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Abstract 

With the support of intelligent technology, fluid mechanics has gradually become an 

important means and method to solve practical engineering problems. Fluid mechanics 

based on nonlinear algebraic equations can directly solve and operate nonlinear 

algebraic equations, so as to solve the basic laws of fluid motion. Based on this, this 

paper first analyses the numerical methods of computational fluid dynamics, introduces 

the finite volume method, diffusion equation, viscosity and compressibility of fluid. 

Secondly, the flow of compressible fluid is studied. Finally, the GRP scheme for 

solving compressible inviscid hydrodynamic equations based on nonlinear equations is 

studied and analysed. 

Keywords: GRP Scheme, Compressible Inviscid Hydrodynamics Equations, Nonlinear 

Algebraic Equations; 

 

1. Introduction 

With the rapid iteration and development of 

computer information technology represented by big 

data and artificial intelligence, it has been widely 

used in various fields and achieved fruitful results. 

Fluid mechanics based on computer technology can 

directly solve and operate nonlinear algebraic 

equations, so as to solve the basic laws of fluid 

motion. With the rapid progress of fluid mechanics 

under the support of intelligent technology, it has 

been widely used in many fields as shown in Figure 

1, and has become an important means and method 

to solve practical engineering problems. 

 

 
Figure1. Theapplicationfields of fluid mechanics. 

 

Fluid is essentially composed of molecules, and 

these molecules have a much larger gap between 

each other than the size of the molecules 

themselves[1]. Based on these molecular gap scales, 

we can get the statistical average of the microscopic 

physical quantities of the fluid molecules as the 

macroscopic physical quantities of the fluid. At a 

scale much larger than the intermolecular gap scale, 

a mass of fluid material, which contains a large 

number of fluid molecules, can be used for macro 

physical quantity statistics. In addition, the scale of 
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the fluid mass is much smaller than the macro scale 

of the problems in fluid mechanics, so that it can be 

regarded as a point, called a particle, and the fluid is 

composed of these continuously distributed particles. 

Fluid mechanics studies the macro motion of 

fluid. The continuum model considers that the matter 

is continuously distributed in the whole space 

occupied by the material without any gap. The 

macroscopic physical quantity of fluid is a 

continuous function of space point and time. When 

the scale of the problem studied is much larger than 

the scale of molecular structure and molecular gap, 

the fluid can be regarded as a continuous medium.  

1.1. Motion of fluid 

Fluid is not a closed system, and it does not care 

about the whole movement of the system. It has an 

extremely large number of particles, and the 

movement between particles will not be consistent. 

The fluid can be divided into many fluid clusters on 

a larger scale than particles. The motion of particles 

in these fluid clusters will not be completely 

consistent, but it can be considered that the 

inconsistency has the rule of linear distribution. 

The fluid at the initial moment is divided into 

many micro clusters, each of which is numbered and 

identified by 𝑎 . Then a mathematical model is 

established for the physical quantities of each fluid 

micro cluster: 

 

𝑓 = 𝑓(𝑎, 𝑡)                                                (1) 

 

1.2. Motion of fluid 

For the irrotational motion of inviscid compressible 

fluid, the overall fluid field is shown in Figure 2, and 

the potential function of irrotational motion: 

𝐷𝒗

𝐷𝑡
= 𝑭𝑏 −

1

𝜌
𝛻𝑝                                          (2) 

 

𝜕𝜙

𝜕𝑡
+

|𝒗|2

2
+ 𝜋 + 𝑃 = 𝐶(𝑡)(3) 

The fixed wall shown in Fig. 2 has: 

𝜕𝜙

𝜕𝑟
= 0                                                (4) 

At the infinity shown in Figure 2 has: 

𝜕𝜙

𝜕𝑟
= 𝑉∞ cos 𝜃                                                (5) 

For the plane irrotational motion of inviscid 

compressible fluid, it can be solved by solving the 

analytic function of complex variable function. 

 
Figure2. Non rotational motion of inviscid 

compressible fluid. 

