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Abstract 

At present, most of the sports training methods adopt the recombination operator that is 

designed for single objective optimization. Through the validation or experimental, 

several typical single objective sports training methods are analyzed and proven that 

they are not applicable for some multiobjective optimization problems. The 

multiobjective optimization sports training method based on the mixture Kalman model 

(Multiobjective evolutionary algorithm -based on decomposition and mixture Kalman 

models, MOPE for short) is proposed. This algorithm firstly applies an improved 

mixture Kalman model to carry out sampling to the group sports training and generate 

new individuals, and then makes use the greedy strategy to update the group. In view of 

the multiobjective optimization problem that is of complicated Pareto Front, the test 

results show that for the majority of the given athletes, this training method can achieve 

good effect. 

Keywords: Multiobjective Optimization, Evolutionary Algorithms, MOBC, Mixture 

Kalman Probability Model; 

 

1. Introduction 

Multiobjective optimization problem (Referred to 

as "MOP" for short) is a type of challenging 

optimization problems widely existing in the field of 

scientific research and production application. The 

conflicts between the MOP objectives can cause the 

result that there is usually not an optimal solution that 

can meet all of the optimization objectives. As a result, 

we often need to make a compromise on each 

objective Pareto optimal solution set [1]. For the 

general MOP problem, there is no analytical method 

yet. Therefore, we often make use of the computer 

algorithms to obtain an approximation of Pareto 

solution set. Evolutionary algorithm (Referred to as 

"EA" for short) is a kind of imitation of nature, 

especially the biological evolution process to solve the 

complicated optimization problems of computer 

algorithm model. EA algorithm has two important 

features: (1) For the nature of solving problems, such 

as continuity and differentiability, no special 

assumptions are made; (2) Based on population search, 

namely, the adoption of multi-point search problem 

optimal solution at the same time. Therefore, EA 

algorithm is especially applicable for solving 

complicated nonlinear and the black box MOP 

problem.  

Since 1985, the first kind of sports training methods 

(Multiobjective evolutionary algorithm, referred to as 

the “MOEA” for short) was put forward [2], MOEA 

has become one of the mainstream approaches in the 

problem solving of MOP; At the same time, MOEA 

has also become one of the most popular research 
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direction in the field of EA [3-5]. Internationally, 

NSGA- II[6], SPEA2[7], PAES[8], IBEA[9,10], MOBC[11 

and MOBC [11], as the representatives of MOEA 

algorithm have been widely used in many application 

fields. Meanwhile, MOEA research in China has 

gained rapid development [12-14], the research focuses 

in algorithm design, such as the multiobjective 

algorithm based on design of experiment [15-17], 

multiple objectives based on differential evolution 

algorithm [17,18], as well as the multiobjective 

optimization algorithm based on particle swarm [19,20]. 

On the foundation of the above research foundation, 

the literature [12] proposed that: In the frame of the 

MOBC algorithm, the recombination operator based 

on Kalman probability model to sports training in 

population and sampling. The preliminary experiment 

results show that the Kalman probability model can 

effectively approximate Pareto optimal solution set of 

the manifold, MOP problem with complicated 

geometry to obtain ideal experiment result. In this 

paper, the algorithm made further improvement, puts 

forward a new model based on decomposition and 

mixture Kalman multiobjective optimization of sports 

training methods (MOBC - GM).  

In this paper, it mainly puts forward the improved 

recombination operator based on the mixture Kalman 

probability model, the operator makes full use of the 

MOBC neighbor individual similarity to reuse model, 

in the case of ensure the quality of sports training to 

reduce the number of sports training, so as to improve 

the efficiency of the sports training. 

2. Problem Definition 

Without loss of generality, an MOP problem with n 

decision variables and m objective functions can be 

defined as the following 

 

( ) ( ) ( ) ( )( )1 2min , ,...,

. .

T

mF x f x f x f x

s t x

 =




       （1） 

In which, ( )1 2, ,...,
T

nx x x   is the decision vector, 

 is the feasible region space, 

( ): 1,...,if x R i m→ = is the first i-th objective 

function. For a given MOP, there are often conflicts 

between the objectives, a solution may be excellent for 

an objective, and may be poor for the other objectives. 

