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Abstract 

Highway traffic safety management is an essential part of the highway operation 

management system. It plays a vital role in ensuring highway traffic safety and clear 

roads. In this paper, an accurate real-time positioning and monitoring algorithm based on 

RFID vehicle flow speeding automatic monitoring. The highway speed measurement 

system is used to collect the data on the traffic flow and speed of vehicles passing 

Shanfen highway monitoring point. Through statistical analysis of sample data in the 

traffic database, the changes in the average speed, speeding volume and rate in this 

section before and after the enforcement of illegal speeding vehicles were compared and 

analyzed by the speed measurement system. The positioning and real-time monitoring 

were completed by extracting the feature information of the visual perception images in 

the positioning and real-time monitoring range based on the visual perception 

technology. The inertial information is combined to perform unscented Kalman filtering 

to improve the accuracy further. Based on the simulation results, the impact of the 

detection line setting on the detection accuracy is analyzed, the detection and 

discrimination process of the detection algorithm is described, the theoretical calculation 

of the maximum detection speed is conducted, and the rapid recovery technology 

research on the false detection is performed. 

Keywords: Vehicular Ad-hoc Network (VANET), Positioning and Real-time Monitoring, 

Road Side Unit (RSU); High-resolution Estimation; 

 

1. Introduction 

The rapid popularization of cars in social life 

has provided convenience to people. However, it has 

also imposed tremendous pressure on urban 

transportation, which leads to a series of problems 

such as frequent traffic accidents, increased energy 

consumption, aggravated environmental pollution, 

and road congestion, etc. [1-2] In recent years, with 

the rapid advancement of information technology 

(IT), especially mobile communication technology, 

the Internet of Vehicles (IoV) technology that adopts 

the vehicular ad-hoc networks (VANETs) as the 

primary implementation means has offered great 

opportunities [3-4]. For most of VANETs applications, 

an essential premise for exerting their function is to 

implement real-time, precise positioning and 

real-time monitoring of vehicles. Studies have 

suggested that if vehicles can obtain the location 
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information of themselves and the surrounding 

vehicles in a timely manner and issue an advance 

warning to the driver before traffic congestion or 

possible collision occurs, it can reduce traffic 

accidents by about 40% [5-6]. 

Precise and real-time vehicle positioning and 

real-time monitoring technology is a necessary 

means for safety evaluation and system intervention 

in the driver assistance system. In addition, it is also 

the key core technology to the breakthrough for the 

era of automatic RFID vehicle flow speeding 

monitoring and accelerated RFID vehicle flow 

speeding monitoring [7-8]. At present, the research 

and development of automatic monitoring of 

automobile RFID traffic flow speeding mainly 

follow the technical routes of single vehicle 

intelligence (that is, the so-called “fat system”) and 

intelligent connected vehicle system (that is, the 

so-called “thin system”). In the aspect of vehicle 

environmental perception and driving decision, the 

former is mainly implemented through on-board 

sensors and processing units; while the latter is 

mainly implemented through a dedicated wireless 

network or a public mobile communication network, 

such as the 5th generation (5G) wireless 

communication system. No matter it is a fat system 

or a thin system, precise and real-time vehicle 

positioning and real-time monitoring are essential. 

For this purpose, many studies have been conducted 
[9-10]. In this paper, a 3D positioning and real-time 

monitoring scheme combining perception for RFID 

vehicle flow speeding automatic monitoring scenes, 

where three-dimensional candidate frames are 

generated from the 3D point cloud, and the features 

from multiple views by area are combined to 

accomplish the positioning and real-time monitoring. 