 

With the continuous development of basic theory 

and computer technology, fluid calculation has made 

great progress. A series of methods and theories in 

fluid mechanics, such as finite volume method, finite 

difference method and finite element method, have 

been applied continuously. In addition, with the 

deepening of the influence of relativity on the whole 

physical system, many interdisciplinary research 

fields are emerging, and relativistic fluid mechanics 

is playing an increasingly important role in many 

related disciplines such as physics. Based on the 

above background, it is of great theoretical and 

practical value to study the GRP scheme for 

compressible non viscous fluid dynamics equations 

based on nonlinear algebraic equations. 

 

2. Numerical methods of computational fluid 

dynamics 

2.1. Finite volume method in computational fluid 

dynamics 

For a conserved physical quantity in any control 

body, the source in the control volume is equal to the 

sum of the change rate of the physical quantity in the 

control body and the net flux passing through the 

boundary of the control body. The total flux passing 

through the boundary of the control body consists of 

convection and diffusion. If 𝜑  is the conserved 

Uniform flow around a cylinder
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quantity of unit mass fluid, the general scalar 

convection diffusion equation can be expressed as 

follows: 

 

𝑑

𝑑𝑡
（𝜌𝑉𝜑） + ∑ (𝐶

𝑓𝑎𝑐𝑒𝑠

𝜑 − 𝛤𝐴
𝜕𝜑

𝜕𝑛
) = 𝑆𝑉             (6) 

 

𝐶 = 𝜌𝑢𝑛𝐴                                                 (7) 

The finite volume method directly discretizes the 

above formula, as shown in Figure 3. In the case of 

only considering the steady-state problem, the first 

term on the left of equation 6 is zero. 

 

 
Figure3. Schematic diagram of finite volume 

method in fluid mechanics. 

 

2.1.1. FVM computing grid 

The finite volume method defines the geometry of 

the fluid field solution domain and divides the 

solution domain into computational grids, that is, a 

group of non-overlapping finite bodies or elements. 

The integral equation is discretized based on the 

above-mentioned elements, that is, approximated by 

node values. The discrete equation is solved 

numerically. The computational grid can be 

structured grid or unstructured grid, Cartesian grid. 

The commonly used grid forms include the storage 

method based on cell centre and the storage mode 

based on cell vertex, as shown in figure 4 below, and 

not all variables must be stored in the same location. 

 
Figure 4. Grid form of FVM computing grid pair. 

2.1.2. Diffusion equation 

The One-dimensional Steady-state convection 

diffusion equation is mainly based on the 

simplification of the problem analysis and the 

manual calculation of the discrete equation. The one-

dimensional diffusion equation can be directly 

extended to two-dimensional or three-dimensional. 

In fact, the flux is discretized along the coordinate 

direction, i.e. along the i, j, k lines respectively. 

Many important theoretical problems are one-

dimensional. 

For one-dimensional control volume, the 

conservation relationship of physical quantity is flux 

e-flux w = source, as shown in Figure 5, where flux 

is the transport rate across the cell surface. If 𝜑 is the 

transport volume per unit mass, thenthe total flux is 

the sum of convection flux and diffusion flux.For the 

pure diffusion problem, there are the following 

differential equations and integral equations: 

 

𝑑

𝑑𝑥
(−𝑘𝐴

𝑑𝑇

𝑑𝑥
) = 0                                               (8) 

 

[−𝑘𝐴
𝑑𝑇

𝑑𝑥
]

𝑤

𝑒

= 0                                        (9) 

 

 
Figure 5. Schematic diagram of one-dimensional 

convection diffusion process. 

 

In addition, the calculation of flux on boundary 

interface is shown in the following formula, and the 

boundary conditions are shown in Fig. 6. 
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𝑇1 − 𝑇𝐵1

𝛥𝑥/2
−

𝑇2 − 𝑇1

𝛥𝑥
= 0                                  (10) 

 

𝑇2 − 𝑇1

𝛥𝑥
−

𝑇3 − 𝑇2

𝛥𝑥
= 0                                   (11) 

𝑇3 − 𝑇2

𝛥𝑥
−

𝑇4 − 𝑇3

𝛥𝑥
= 0                                     (12) 

 

𝑇5 − 𝑇4

𝛥𝑥
−

𝑇𝐵2 − 𝑇5

𝛥𝑥/2
= 0                                     (13) 

 

 
Figure 6. Boundary conditions for calculating flux 

at boundary. 