Therefore, in general, the optimal solution of MOP is 

not one solution but a collection of solutions, which is 

called Pareto optimal solution set.  

 

Definition 1 (Pareto dominance). Assuming that 

,x y is the feasible solution to the problem of MOP, 

which can be called x Pareto dominance y (recorded 

as x y ), if and only if 

 

( ) ( ) ( ) ( )1,2,..., , i ii m f x f y F x F y =  ≤   （2） 

Definition 2 (Pareto optimal solution set). The 

Pareto optimal solution set (Pareto set, referred to as 

“PS” for short) is the collection of all Pareto optimal 

solutions: 

 :PS x y y x=             （3） 

Definition 3 (Pareto optimal front) Pareto optimal 

front (Pareto front, referred to as “PF” for short) is the 

projection of the Pareto optimal solution set in the 

objective space: 

( ) PF F x x PS=             （4） 

The continuous MOP problem of Pareto solution set 

not only has the topology structure and the optimal 

solution for the single objective optimization problem, 

but also has proven that it has the following features 

of regularity properties [40]:  

Theorem 1. Under certain conditions, for a 

continuous MOP problem that contains m objectives, 

the Pareto optimal solution set in the solution space 

and the objective space are both the piecewise 

continuous dimensional manifold of ( )1m− .  

The theorem shows that continuous MOP problem 

of Pareto optimal solution is not mixed and disorderly 

in the distribution, but shows some pattern. Thus, 

MOEA can through to the Pareto optimal solution 

collector shape approximation to indirectly realize the 
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Pareto optimal solution set of approximation. 

3. Sports Training Methods Based on the 

Mixture Kalman Probability Model  

3.1. Sports Training Method Framework Based on 

the Decomposition 

Sports training method based on the strategy of 

decomposition MOBC [11] is a kind of new MOEA 

algorithm framework. MOBC algorithm is an effective 

extension of traditional decomposition methods, and 

the traditional method, the MOBC will a MOP first 

broken down into a set of single objective 

optimization problem (a problem); Is different from 

the traditional method, the MOBC through 

cooperation between the sub-problems to optimize this 

group of sub-problems, at the same time to obtain the 

Pareto optimal solution set of a looming. Compared 

with the traditional method for solving the problem of 

child serial way, the MOBC this parallel algorithm for 

solving the sub-problem strategy can effectively 

improve the search efficiency. At the same time, the 

MOBC framework can naturally have the optimization 

on all kinds of the single objective, and local search 

method is used as the search operator. Figure 1 in 2 

objective optimization problem, for example shows 

the MOBC algorithm the basic idea, In which, the 

sub-problem has 4 neighbor children problem son 2 ~ 

6. The following through two important concepts in 

MOBC algorithm to further introduce the algorithm. 

Definition 4 (Sub-problem) - An MOP problem 

( )min F x can be transformed into a set of 

sub-problems ( )min , 1,2,...,ig x i N= , each 

sub-problem of optimal solutions corresponding to the 

original MOP’s Pareto optimal solution of the 

problem.  

If the sub-problem definition is reasonable, this set 

of sub-problems of the optimal solution can be used as 

a Pareto optimal solution set of approximation. 

Usually, algorithms based on the strategy of 

decomposition by a given a set of weighted 

vectors ( )1 2, ,...,
T

i i i

mw w w , 1,2,...,i N=  is applied to 

define the sub-problem. In this paper, Chebyshev 

method is applied to define the sub-problem: 

 

( ) ( ) ( )( ) * *

1,...,
, maxi i i

j j j
j m

g x g x w z w f x z
=

= = −            

（5） 

  In which, ( )* * * *

1 2, ,..., mz z z z=  is the ideal point of 

the MOP problem, namely, 

( )* min , 1,2,...,j j
x

z f x j m


 = , which can prove that: 

For the MOP problem, every Pareto optimal solutions 

corresponding to a Chebyshev sub-problem.
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Figure 1  MOBCAlgorithm Diagram 

Weight vector ( )1 2, ,...,i i i i

mw w w w=  shall meet the 

condition 0 1i

jw≤ ≤  and 
1

1,2,..., 1
m i

jj
j m w

=
=  = . 