The information from multiple sensors is analyzed 

and integrated, and the communication network is 

used to assist in the hierarchical decision-making for 

the automatic monitoring of RFID vehicle flow 

speeding. In the BJUT-IV smart car project, a 

tracking algorithm is used to implement the 

positioning and real-time monitoring of RFID 

vehicle flow speeding automatic monitoring lateral 

movement. In the algorithm, the preview distance is 

designed as a function of vehicle parameters and 

vehicle speed, and the target position is further 

determined based on the distance. Internet 

companies such as Google, Uber, and Baidu are also 

carrying out research on automatic monitoring of 

vehicles based on the RFID vehicle flow speeding 

through vehicle sensors. Short-term progress can be 

achieved based on the single vehicle intelligent 

mode in urban scenes with relatively complete 

transportation facilities or highway scenes with 

relatively simple driving conditions. However, the 

hardware cost is excessively high, and there are 

relatively high limitations relying solely on single 

vehicle intelligence. For example, for complex 

scenes such as severely damaged facilities, 

irregularly deployed roads and highways with high 

traffic flow, or in extreme weather conditions such as 

rain, snow, and fog that can affect the performance 

of image sensors and radar, it is highly challenging 

to complete the road environment perception and 

real-time decision-making based on single vehicle 

intelligence. Hence, in order to truly enter the RFID 

vehicle flow speeding automatic monitoring stage, in 

addition to the own sensors of vehicles (including 

millimeter-wave radar, lidar, ultrasonic, camera, and 

so on), the significance of VANETs is highlighted. 

VANETs can provide continuous and reliable 

additional information (such as the ranging 

information, road conditions, traffic signals, etc.) 

during the driving process of the vehicles, thereby 

helping the vehicles determine their position more 

precisely, and implementing precise positioning and 

real-time monitoring at the lane level (at the 

centimeter level). With the research and 

development of the single vehicle RFID vehicle flow 

speeding automatic monitoring technology, the 

research on the application of the Global Navigation 

Satellite System (GNSS) d to vehicle positioning 

and real-time monitoring is in full swing. However, 

when a vehicle is driving in densely packed urban 

streets, overpasses, or tunnels, the GNSS signal of 
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the vehicle can be easily blocked. As a result, it may 

not be possible to implement precise and reliable 

real-time positioning and real-time monitoring, 

which can severely restrict the application of IoV in 

urban transportation systems. Hence, in the context 

of complex urban environments, under the 

circumstances that the GNSS and other systems fail 

to provide reliable positioning services for vehicles, 

the studies of the high-accuracy vehicle real-time 

positioning and real-time monitoring method based 

on the VANETs that has strong environmental 

adaptability and can meet the requirements of most 

IoV applications are required urgently. 

In this paper, a precise, real-time vehicle 

positioning and real-time monitoring algorithm 

based on the Matrix Pencil and Non-Linear Fitting 

(MP-NLF) and visual perception technology is put 

forward. The algorithm adopts the Road Side Unit 

(RSU) in the VANETs as a reference node for the 

wireless positioning and real-time monitoring of 

vehicles and uses the single RSU to solve the 

real-time, precise vehicle positioning and real-time 

monitoring issues effectively, which includes the 

following: (1) Based on the RFID technology, the 

frequency domain 1-dimensional MP algorithm is 

first used to obtain the estimated real-time angle of 

arrival (AOA). Subsequently, the frequency diversity 

features of the orthogonal frequency division 

multiplexing (OFDM) subcarriers are used to 

establish the model for the high-resolution 

estimation of time of arrival (TOA) as an NLF 

problem for solution. In addition, the features of the 

adjacent subcarrier phase difference are used to 

improve the estimation performance. Finally, the 

estimated value for TOA/AOA is input into the 

weighted least squares (WLS) estimator to 

implement high-precision real-time positioning and 

real-time monitoring. (2) Based on the visual 

perception technology, the image feature information 

is extracted by configuring a visual sensor at the 

RSU end to obtain the target vehicle contour and 

calculate the corresponding centroid coordinates. At 

the same time, the Unscented Kalman Filter (UKF) 

technology is applied to integrate the visual 

positioning and the real-time monitoring results with 

the information of the inertial sensor with a 

relatively high sampling rate further to improve the 

real-time performance and the positioning and 

real-time monitoring accuracy. In this paper, the 

automatic monitoring and assisted driving based on 

the RFID vehicle flow speeding are studied. A new 

method and new concept that is different from the 

current mainstream intelligent RFID vehicle flow 

speeding automatic monitoring based on the image 

processing and laser (or millimeter wave) radar are 

put forward. The simulation results show that, 

compared with the traditional multi-path fingerprint 

algorithm, the proposed algorithm has more superior 

positioning and real-time monitoring performance 

even in the case of a low signal-to-noise ratio, which 

can be regarded as an extension of the 5G 

technology in the direction of automatic monitoring 

of the RFID vehicle flow speeding. It can solve the 

problem of the positioning and real-time monitoring 

at the lane level in IoV applications to a certain 

extent, which is also of considerable significance to 

the theoretical research in the field of automatic 

monitoring of RFID vehicle flow speeding. 