2.2. Compressibility of fluid 

The compressibility of fluid is that the volume 

decreases with the increase of pressure at a certain 

temperature. At a certain temperature, the higher the 

pressure is, the smaller the fluid volume 

compressibility coefficient is; with the increase of 

pressure, the compressibility of fluid decreases. The 

smaller the bulk modulus of fluid is, the more 

compressible the fluid is. Generally speaking, the 

compressibility of liquid fluid is much smaller than 

that of fluid. In addition, under a certain pressure, 

the volume of fluid increases with the increase of 

temperature, and at a certain pressure, the higher the 

temperature, the smaller the expansion coefficient of 

fluid, and with the increase of temperature, the 

expansibility of fluid decreases. 

2.3. Viscosity of fluid 

The characteristic of tangential resistance produced 

by relative motion between fluid layers is the 

performance of fluid viscosity. With the increase of 

temperature, the viscosity of fluid increases while 

the viscosity of liquid decreases. The ratio of 

dynamic viscosity to density is called kinematic 

viscosity. Ideal fluids have no viscosity. The 

viscosity of a real fluid exists whether it is at rest or 

in dynamic state. Viscosity makes the fluid have the 

ability to resist shear deformation and hinder fluid. 

To overcome the viscous resistance and maintain the 

fluid will inevitably lead to energy consumption. 

The tangential stress acting on the fluid layer is 

directly proportional to the velocity gradient 

between two adjacent layers. When the fluid fluids, 

any two adjacent layers of fluid are resistant to each 

other, and the resisting force is shear force, also 

known as internal friction force, viscous force and 

viscous friction force. 

2.3.1. Continuum hypothesis of fluid 

The assumption of continuous medium of fluid 

mainly includes infinitesimal volume, the size of 

fluid particles is much larger than the distance 

between molecules, and the distance between 

particles is not greater than the distance between 

molecules, that is, there is no gap between particles. 

Fluid is a continuous medium composed of 

numerous fluid particles with continuous 

distribution. The Euler equilibrium differential 

equation is as follows: 

(𝑓𝑥 + 𝑓𝑦 + 𝑓𝑧) −
1

𝜌
(

𝜕𝑝

𝜕𝑥
+

𝜕𝑝

𝜕𝑦
+

𝜕𝑝

𝜕𝑧
) = 0         (14) 

2.3.2. Methods of fluid field research 

Lagrange method and Eulerian method are two 

important means and methods to study the fluid 

field. The Euler method analyses the velocity field 

and expresses the change rate of the physical 

quantity of fluid particles with time as two parts: the 

local change rate caused by instability and the 

migration change rate caused by inhomogeneity[2]. 

In the process of fluid, the surface of the system is 

usually constantly deformed, and the quality of the 

fluid is determined. The position of the fluid system 

changes with the movement. 

3. Fluid of compressible fluid 

When the velocity of air fluid is far less than the 

speed of sound, the change of density can still be 

ignored. When the velocity of fluid is close to or 

even exceeds the speed of sound, if the fluid is 

disturbed, it will inevitably cause great pressure 

changes, so that the density and temperature will 

also change significantly, and the fluid state of fluid 
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will have a fundamental change. At this time, the 

influence of compressibility must be considered.  

Due to the non-uniform density in the fluid field 

of compressible fluid, the movement of 

compressible fluid has some special properties 

compared with that of incompressible fluid. The 

propagation velocity of sound is a parameter or a 

standard to judge the influence of fluid 

compressibility on fluid. The greater the 

compressibility of fluid is, the smaller the speed of 

sound is. If the fluid is disturbed, the disturbance 

will travel in the form of waves in the fluid; if the 

disturbance is small, then the propagation speed is 

certain, and this speed is the speed of sound 

propagation - sound speed. 

3.1. Sound speed and Mach number 

A long straight pipe with A cross-sectional area is 

filled with static fluid. When the piston moves to the 

right at a small speed dv, the fluid near the right side 

of the piston is pressurized, and the pressure 

increases dp. The weak pressure disturbance 

generated will propagate to the right according to 

this, as shown in Figure 7. 

