through the unexplored area directly 

to the goal. However, when searching backwards, the 

search initially rapidly progresses to the observed area, 

then once it encounters the more costly edges in the 

observed area, it begins expanding large portions of the 

unexplored area trying to find a cheaper path. As a result, 

it can be significantly more efficient to use A* rather 

than backwards A* when replanning from scratch. 

Because the agent is moving, it is not possible to use a 

forwards-searching incremental re-planner, which means 

that the computational advantage of using a replanning 

algorithm over planning from scratch is reduced. 

As mentioned earlier, these algorithms can also be 

applied to symbolic planning problems. However, in 

these cases it is important to consider whether there is an 

available predecessor function in the particular planning 

domain. If not, it is necessary to maintain for each state s 

the set of all states s’ that have used s as a successor state 

during the search, and treat this set as the set of 

predessors of s. This is also useful when such a 

predecessor function exists but contains a very large 

number of states; maintaining a list of just the states that 

have actually used s as a successor can be far more 

efficient than generating all the possible predecessors. 

In the symbolic planning community it is also 

common to use inconsistent heuristics since problems are 

often infeasible to solve optimally. The extensions to 

D*Lite presented in enable D*Lite to handle in-

consistent heuristics. These extensions also allow one to 

vary the tie-breaking criteria when selecting states from 

the OPEN list for processing. This might be important 

when a problem has many solutions of equal costs and 

the OPEN list contains a large number of states with the 

same priori-ties. 

Apart from the static approaches (A*), all of the 

algorithms that we discuss in this paper attempt to reuse 

previous results to make subsequent planning tasks 

easier. However, if the planning problem has changed 

sufficiently since the previous result was generated, this 

result may be a burden rather than a useful starting point. 

For instance, it is possible in symbolic domains that 

altering the cost of a single operator may affect the path 

cost of a huge number of states. As an example, 

modifying the cost of the load operator in the rocket 

domain may completely change the nature of the 

solution. This can also be a problem when path planning 

for robots with several degrees of freedom: even if a 

small change occurs in the environment, it can cause a 

huge number of changes in the complex con-figuration 

space. As a result, replanning in such scenarios can often 

be of little or no benefit. 

 

ANYTIME ALGORITHMS 
 

When an agent must react quickly and the planning 

problem is complex, computing optimal paths as 

described in the previous sections can be infeasible, due 

to the sheer number of states required to be processed in 

order to obtain such paths. In such situations, we must be 

satisfied with the best solution that can be generated in 

the time available. 

A useful class of deterministic algorithms for 

addressing this problem are commonly referred to as 

anytime algorithms. Anytime algorithms typically 

construct an initial, possibly highly suboptimal, solution 

very quickly, then improve the quality of this solution 

while time permits. Heuristic-based anytime algorithms 

often make use of the fact that in many domains inflating 

the heuristic values used by A* (resulting in the weighted 

A* search) often pro-vides substantial speed-ups at the 

cost of solution optimality. Further, if the heuristic used is 

consistent2, then multiplying it by an inflation factor > 1 

will produce a solution guaranteed to cost no more than 

times the cost of an optimal solution. this property to 

develop an anytime algorithm that performs a succession 

of weighted A* searches, each with a decreasing inflation 

factor, Their approach provides suboptimality bounds for 

each successive search and has been shown to be much 

more efficient than competing approaches . 

This algorithm, Anytime Repairing A* (ARA*), limits 

the processing performed during each search by only 

considering those states whose costs at the previous 

search may not be valid given the new value. It begins by 

performing an A* search with an inflation factor 0, but 

during this search it only expands each state at most 

once3. Once a state s has been expanded during a 

particular search, if it becomes inconsistent (i.e., g(s) 6= 

rhs(s)) due to a cost change associated with a neighboring 

state, then it is not reinserted into the queue of states to be 

expanded. Instead, it is placed into the INCONS list, 

which contains all inconsistent states already expanded. 