2. System Model 

The scenarios of vehicle positioning and 

real-time monitoring in this paper are shown in 

Figure 1. It is assumed that there are typical 

VANETs distributed on a certain section of the road, 

and an RSU with a known position is deployed on 

one side of the road. The RSU can send a beacon 

packet (BP) containing its own location information 

to the vehicles within a fixed frequency. Through the 

IEEE802.11p protocol, the vehicle to infrastructure 

(V2I) communication can be established between the 

RSU and the vehicle. It is assumed that the vehicle is 

equipped with a Uniform Linear Array (ULA) 

receiver with M antenna elements (the array 

direction is orthogonal to the direction of the motion 

of the vehicle) to receive the BP data transmitted by 

the RSU and estimate the multi-path TOA and AOA 

parameters based on the data received. At the same 
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time, the vehicle is also equipped with an inertial 

sensor device, which can obtain its own speed 

information (including the speed amplitude and 

direction) in real time. 

 
Figure 1. Schematic diagram of vehicle positioning 

and real-time monitoring scenarios 

Figure 2 is the schematic diagram of ULA 

receiving multi-path signals at the vehicle end. Due 

to the impact of obstacle reflections, there are P 

transmission paths between the RSU and the target 

vehicle. One of the most reliable energy paths is the 

line of sight (LOS) transmission propagation path 

(as shown in the solid line), and the remaining paths 

are non-line of sight. (NLOS) transmission 

propagation path (as shown in the dashed line). If 

the preamble of the OFDM frame in the received BP 

is used to measure the transmission channel 

information, the least square estimate of the channel 

frequency response (CFR) on the k-th OFDM 

subcarrier and the m-th ULA array element can be 

expressed as the following [13] 

( )( )2

, ,

1

k p m p

P
j f

m k p m k

p

H e w
  


−  +

=

= +                      

(1) 

In the above equation, p , p and p  stand for 

the transmission gain, propagation delay, and angle 

of arrival on the p-th path, respectively, 

1,2, ,p P= ;  
( )( )2 k p m pj f

e
  −  +

stands for the array 

response on the m-th antenna array element, 

0,1, , 1m M= − ; 

( ) ( ) sinm p p pm md c    = = stands for the 

difference in the propagation delay of the p-th path 

between the m-th antenna array element and the 

reference array element. The parameter d is the 

distance between adjacent array elements, and c is 

the propagation speed of the radio wave. kf stands 

for the carrier frequency of the k-th subcarrier. 

,m kw stands for additive white Gaussian noise with a 

mean of zero and a variance of 2

0 2w N = . In 

general, the p of different paths are considered to 

be independent of each other. However, when the 

frequency interval between the adjacent subcarriers 

is greater than the coherent bandwidth, the 

attenuation between subcarriers is also independent 

of each other [14]. In this case, p can be replaced 

by ,k p . Taking into consideration that in the antenna 

design, the array element spacing d is usually equal 

to the half-wavelength of the incident signal, then 

( )2 cd c f= can be obtained. Hence, 
( )2 o pj f m

e
 − 

can be 

simplified to
sin pjm

e
− 

. At the same time, as the 

antenna element spacing is much smaller than the 

length of the propagation path, the effect of the 

propagation delay between the elements on the CFR 

is much smaller than the effect of the path 

propagation delay on CFR. Hence, the estimation of 

CFR at the receiving end can be further simplified to 

the following 

( )22
, , ,

1

o pk p

P
j f mj f

m k k p m k

p

H e e w
 


− − 

=

= +                    

(2) 

 
Figure 2. Schematic diagram of ULA receiving 

multi-path signals at the vehicle end 

3. Precise Real-time Vehicle Positioning and 

Real-time Monitoring Algorithm 

In this section, the precise, real-time 

positioning and real-time monitoring algorithms 

based on the RFID vehicle flow speeding automatic 

monitoring is provided in detail, including the 

positioning and real-time monitoring algorithm 
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based on the RFID technology, as well as the 

positioning and real-time monitoring algorithm 

based on visual perception. 