 
Figure7.Schematic diagram of straight pipe filled 

with static fluid. 

The pressure, density and temperature of the 

undisturbed fluid in front of the compression wave 

are 𝑝 , 𝜌  and 𝑇  respectively. After the wave, the 

disturbed fluid moves to the right with the same 

small velocity V as that of the piston. When the 

pressure increases to 𝑝 + d𝑝 , the density and 

temperature also increase to 𝜌 + d𝜌 and 𝑇 + 𝑑𝑇. 

Taking the left and right sides of the wave surface 

as the control surface, the volume of the control 

volume in the control plane is zero. The mass 

conservation principle is applied to the control body. 

The fluid rate in and out of the control surface per 

unit time is equal: 

𝜌𝑎𝐴 = (𝜌 + 𝑑𝜌)(𝑎 −

𝑑𝑉)𝐴                                                        (15) 

The compression wave is very thin and the 

friction force acting on the wave is negligible. 

According to the momentum theorem, along the 

fluid direction, the rate of change of momentum of a 

fluid is equal to the sum of the pressures acting on 

the fluid: 

(𝑎𝜌𝐴𝑑𝑡)
[−(𝑎−𝑑𝑉)−(−𝑎)]

𝑑𝑡
= [(𝑝 + 𝑑𝑝) − 𝑝]𝐴

                                        (16) 

The propagation velocity of the weak disturbance 

wave is as follows: 

𝑎 = √
𝑑𝑝

𝑑𝜌
(17) 

The above formula is a general expression of 

sound speed, which is suitable for any continuous 

medium. Therefore, the value of sound speed 

reflects the compressibility of fluid. The weak 

disturbance wave propagates rapidly, which can be 

approximately regarded as a reversible adiabatic 

process, i.e. isentropic process. For an ideal fluid, 

the higher the temperature, the greater the speed of 

sound. 

Mach number reflects the ratio of inertial force to 

elastic force, which is the standard to judge the 

influence of fluid compressibility on fluid[3]. 

According to the Mach number, the fluid of 

compressible fluid can be divided into subsonic fluid, 

transonic fluid, supersonic fluid and hypersonic fluid. 

For the fluid of compressible fluid, the 

thermodynamic state changes with the change of 

density. Therefore, the state equation and process 

equation in thermodynamics must be considered 

together to solve the fluid problem. 

3.2. One dimensional steady isentropic fluid of 

compressible fluid 

Continuity equation: 

Disturbed wave surface of velocity a
Stationary 

wave front

Control 

surface
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𝜌1𝑉1𝐴1 = 𝜌2𝑉2𝐴2

𝜌𝑉𝐴 = 𝑐𝑜𝑛𝑠𝑡
}(18) 

Its differential form is as follows: 

𝑉𝐴𝑑𝜌 + 𝜌𝐴𝑑𝑉 + 𝜌𝑉𝑑𝐴

= 0                                                         (19) 

3.2.1. One dimensional fluid equation of 

compressible fluid 

The Euler motion differential equation of ideal fluid 

in one-dimensional fluid is as follows: 

𝜌
𝑑𝑉

𝑑𝑡
= 𝜌𝑓𝑥 −

𝑑𝑝

𝑑𝑥
(20) 

The sum of the changes of pressure energy and 

kinetic energy along the total fluid direction of an 

ideal fluid is zero, that is to say, the sum of the two 

energies does not change along the total fluid 

direction. 

3.2.2. One dimensional energy equation of 

compressible fluid 

Combined with isentropic fluid and integral equation 

along the fluid tube, the energy equation (Bernoulli 

equation for compressible fluid) of one-dimensional 

steady isentropic fluid of ideal fluid is obtained: 

𝑘

𝑘−1

𝑝

𝜌
+

𝑉2

2
= 𝑐𝑜𝑛𝑠𝑡(20) 

The existence of friction only transforms the 

mechanical energy consumed in resisting friction 

into heat energy, which is added to the fluid again, 

thus increasing the entropy in the fluid. So, in 

adiabatic fluid, the total energy does not change. In 

one-dimensional steady isentropic fluid of fluid, the 

sum of pressure potential energy, kinetic energy and 

internal energy per unit mass of fluid flowing 

through any effective section remains unchanged. 