Then, when the current search terminates, the states in the 

INCONS list are inserted into a  

A (forwards) heuristic h is consistent if, for all s ∈ S, 

h(s, sgoal) ≤ c(s, s’ ) + h(s’ , sgoal) for any successor s’ of s, 

and h(sgoal, sgoal) = 0. 
3 It is proved in (Likhachev, Gordon, & Thrun 2003) 

that this still guarantees an 0 suboptimality bound. 

key(s) 

 

01. return g(s) + · h(sstart, s); 

 

ImprovePath() 

02. while (mins∈OPEN(key(s)) < key(sstart)) 

3. remove s with the smallest key(s) from OPEN; 

 

4. CLOSED = CLOSED ∪ {s}; 

5. for all s’ ∈ P red(s) 

6. if s’ was not visited before 

7. g(s’) = ∞; 
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8. if g(s’) > c(s’, s) + g(s) 

9. g(s’) = c(s’, s) + g(s); 

 

10. if s’ 6 CLOSED 

11. insert s’ into OPEN with key(s’); 

12. else 

 

13. insert s’ into INCONS; 

 

Main() 

 

14. g(sstart) = ∞; g(sgoal) = 0; 

 

15. =  0; 

 

16. OPEN = CLOSED = INCONS = ∅; 

 

17. insert sgoal into OPEN with key(sgoal); 

 

18. ImprovePath(); 

 

19. publish current  -suboptimal solution; 

 

20. while  > 1 

 

21. decrease  ; 

 

22. Move states from INCONS into OPEN; 

 

23. Update the priorities for all s ∈ OPEN according 

to key(s); 

 

24. CLOSED = ∅; 

 

25. ImprovePath(); 

 

26. publish current  -suboptimal solution; 
 

Figure 3: The ARA* Algorithm (backwards 

version). 
 

fresh priority queue (with new priorities based on the 

new inflation factor) which is used by the next search. 

This improves the efficiency of each search in two ways. 

Firstly, by only expanding each state at most once a 

solution is reached much more quickly. Secondly, by 

only reconsidering states from the previous search that 

were inconsistent, much of the previous search effort can 

be reused. Thus, when the inflation factor is reduced 

between successive searches, a relatively minor amount 

of computation is required to generate a new solution. A 

simplified, backwards-searching version of the algorithm 

is given in Figure 3. Here, the priority of each state s in 

the OPEN queue is computed as the sum of its cost g(s) 

and its inflated heuristic value ·h(sstart, s). CLOSED 

contains all states already expanded once in the current 

search and INCONS contains all states that have already 

been expanded and are inconsistent. 
 

APPLICABILITY: ANYTIME ALGORITHMS 

 

 

ARA* has been shown to be much more efficient than 

com-peting approaches and has been applied successfully 

to path planning in high-dimensional state spaces, such as 

kinematic robot arms with 20 links. It has thus effectively 

extended the applicability of the backwards-searching 

version is shown because it will be useful when 

discussing the algorithm’s similarity to D* Lite. 

deterministic planning algorithms into much higher 

dimensions than previously possible. It has also been used 

to plan smooth trajectories for outdoor mobile robots in 

known environments. Figure 4 shows an outdoor robotic 

system that has used ARA* for this purpose. Here, the 

search space involved four dimensions: the (x, y) position 

of the robot, the robot’s orientation, and the robot’s 

velocity. ARA* is able to plan suboptimal paths for the 

robot very quickly, then improve the quality of these 

paths as the robot begins its traverse (as the robot moves 

the start state changes and therefore in between search 

iterations the heuristics are re-computed for all states in 

the OPEN list right before their priorities are updated). 

ARA* is well suited to domains in which the state space 

is very large and suboptimal solutions can be generated 

efficiently. Although using an inflation factor usually 

expedites the planning process, this is not guaranteed. In 

fact, it is possible to construct pathological examples 

where the best-first nature of searching with a large can 

result in much longer processing times. The larger is, the 

more greedy the search through the space is, leaving it 

more prone to get-ting temporarily stuck in local minima. 