3.1. Positioning and Real-time Monitoring 

Algorithm Based on RFID Technology 

3.1.1. Application of MP Algorithm for AOA 

Estimation 

In order to apply high-resolution estimation, the 

CFR estimation matrix expression (2) measured at 

the receiving end is first described 

as  0 1 1, , , KX x x x −= , and the k-th column of the 

matrix is expressed as 0, 1, 1,, , ,
T

k k M kkx H H H − =
 

, 

which can be written in the form of vector as the 

following 

k k kx Va w= +                               (3) 

Different from the traditional high-resolution 

algorithm that processes multiple sets of snapshot 

data in the time domain, only a single moment of 

sampling needs to be used to establish a sampling 

covariance matrix in the frequency domain, which 

has greatly reduced the time overhead of the 

algorithm. The sampling covariance matrix xxR can 

be expressed as the following 
1

0

1 1 K

xx k k

k

R XX x x
K K

−
 

=

= =                            

(4) 

Eigenvalue decomposition is carried out on 

xxR , and the following can be obtained  
1

1

M

xx i i i s s s n n n

i

R u u U U U U
−

  

=

= =  +                        

(5) 

In the above equation, 

( )0 1 1, , ,s Pdiag    − = stand for P eigenvalues that 

are relatively large in xxR , and the remaining 

eigenvalues are represented 

by ( )1 1, , ,n P P Mdiag   + − = . 

 0 1 1, , ,s PU u u u −= stands for the matrix composed of 

eigenvectors corresponding to P eigenvalues that are 

relatively large in s , which form the signal 

subspace of the matrix xxR . The subspace dimension 

P can be provided by some estimation algorithms 

based on the information theory criteria. 

 1 1, , ,n P P MU u u u+ −= is a matrix composed of 

eigenvectors corresponding to the other M P−  

eigenvalues, which have formed a noise subspace. 

Let 1U and 2U be the matrix obtained by deleting 

the last row and the first row of the elements in ( )U n . 

Hence, the matrix pencil in the spatial dimension can 

be expressed as 2 1U U− , and the multi-path AOA 

information can be extracted by the generalized 

eigenvalue decomposition of the matrix 1 2U U += , as 

shown in equation (6) below 

( )1 2 0p pU U I + − =                             

(6) 

In the above equation, p stands for the 

eigenvector in the ( )1 2 pU U I+ − zero space, and the 

corresponding eigenvalue is
sin pj

p e



− 

= . Hence, the 

multi-path AOA can be estimated as the following 

( )arg
arcsin , 1,2, ,

p
p p P




 
 = =
 
 

                      

(7) 

In the above equation, ( )arg  stands for the 

operation of calculating the phase angle. 

3.1.2. Application of NLF for TOA Estimation  

After the AOA estimate is obtained, the CFR 

matrix is transformed into a frequency domain path 

information matrix  0 1 1, , , Ka a a − = , so that the 

low-complexity and high-resolution TOA estimation 

can be implemented through frequency diversity 

characteristics and NLF technology. In the previous 

section, the estimate for the multi-path pole p  has 

been obtained. After the noise term is ignored, the 

k-th column of CFR can be written as the following 

1

2

2

1 2 ,1

2 2 2 2

1 2 ,2

2

1 2 ,

k

k

k P

j f

P k

j f

P k

k k

M M M j f

P k P

e

e
x Ba

e







   

   

   

− 

− 

− 

  
  
  = =
  
  
    

                  

(8) 
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Equation (8) can be derived from Equation (3). 

In Equation (8), the path vector 

,1 ,2 ,, , ,
T

k k k k Pa    =   can be estimated through the 

complex least squares solution,  in 

which
2

, ,
k pj f

k p k pe


 
− 

= , as shown in Equation (9) 

below 

( )
1

k ka B B B x
−

 =                               

(9) 

In the above equation, each element of 

ka contains complex path fading component ,k p and 

phase component
2 k pj f

e
− 

. In order to describe the 

CFR fading characteristics of OFDM signals, the 

path fading expression based on the Friis formula is 

rewritten as ( )
1

, 4k p p k pf  
−

=  , in which p stands 

for the environmental factor of the p-th path. Hence, 

the element ,k p in ka  corresponding to the p-th 

path and the k-th subcarrier can be expressed as the 

following 

( )
1 2

, 4 k pj f

k p p k pf e


  
− − 

=                         

(10) 

In the above equation, p and p are both 

unknown parameters to be estimated. As the fading 

characteristics of various subcarriers are different, 

assuming 2K P , it can be found that the joint 

estimation issue of parameters p and p in 

equation (10) is overdetermined. Hence, the 

frequency diversity features of the received data can 

be used to estimate the multi-path TOA information. 