In this article, N weight vectors are uniformly selected 

in the weighting vector space in advance, and for the 

specific algorithm literature [11] can be referred to. It 

should be pointed out that, given a set of uniform 

weight vector may not be able to obtain the optimal 

solution of a set of uniform distribution. The choice of 

weight vector is closely related to the shape of the PF. 

Therefore, how to dynamically adjust the weight 

vector in the operation process to obtain the optimal 

solution of uniform distribution, which is currently a 

hot research topic in the MOBC algorithm design. 

Defined 5 (Neighborhood sub-problem 

(neighborhood).) The neighborhood sub-problem of a 

sub-problem min ig , is a set of K sub-problems 

  1 2min , ,...,i

Kg j i i i= that are of the most similarity. 

The MOBC by weighting vector distance defines the 

similarity of sub-problems, the weight vector distance 

is smaller, and the corresponding sub-problem is 

similar. Superscript ji  represents the weight vector 

that jiw  is the j-th close to iw . Obviously, 
1i i= , 

that is, the sub-problem is the most similar to itself.  

The neighborhood sub-problem application in 

MOBC algorithm is mainly reflected in two aspects: 

(1) The parent body of the recombination operator 

mainly comes from the neighborhood. As the parent 

body apart, can avoid to a certain extent in section 2.2 

the restructuring of operator problems. (2) The new 

individual not only updates its father, but also update 

its neighborhood individuals, making good new 

individual retain as much as possible to the next 

generation. It is as the sub-problems mutual 

cooperation in the restructuring and update operations 

MOBC algorithm can simultaneously optimize all 

sub-problems.  

The early version of MOBC adopts the static 

neighborhood. Predictably, the algorithm run at 

different stages, different MOP problem requires a 

different neighborhood. How the execution of the 

algorithm to dynamically adjust the neighborhood in 

order to obtain a better algorithm performance, which 

is also worth studying in the MOBC algorithm design. 

3.2. Recombination Operator Based on the Mixture 

Kalman Probability Model  

The estimation of distribution algorithm (Referred 

to as “EDA” for short) is a kind of new evolutionary 

algorithm, and the algorithms for EA restructuring 

such as mixture mutation operator is used to produce 
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offspring in a different way, EDA using a probability 

model to describe the distribution of the current 

population, and the sampling of the model to produce 

offspring. Classic recombination operator using local 

information to produce offspring, individual and EDA 

algorithm based on the global distribution information, 

group to produce offspring, therefore, the EDA 

algorithm can guide the search process from the global 

point of view.  

The Kalman model is one of the most widely 

researched and applied probability models. A multiple 

Kalman distribution of random variables 

( )1 2, ,...,
T

nx x x x= can be represented as the following 

( ),x N                              （6） 

In which,   is the mean vector,   is the 

covariance matrix. And the corresponding probability 

density function is expressed as a random variable in 

the following 

         

( ) ( ) ( ) ( )
1

1
22

1
2 exp

2

n
T

p x x x  
−− − 

=  − −  − 
 

              

（7） 

For a given set of data
1 2, ,..., Kx x x , the mean vector 

and covariance matrix estimation is as follows: 

1

1 K k

k
x

K


=
=                                

（8） 

( )( )
1

1

1

TK k k

k
x x

K
 

=
 = − −

−
               

（9）

 

 

Algorithm 1. Multiobjective Kalman model sampling ( ),x GaussianSample =   

 
Step1. Adopt Cholesky decomposition covariance matrix for the lower 

triangular matrix A , which meets 
TAA = . 

 

Step2. Generate single factor Kalman distribution vector 

( )1 2, ,...,
T

ny y y y= , in  which, ( )0,1 , 1,2,...,jy N j n=  conforms with 

unit Calman distribution. 

 Step3. Let x Ay= + . 