3.3. Isentropic flow of compressible fluid in nozzle 

The flow of compressed fluid in nozzle is actually a 

kind of fluid flow in variable cross-section pipe. The 

law of velocity and pressure with cross-section is 

related to the relationship between fluid parameters 

and cross-section. The relationship between density 

change rate and velocity change rate, combined with 

the definition of motion equation and sound speed, is 

as follows: 

𝑉𝑑𝑉 = −
𝑑𝑝

𝜌
= −

𝑑𝑝

𝑑𝜌

𝑑𝜌

𝜌
= −𝑎2 𝑑𝜌

𝜌
(21) 

That is to say, in subsonic flow, the relative 

change of density is less than that of velocity, while 

in supersonic flow, the relative change of density is 

greater than that of velocity. This difference leads to 

the essential difference between subsonic and 

supersonic velocity in the relationship between 

velocity and channel cross-section shape. 

3.3.1. Relationship between fluid parameters and 

cross section 

The relationship between the change rate of 

sectional area and the rate of change of velocity can 

be obtained by the differential equation of continuity 

equation: 
d𝐴

𝐴
= 𝑀𝑎2 d𝑉

𝑉
−

d𝑉

𝑉
= (𝑀𝑎2 − 1)

d𝑉

𝑉
(22) 

When the pressure decreases, the cross-sectional 

area of the channel decreases with the increase of the 

air velocity, which is called subsonic nozzle; when 

the pressure increases, the cross-sectional area of the 

channel increases with the decrease of the air 

velocity, which is called subsonic diffuser[4]. This 

phenomenon is similar to that of incompressible 

fluid. When the pressure decreases, the cross-

sectional area of the passage increases with the 

increase of the flow velocity, which is the supersonic 

nozzle. This is because when the pressure drops, the 

density of the supersonic fluid decreases sharply and 

the volume increases rapidly. At this time, the cross-

sectional area of the channel must be enlarged to 

make the rapidly expanding accelerating air flow 

pass through. 

3.3.2. One dimensional steady motion differential 

equation of fluid 

One dimensional steady motion differential equation 

of compressible fluid with friction and heat 

insulation: 

𝑉𝑑𝑉 +
𝑑𝑝

𝜌
+ 𝜆

𝑉2

2

𝑑𝑥

𝑑
=

0                                                        (23) 

dρ/ρ is replaced by continuity equation: 

(
𝑉2

𝑘
−

𝑝

𝜌
)

𝑑𝑉

𝑉
−

𝑝

𝜌

𝑑𝐴

𝐴
+ 𝜆

𝑉2

2

𝑑𝑥

𝑑
= 0(24) 

It can be seen from the above formula that the 

critical section of compressible fluid in the divergent 
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nozzle is not at the minimum section due to the 

influence of friction. 

 

4. GRP scheme for compressible inviscid 

hydrodynamic equations 

4.1. GRP scheme for one dimensional relativistic 

hydrodynamics equations 

The numerical solution obtained by GRP scheme is 

in good agreement with the exact solution, and the 

rarefaction wave and shock wave are also well 

resolved. There is a difference between the solutions 

of the relativistic shock tube problem and the 

corresponding non relativistic shock tube problem, 

which is mainly caused by the nonlinear 

superposition of velocity and Lorentz contraction. In 

the non-relativistic case, the profile of the sparse 

wave is close to a straight line, while in relativity, 

the nonlinear superposition of the velocity results in 

the curvilinear curve of the sparse wave part. 

To solve partial differential equations by 

difference method is to obtain the approximate 

valueofon some discrete nodesof one region. The 

basic idea of the difference method is to mesh the 

solution area, discretize the partial differential 

equation on the grid nodes, and derive the difference 

equation that the approximate value of the exact 

solution satisfies on the grid node. Finally, the 

approximate value of the exact solution on the 

discrete node can be obtained by solving the 

difference equation, which is usually a linear 

equation system. Divide g into grid area, as shown in 

Figure 8, The difference quotient expression of the 

second partial derivative is obtained 

𝜕2𝑢

𝜕𝑥2
(𝑖, 𝑗) =

1

ℎ1
2 + [𝑢(𝑖 + 1, 𝑗) − 2𝑢(𝑖, 𝑗) + 𝑢(𝑖 −

1, 𝑗)] + 0(ℎ1
2

)(25) 

 
Figure 8.Grid area diagram. 