The ,k p is fitted with the estimated parameters in 

equation (9) based on the least squares method. In 

this way, TOA estimation can be modeled as an NLF 

problem, and its objective function is defined as the 

following 

( ) ( )
1

0

min
K

k
q

k

F q q
−

=

=                            

(11) 

In the above equation, 

( ) 2

1 1, , , , , P

P Pq    = R is the set of unknown 

parameters, in which ( )k q stands for the 

independent fitting error on each sub-carrier, and the 

expression is as the following 

( )

( ) ( )( )

2

,,

1

2
2

, , ,, , , ,

1

2 Re cos Im sin

P

k pk k p

p

P

k p k p k pk p k p k p k p

p

q

a b b

  

   

=

=

= −

 
= + − − 

 





         (12) 

In the above equation,
 

, 2 , 1,2, ,k p k pb f p P=  = . Through solving the fitting 

function, the required multi-path TOA estimated 

value p can be obtained. 

In equation (12), due to the presence of 

trigonometric functions, the current fitting function 

cannot identify a precise solution properly. The 

reason is that in the fitting function, 1

p p  −  is the 

dominant part, which can lead to the ill-conditioned 

features of the function, that is, even a minor change 

in the input will cause a relatively huge change in 

the solution. In order to solve the above problem, the 

phase difference between the path information of 

adjacent subcarriers is used as the input of the fitting 

function to ensure that the input phase of ,k p is 

consistent with the phase of ,k p . Hence, equation 

(12) can be modified to the following 

( ) ( ) ( ) ( )( )( )
2

, ,1

1

2 arg arg
P

k p k pk k k p

p

d f f   +

=

=  − − −            

(13) 

In the above equation, ( )1 2, , , P

Pd   = R is 

an unknown vector containing the required TOA 

parameters. The objective function of the fitting 

problem is rewritten as ( ) ( )
2

0

K

kk
F d d

−

=
= . At this 

point, the overdetermination condition is also 

changed into 1K P + . In urban scenes, the number 

of multi-paths is generally less than the number of 

OFDM subcarriers. Hence, this assumption is valid 

in most cases. In the new objective function, the path 

fading and trigonometric function parts are removed 

from the original objective function. As a result, the 

fitting performance is better, and the volume of 
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computation is significantly reduced. In addition, the 

condition number of the Hesse matrix of the new 

objective function is 1, which is sufficiently small, 

suggesting that the objective function is no longer 

ill-conditioned. In the end, the output d  of NLF is 

the estimate of multi-path TOA information, and the 

TOA estimate d of the LOS path required for 

positioning and real-time monitoring is the 

minimum value in d  . 

3.1.3. Estimation of WLS Position 

After the TOA and AOA estimated values of the 

LOS path are obtained, let  ,
T

R R Rp x y= stand for 

the known position vector of the RSU, as shown in 

Figure 3. The current position vector  ,
T

p x y= of 

the vehicle can be expressed as the following 

cos

sin
R

d
p p

d





 
= +  

  

                           

(14) 

In the above equation, ( ) ( )% 2  = +  stands 

for the angle between the incident wave and the 

positive direction of the x-axis, and % indicates the 

modulus calculation.  and  stand for the 

estimated value of AOA and the heading angle of 

vehicle movement, respectively. Let 

,
T

x yv v   represent the speed vector of the vehicle, 

then the heading angle can be described 

as ( )arctan y xv v = . As the position information 

calculated based on equation (14) is affected by 

channel noise and estimation error, its accuracy 

cannot meet the requirements of VANETs security 

applications in general. Hence, in order to further 

improve the positioning and real-time monitoring 

performance, given the integration of the vehicle 

motion model and speed information, a WLS 

estimator is used to process the position estimate 

obtained by equation (14). Let 

 0,1,kt k = represent the time when the BP sent by 

the RSU arrives at the ULA of the receiving end of 

the target vehicle. ( ) ( ) ( )0 0 0,
T

p t x t y t=    and 

( ) ( ) ( ),
T

k k kp t x t y t=    are used to indicate the 

position of the vehicle at the moment 0t and kt , 

respectively. At the same time, it is assumed that the 

speed of the target vehicle remains unchanged in 

each time interval. Let ( ) ( ),
T

x k y kv t v t   represent the 

vehicle speed vector in the time period  )1,k kt t +
, then 

the kinematic model shown in equation (15) can be 

obtained 

 
Figure 3. Schematic diagram of ULA receiving at 

the vehicle end 

( )

( ) ( )

( ) ( )

0 1

1

0 1

1

k

x j

j

k k

y j

j

x t v y t

p t

y t v t t

−

=

−

=

 
+  

 =
 

+  
 




                      

(15) 

In the above equation, t stands for the length of the 

time interval. 