In general, the key to obtaining anytime behavior with 

ARA* is finding a heuristic function with shallow local 

minima. For example, in the case of robot navigation a 

local minimum can be a U-shaped obstacle placed on the 

straight line connecting a robot to its goal (assuming the 

heuristic function is Euclidean distance) and the size of 

the obstacle determines how many states weighted A*, 

and consequently ARA*, will have to process before 

getting out of the minimum. 

Depending on the domain one can also augment ARA* 

with a few optimizations. For example, in graphs with 

considerable branching factors the OPEN list can grow 

prohibitively large. In such cases, one can borrow an 

interesting idea from the OPEN list whose priorities based 

on un-inflated heuristic are already larger than the cost of 

the current solution (e.g., g(sgoal) in the forwards-

searching version). 

However, because ARA* is an anytime algorithm, it is 

only useful when an anytime solution is desired. If a 

solution with a particular suboptimality bound of d is 
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desired, and no intermediate solution matters, then it is 

far more efficient to perform a weighted A* search with 

an inflation factor of d than to use ARA*. 

Further, ARA* is only applicable in static planning do-

mains. If changes are being made to the planning graph, 

ARA* is unable to reuse its previous search results and 

must replan from scratch. As a result, it is not 

appropriate for dynamic planning problems. It is this 

limitation that motivated research into the final set of 

algorithms we discuss here: any-time replanners. 

 

ANYTIME REPLANNING ALGORITHMS 

 

Although each is well developed on its own, there has 

been relatively little interaction between the above two 

areas of research. Replanning algorithms have 

concentrated on finding a single, usually optimal, 

solution, and anytime algorithms have concentrated on 

static environments. But some of the most interesting 

real world problems are those that are both dynamic 

(requiring replanning) and complex (requiring anytime 

approaches). 

As a motivating example, consider motion planning for a 

kinematic arm in a populated office area. A planner for 

such a task would ideally be able to replan efficiently 

when new information is received indicating that the 

environment has changed. It would also need to generate 

suboptimal solutions, as optimality may not be possible 

given limited deliberation time. 

This developed Anytime Dynamic A* (AD*), an 

algorithm that combines the replanning capability of 

D*Lite with the anytime performance of ARA*. AD* 

performs a series of searches using decreasing inflation 

factors to generate a series of solutions with improved 

bounds, as with ARA*. When there are changes in the 

environment affecting the cost of edges in the graph, 

locally affected states are placed on the OPEN queue to 

propagate these changes through the rest of the graph, as 

with D*Lite. States on the queue are then processed until 

the solution is guaranteed to be -suboptimal. 

The algorithm is presented in Figures 5 and 6. AD* be-

gins by setting the inflation factor to a sufficiently high 

value 0, so that an initial, suboptimal plan can be 

generated quickly. Then, unless changes in edge costs 

are detected, is gradually decreased and the solution is 

improved until it is guaranteed to be optimal, that is, = 1. 

This phase is exactly the same as for ARA*: each time is 

decreased, all inconsistent states are moved from 

INCONS to OPEN and CLOSED is made empty. When 

changes in edge costs are detected, there is a chance that 

the current solution will no longer be -suboptimal. If the 

changes are substantial, then it may be computation-ally 

expensive to repair the current solution to regain -

suboptimality. In such a case, the algorithm increases so 

As with D*Lite the optimizations  can be used to 

substantially speed up AD* and are recommended for an 

efficient implementation of the algorithm. 
 

key(s) 

 

1. if (g(s) > rhs(s)) 

 

2. return [min(g(s), rhs(s)) +  · h(sstart, s); min(g(s), rhs(s)))]; 

 

3. else 

4. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))]; 

 

UpdateState(s) 

 

05. if s was not visited before 

 

6. g(s) = ∞; 

 

7. if (s 6= sgoal) rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’)); 