 

The analysis in Section 2 has shown that a single 

Kalman probability model is not applicable for the 

MOP problem, so we need to consider structure 

mixture Kalman model. A direct improvement method 

is: first the clustering analysis method is adopted to 

group will be divided into multiple categories, and 

then construct Kalman model respectively for each 

category. The characteristics of this method is not 

fully consider the MOP, so for some problems to solve 

the low efficiency. Mixture Kalman model 

(sub-problem) for each individual to construct the 

Kalman model, and the probability density function is 

expressed as the following 

( ) ( )
1

1N i

i
p x p x

K=
=                 （10） 

In which, 
( )ip x

 stands for the corresponding 

probability density function problem; 
i  and 

i  

are the corresponding average vector and covariance 

matrix of 
( )ip x

, the numerical value is calculated 

from the i-th sub-problems corresponding 

neighborhood problems. Obviously, for each 

sub-problem to calculate the mean and covariance 

matrix, and through large amount of calculation 

algorithm of Figure 4 sampling new individuals. This 

section will through the neighborhood sub-problems 
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reuse of covariance matrix to reduce the complexity of 

mixture Kalman model sampling. 

To the i-th 
( )1,2,...,i i N=

sub-problem, construct 

its probability density function as the following: 

( ) ( ) ( ) ( ) ( )
1

1
22

1
2 exp

2

n T
i i i i ip x x x  

−−−  
=  − −  − 

 

        （11） 

In which, the mean vector is expressed by the 

current best solution of the i-th sub problem, namely, 
i iu x= ; the covariance matrix 

i  is calculated by 

neighborhood sub-problem or directly applies the 

neighborhood sub-problem corresponding covariance 

matrix. 

4. Experiment Simulation 

To test the effectiveness of the proposed MOPE 

algorithm, this paper adopts 9 test functions that are of 

complicated PS: F1 ~ F9. In which, F6 has three 

objective functions, and the other problems have two 

objective functions; F6 and F9 have non-convex PF, 

while the other problems have the convex PF; F7 and 

F8 are the multimodal problems, with multiple local 

optimal PF.  

Due to the fact that the theoretical optimal solution 

can be obtained for the athletes applied, this paper 

applies IGD as the evaluation index. 

( )*,IGD PF PF
calculates the solution set PF and the 

distance between the optimal solution set PF *.

 

( ) ( )

( )
*

* *

*

1
, ,

, min

x PF

y PF

IGD PF PF d x PF
PF

d x PF x y






=


 = −



           （12）  

In which, 


 stands for the number of collection 

points, 


 stands for the vector mode. When PF is 

approximate to PF *, IGD can simultaneously measure 

the degree of diversity and convergence of PF. In the 

experiments, the 2 objectives, we select from PF * 500 

evenly distributed points on behalf of the PF *, and 

select 990 delegates for the 3 objective problem.  

This paper compares the NSGA II - DE [13], 

MOBC - DE [13] and MOPE [12] with the method 

proposed in this paper through the experiment. In 

order to distinguish, the methods in literature [12] is 

recorded as MOPE1, and the improved method 

proposed in this paper is recorded as MOPE2. These 

methods parameter Settings are as follows: DE 

operator control parameters 1.0, 0.5CR F= = , the 

parameters of polynomial mutation operator 

20, 1/mP n = =
. Other parameters of MOBC - DE 

are as follows: the neighborhood size, neighborhood 

search probability, sub-problems update number. 

MOPE1 other parameters as follows: on 2 objective 

problem, neighborhood size; Problem on three 

objectives, neighborhood size, neighborhood search 

probability, sub-problems update number. MOPE2 

other parameters as follows: the neighborhood 

size 20T = , neighborhood search probability 0.9 = , 

and sub-problems update number 
2rn =

.  