In the calculation of the position of the vehicle 

at any time, since the speed information is known, 

and the position vector ( )0p t at the initial time is 

unknown, it can be solved through the estimation of 

equation (16) as the following 

( )
( )

( ) ( )
0

22

0 0

1

arg min
k

i i i
p t i

p t N p t p t
=

= −                   

(16) 

In the above equation, 

( ) ( ) ( )0 00
,

T

i i ip t x t y t=    stands for the rough position 

estimate obtained by the WLS estimation in step 1 at 

the moment, and ( )ip t stands for the position vector 

calculated based on equation (15). iN stands for the 

SNR measured by the received signal at the moment. 
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Finally, the unknown vector ( )0p t can be solved by 

the least squares method, and the following can be 

obtained 
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3.2. Positioning and Real-time Monitoring 

Algorithm Based on Visual Perception 

Visual perception positioning and real-time 

monitoring are methods where the image processing 

and the corresponding prior knowledge are used to 

calculate the position of the vehicle in the 

environment. As shown in Figure 4, the visual 

sensor is arranged in the upper part of the RSU in 

the positioning and real-time monitoring process. 

The visual perception range of the sensor can cover 

the road on which the vehicle is running. The 

positioning and real-time monitoring algorithm 

based on MP-NLF applies the wireless positioning 

and real-time monitoring to estimate the single 

station precise positioning and real-time monitoring 

of the vehicle through the ranging parameter 

estimation; while the positioning and real-time 

monitoring algorithm based on visual perception is a 

supplement to the algorithm described above. The 

purpose is to implement effective positioning and 

real-time monitoring when there are a lot of road 

obstacles, non-motor vehicles (or pedestrians), or 

other scenes. The specific steps are described as the 

following: 

Step 1 The real-time images of vehicle 

operation is obtained through visual sensors 

arranged on the upper part of RSU; 

 
Figure 4. Schematic diagram of vehicle positioning 

and real-time monitoring based on visual perception 

Step 2 For the current frame image within the 

perception range acquired by the visual sensor, the 

gray-scale and binary processing is first conducted 

on the frame image data in sequence. Subsequently, 

the contour of each object is extracted from the 

processed image data, and all the contours are 

filtered to obtain the corresponding contour of the 

target vehicle. Finally, the centroid coordinates of 

the vehicle are obtained according to the 2D map 

information within the perception range constructed 

based on the frame image. As the centroid 

coordinates obtained at this time are pixel 

coordinates, a coordinate conversion operation is 

required to convert the target vehicle coordinate 

information in the pixel coordinate system to the 

motion coordinate system. The coordinate 

conversion aims first at the image information of the 

current frame, and the image pixel coordinates 

( ),u v are constructed based on the frame image. 

Subsequently, the image coordinates are converted 

into the actual motion coordinates ( ),x y . The 

relationship of the coordinate conversion can be 

expressed as x au= and y bu= . Among them, 

a x W=  , b y H=  ,W stands for the image width of 

the current frame in the sensing range, H stands for 

the image length of the current frame in the sensing 

range, x stands for the actual ground width of the 

sensing range, and y stands for the actual ground 

length of the sensing range. 
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Step 3 According to the current frame image 

data and the centroid coordinates of each object 

extracted from the previous frame image data, the 

contour of each moving object is tracked to prevent 

the interference of other running objects on the 

target vehicle. In the tracking process, the distance 

traveled by each moving object between two frames 

of images is preset first as a reference value D. 

Whenever the sensor acquires the current image 

within the perception range, for each object contour 

in the current frame image, the contour with the 

distance between the previous frame image and the 

object contour less than D is regarded as the contour 

of the moving object. If there is no object contour 

with a distance less than D from the contour of the 

moving object in the previous image, the object 

contour is regarded as a new moving object that 

appears in the perception range. 