Based on the Riemannian invariants and shock 

relations of the one-dimensional RHD equations, the 

cases in which the left and right nonlinear waves are 

located on both sides of the element interface can be 

distinguished. In the case of transonic rarefaction 

wave, the time derivative at the initial discontinuity 

can be calculated. In the case of only linear wave, 

the calculation is simple and direct. The GRP 

scheme for one-dimensional relativistic fluid 

dynamics equations has high accuracy, so it can be 

used to solve one-dimensional relativistic fluid 

dynamics problems effectively. 

4.2. GRP scheme for two dimensional relativistic 

hydrodynamics equations 

As a generalization of the second order direct Euler 

type GRP scheme for one-dimensional RHD in two-

dimensional RHD equations, two-dimensional GRP 

scheme is similar to one-dimensional, but their 

derivation is different[5]. The Riemann invariants 

corresponding to nonlinear waves of high 

dimensional split type RHD equations are nonlinear 

dependent on the changing tangential velocity. The 

accuracy and validity of the GRP scheme for two-

dimensional relativistic fluid dynamics equations 

can also be well guaranteed, which lays the 

foundation for the GRP scheme to be extended to the 

three-dimensional RHD equations. 

4.3. Finite time stabilization of neural networks 

based on discontinuous excitation function 

Based on the solution of the initial value problem of 

one-dimensional RHD equations, the numerical 

convergence rate of the third-order GRP scheme for 

one-dimensional relativistic fluid dynamics 

equations and its ability to capture shock waves and 

other discontinuities can be effectively verified. 

Using uniform grid, WENO reconstruction based on 

feature decomposition is used in the reconstruction 

of the third-order GRP scheme[6]. Based on the 

verification calculation, it is concluded that the third-

order scheme not only approximates the exact 

solution slightly better than the second-order scheme 

in the sparse wave region, but also has less 

numerical error in the middle low-density region 

than the second-order scheme, and the numerical 

results of the third-order scheme are closer to the 
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reference solution in the middle density disturbance 

region. 

The construction process of the third-order direct 

Euler type GRP scheme based on one-dimensional 

RHD equations is not only more complicated for the 

nonlinear introduction of the equation, but also the 

characteristic variables involved in the construction 

process of the third-order GRP scheme for the one-

dimensional relativistic fluid dynamics equations 

need to be given by numerical integration. The 

accuracy of the third-order GRP scheme for one-

dimensional relativistic fluid dynamics equations is 

demonstrated based on an example. The results 

obtained by the third-order GRP scheme are better 

than those of the second-order scheme in the smooth 

region, but the resolution is slightly lower than that 

of the second-order scheme near strong 

discontinuities. 

 

5. Conclusion 

In summary, With the deepening of the influence 

of relativity on the whole physical system, many 

interdisciplinary research fields are constantly 

emerging. Relativistic fluid mechanics is playing an 

increasingly important role in many related 

disciplines such as physics. Fluid mechanics based 

on computer technology can directly solve and 

operate nonlinear algebraic equations, so as to solve 

the basic laws of fluid motion. With the support of 

intelligent technology, fluid mechanics has been 

applied in many fields, and has become an important 

means and method to solve practical engineering 

problems. 

In this paper, the finite volume method, FEV and 

diffusion equation are introduced by analyzing the 

numerical methods of computational fluid dynamics. 

Through the study of compressible fluid flow, the 

one-dimensional flow equation, energy equation and 

isentropic flow of compressible fluid are analyzed. 

Finally, the GRP schemes for compressible inviscid 

hydrodynamics equations are solved, including the 

GRP scheme for one-dimensional relativistic fluid 

dynamics equations, the GRP scheme for two-

dimensional relativistic fluid dynamics equations 

and the third-order GRP scheme for one-dimensional 

relativistic fluid dynamics equations. Numerical 

calculations are given to compare the numerical 

errors and applicability of each scheme. 
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