8. if (s ∈ OPEN) remove s from OPEN; 

 

9. if (g(s) 6= rhs(s)) 

 

10. if s6∈CLOSED 

 

11. insert s into OPEN with key(s); 

 

12. else 

 

13. insert s into INCONS; 

 

ComputeorImprovePath() 

14. while (mins∈OPEN(key(s)) <˙ key(sstart) OR rhs(sstart) 6= g(sstart)) 

15. remove state s with the minimum key from OPEN; 

 

16. if (g(s) > rhs(s)) 

 

17. g(s) = rhs(s); 

 

18. CLOSED = CLOSED ∪ {s}; 

 

19. for all s’ ∈ P red(s) UpdateState(s’); 

20. else 

 

21. g(s) = ∞; 

 

22. for all s’ ∈ P red(s) ∪ {s} UpdateState(s’); 

 

Figure 5: Anytime Dynamic A*: ComputeorIm-

provePath function. 
 

Main() 

 

1. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞; 

2. rhs(sgoal) = 0;  =  0; 

 

3. OPEN = CLOSED = INCONS = ∅; 

 

4. insert sgoal into OPEN with key(sgoal); 

 

5. ComputeorImprovePath(); 

 

6. publish current  -suboptimal solution; 

 

7. forever 
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8. if changes in edge costs are detected 

 

9. for all directed edges (u, v) with changed edge costs 

 

10. Update the edge cost c(u, v); 

 

11. UpdateState(u); 

 

12. if significant edge cost changes were observed 

 

13. increase  or replan from scratch; 

 

14. else if  > 1 

 

15. decrease  ; 

 

16. Move states from INCONS into OPEN; 

 

17. Update the priorities for all s ∈ OPEN according to key(s); 

 

18. CLOSED = ∅; 

 

19. ComputeorImprovePath(); 

 

20. publish current  -suboptimal solution; 

 

21. if  = 1 

 

22. wait for changes in edge costs; 

 

Figure 6: Anytime Dynamic A*: Main function. 

 

that a less optimal solution can be produced quickly. 

Because edge cost increases may cause some states to 

become under consistent, a possibility not present in 

ARA*, states need to be inserted into the OPEN queue 

with a key value reflecting the minimum of their old cost 

and their new cost. Further, in order to guarantee that 

under consistent states propagate their new costs to their 

affected neighbors, their key values must use admissible 

heuristic values. This means that different key values 

must be computed for under consistent states than for 

over consistent states. 

By incorporating these considerations, AD* is able to 

handle both changes in edge costs and changes to the 

inflation factor. Like the replanning and anytime 

algorithms we’ve looked at, it can also be slightly 

modified to handle the situation where the start state sstart 

is changing, as is the case when the path is being 

traversed by an agent. This allows the agent to improve 

and update its solution path while it is being traversed. 

 

Applicability: Anytime Replanning Algorithms 

 

AD* has been shown to be useful for planning in 

dynamic, complex state spaces, such as 3 DOF robotic 

arms operating in dynamic environments . It has also 

been used for path-planning for outdoor mobile robots. 

In particular, those operating in dynamic or partially-

known outdoor environments, where velocity 

considerations are important for generating smooth, 

timely trajectories. As discussed earlier, this can be 

framed as a path planning problem over a 4D state space, 

and an initial suboptimal solution can be generated using 

AD* in exactly the same manner as ARA*. 

Once the robot starts moving along this path, it is likely 

that it will discover inaccuracies in its map of the 

environment. As a result, the robot needs to be able to 

quickly re-pair previous, suboptimal solutions when new 

information is gathered, then improve these solutions as 

much as possible given its processing constraints. 

AD* has been used to provide this capability for two 

robotic platforms currently used for outdoor navigation: 

an ATRV and a Segway Robotic Mobility Platform 

(Segway RMP),  To direct the 4D search in each case, a 

fast 2D (x, y) planner was used to provide the heuristic 

values. 
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