Step 4 Whether the current frame image of the 

perception range acquired by the visual sensor is the 

last frame is determined. If it is the last frame, the 

positioning and real-time monitoring operation ends; 

if not, return to step 2 when the sensor acquires the 

next frame image within the perception range and 

continue the operation. Finally, the RSU sends the 

vehicle motion coordinates to the vehicle via V2I 

communication in real time after each frame of 

image processing is completed. 

In the positioning and real-time monitoring 

process based on visual perception, the images are 

processed according to each sampling moment to 

locate and monitor the position of the vehicle in real 

time, which is susceptible to noise and 

environmental factors (such as rain, fog, light, and 

so on). In addition, due to the low scan rate of the 

visual sensor, it can lead to relatively poor real-time 

performance of visual positioning and real-time 

monitoring. Hence, the introduction of UKF 

technology to combine the visual positioning with 

real-time monitoring and the own inertial sensor 

information of the vehicle. It has solved the problem 

of low real-time performance based on visual 

positioning and real-time monitoring to a certain 

extent and improved the accuracy of positioning and 

real-time monitoring. UKF is a filtering technique 

that applies σ points to approximate the nonlinear 

distribution and reconstruct the parameter system 

state vectors from the measured values based on the 

unscented transformation. According to the input 

data of visual positioning and real-time monitoring 

system, UKF can effectively integrate the inertial 

information to filter out any noise interference. At 

the same time, the relatively high sampling rate of 

the inertial system can also make up for the problem 

of poor real-time performance of positioning and 

real-time monitoring based on visual perception. 

 

4. System Simulation and Discussion 

In this section, the performance of the proposed 

algorithm is analyzed through simulation. The 

simulation area of vehicle positioning and real-time 

monitoring is a section of a two-lane straight road 

with a typical multi-path environment, and the size 

of the area is 500m × 10m. The RSU used for 

ranging is deployed at the coordinates (250,15), 

which can cover the entire positioning and real-time 

monitoring area. It is assumed that the target vehicle 

travels along the x-axis in the center line of the 

second lane, from (0, 2.5) to (500, 2.5), and receives 

the BP transmitted by RSU through ULA. The 

simulation scenario is shown in Figure 5 as the 

following, in which ( )kp t  is the position of the 

vehicle at the moment kt . In order to reflect the 

dynamic change in the vehicle speed, the driving 

routes of the vehicle are divided into two paths, 

which are denoted as 1L and 2L , respectively. For 

the segment 1L , the vehicle accelerates evenly from 0 

km/h to 50 km/h at a constant acceleration. After the 

vehicle speed reaches 50 km/h, it decelerates 

uniformly in the segment 2L  until the speed reaches 

0 km/h. Through the Monte Carlo simulation, the 

results of vehicle positioning and real-time 

monitoring in 1000 driving trajectories are recorded. 

The specific simulation parameter settings are 

shown in Table 1 as the following. 
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Figure 5. Simulation scene diagram of vehicle 

positioning and real-time monitoring 

 

A typical urban VANETs positioning and 

real-time monitoring environment is established 

according to the simulation parameter settings in 

Table 1. In this section, the proposed positioning and 

real-time monitoring algorithm based on RFID 

technology is used as an example to analyze the 

positioning and real-time monitoring performance. 

In order to evaluate the proposed algorithm, the 

algorithm is compared with the classic multi-path 

fingerprint positioning and real-time monitoring 

method (SP algorithm) described previously. In the 

SP algorithm, a fingerprint database is established by 

dividing rectangular grids for positioning and the 

real-time monitoring areas, and the grid side lengths 

are set to int = 2m and 1m, respectively. The 

positioning and real-time monitoring performance 

are evaluated by the root-mean square error (RMSE) 

and the cumulative distribution function (CDF) for 

the positioning and real-time monitoring error. 

 

Table 1. Settings of system simulation parameters 

Simulation Parameter 
Parameter 

Value 

Number of OFDM subcarriers K=16 

Number of ULA elements (M) 4/6/8/10/12 

Signal bandwidth wB (MHz) 5/10/20 

Number of samples collected for 

each snapshot in the SP algorithm 
8sN =  

Number of snapshots of the data 

points in the SP algorithm 
50dL =  

Number of snapshots of the test 

points in the SP algorithm 
20tL =  

Figure 6 shows the variation of the RMSE of 

the position estimation based on the two algorithms 

during the entire driving process of the vehicle. The 

results show that when the vehicle is far away from 

the RSU, the signal-to-noise ratio is reduced due to 

factors such as path loss and multi-path fading. The 

positioning and real-time monitoring performance of 

the two algorithms is relatively poor. It should be 

noted that the density of fingerprint data points of 

the database in the SP algorithm has a more 

significant impact on the positioning and real-time 

monitoring performance. When the number of data 

points increases, the positioning and real-time 

monitoring error of the SP algorithm is significantly 

reduced. However, given that the 1 m grid side 

length in the fingerprint database is relatively dense 

already, although a denser grid may create higher 

accuracy, it can also lead to an exponential increase 

in computational complexity. From the figure, it can 

be seen that through the application of the WLS 

estimator, the proposed algorithm can significantly 

reduce the positioning and real-time monitoring 

errors in an environment with a low signal-to-noise 

ratio, with relatively good stability. In addition, it is 

superior to the SP algorithm in most cases. Figures 7 

and 8 show the effect of the number of ULA array 

elements and the signal bandwidth on the CDF 

distribution of the positioning and real-time 

monitoring errors, respectively. It can be seen that 

with the increase of the antenna array elements and 

bandwidth, the spatial dimension and resolution of 

the signals have increased slightly. As a result, the 

positioning and real-time monitoring performance of 

the two algorithms have been improved. In particular, 

it can be observed from Figure 8 that when the 

number of ULA array elements is 8, and the signal 

bandwidth is 20 MHz, the error of about 98% of the 

vehicle position estimation based on the proposed 

algorithm is less than 2m. However, in the SP 

algorithm, the error of only 83.5% of the position 

estimation is less than 2m. From the results in the 

figure, it can be known that the performance of the 

proposed positioning and real-time monitoring 
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algorithm is superior to the multi-path fingerprint 

positioning and real-time monitoring method under 

different bandwidths and antenna array elements. 

 

 
Figure 6. Comparison of the root mean square error 

between the proposed algorithm and the SP 

algorithm 

 
Figure 7. CDF distribution of the positioning and 

real-time monitoring errors of the proposed 

algorithm and the SP algorithm under different array 

elements ( wB = 10MHz) 

 

 
Figure 8. CDF distribution of the positioning and 

real-time monitoring errors of the proposed 

algorithm and the SP algorithm under different 

signal bandwidths (M = 8) 

 

5. Conclusions 

To solve the problems of precise real-time 

positioning and real-time monitoring of vehicles in 

the VANETs, we put forward the single station 

positioning and real-time monitoring algorithm of 

vehicles based on the RFID technology and the 

visual perception technology, respectively. In the 

positioning and real-time monitoring algorithm 

based on the RFID technology, the ULA array 

antenna is used at the vehicle end to carry out the 

positioning and real-time monitoring through the 

joint TOA/AOA estimation. In addition, the 

high-resolution estimation technology is introduced, 

and the frequency domain MP algorithm is used to 

process the received CFR matrix directly and obtain 

the real-time AOA estimation, thereby reducing the 

time overhead. Subsequently, the frequency diversity 

characteristics of OFDM subcarriers are further used 

to establish the model for the TOA high-resolution 

estimation as an NLF problem for the solution. The 

characteristics of the phase difference between 

adjacent subcarriers are used to correct the 

ill-conditioned state of the fitting function, which 

has improved the reliability of the results. Finally, 

the vehicle position is calculated by using the WLS 

estimator to implement high-precision real-time 
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positioning and real-time monitoring. The 

positioning and real-time monitoring algorithm 

based on visual perception is equipped with a visual 

sensor at the RSU end. Through the extraction of the 

image feature information within the perception 

range of the sensor, the target vehicle contour is 

obtained, and the corresponding centroid coordinates 

are calculated to complete the positioning and 

real-time monitoring. At the same time, the visual 

positioning and real-time monitoring results and the 

information of the inertial sensor with a relatively 

high sampling rate are used for integrated 

positioning and real-time monitoring through the 

UKF filter, which has further improved the accuracy 

of the positioning and real-time monitoring and the 

real-time performance of the algorithm. The 

simulation results suggest that, compared with the 

traditional multi-path fingerprint algorithm, the 

algorithm proposed in this paper has relatively good 

positioning and real-time monitoring performance 

even at a low signal-to-noise ratio (SNR). 
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