For all the algorithms, the 2 objective problem 

population size 299N = , 3 objective problem 

population size 595N = , and the algorithm executes 

500 generations before suspension. The problem 

independent variable dimension 30n =  (F1 ~ F5, F9) 

or (F6 to F8). For each athlete, MOPE is executed for 

30 times, MOBC-DE and NSGA-II-DE are executed 

for 20 times. MOPE1 and MOPE2 are programmed by 

the application of Matlab, while MOBC - DE and 

NSGA - II - DE are programmed by the application of 

C + +. 
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4.1. MOPE2 Experimental Results and Analysis 

In Table 1, it shows the statistical results of the IGD 

index of MOPE2 on 9 test function computation 

results. As can be seen from the table: with the 

increase of computing algebra, IGD metric values 

significantly decrease, especially with significant 

change between generation 100 and generation 200. 

After 500 generations of computing, the smaller IGD 

mean value can all be obtained. These statistical 

results show that for most athletes, MOPE2 can find 

stability in a smaller amount of calculation and the 

quality of the solution set. MOPE2 could fall into 

local optimum and cause IGD mean and mean square 

error is bigger. MOPE2 can obtain good results, which 

indicates that MOPE2 has the multimodal problem 

solving capability.  

 

Table 1. Generation 100, 200, 300, 400 and 500 MOPE2 results IGD measurement mean and mean square error 

 100 200 300 400 500 

F1 
0.0024

（0.0001） 

0.0017

（0.0000） 

0.0015

（0.0000） 

0.0014

（0.0000） 

0.0014

（0.0000） 

F2 
0.0551

（0.0166） 

0.0256

（0.0117） 

0.0106

（0.0060） 

0.0048

（0.0017） 

0.0033

（0.0003） 

F3 
0.0252

（0.0045） 

0.0083

（0.0022） 

0.0043

（0.0011） 

0.0031

（0.0006） 

0.0025

（0.0002） 

F4 
0.0377

（0.0072） 

0.0161

（0.0033） 

0.0096

（0.0014） 

0.0059

（0.0016） 

0.0040

（0.0013） 

      

Figure 2 shows the final solution set obtained by MOPE2. The optimal PF obtained for F1 〜 F4 can 

approximate the real PF*; As can be seen from Figure 2, the complicated PS of these problem has brought 

difficulties to algorithm, but most MOPE2 can effectively approximate PS. Figure 2 shows that: in the case of 

run multiple times, the solution set obtained by MOPE2 can completely cover the PS and PF of these problems. 

F1 F2  
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F3 F4  

Figure 2. Final Solution Set of MOPE2 Algorithm  

4.2. Algorithm Contrast Experiment 

This section compares the MOBC algorithm based on mixture Kalman model and the NSGA-II-DE and 

MOBC-DE which are proposed in literature [13]. Table 2 is the final results of statistical IGD mean and mean 

square error of the 4 kinds of algorithms. 

Table 2. Statistical IGD mean and mean square error of the results of the 4 kinds of comparison algorithms 

 
MOBC-DE[1

3] 

NSGA-II-

DE[13] 
MOPE1[12] MOPE2 

F1 
0.0015

（0.0000） 

0.0044

（0.0000） 

0.0009

（0.0000） 

0.0014

（0.0000） 

F2 
0.0028

（0.0004） 

0.0349

（0.0066） 

0.0040

（0.0016） 

0.0033

（0.0003） 

F3 
0.0068

（0.0099） 

0.0296

（0.0030） 

0.0024

（0.0005） 

0.0025

（0.0002） 

F4 
0.0040

（0.0014） 

0.0288

（0.0021） 

0.0046

（0.0024） 

0.0040

（0.0013） 

     

The statistical results show that: 

  MOBC - DE in F2, F4 can achieve the best results;  

  MOPE1 in F1, F3 can the best results;  

  MOPE2 in F4 can best results;  

 For the comparison of MOBC - DE, MOPE2 and MOPE1, NSGA II - DE cannot achieve the 

best results.  

It should be pointed out that:  

 For F2 and MOPE2, the result of the IGD mean is 1.18 times of the mean obtained by 

MOBC - DE;  

  For F3 and MOBC-DE, the result of the IGD mean is 2.72 times of the mean obtained by 

MOPE2; 

  For F1 and F4, the two algorithms have the similar results. 
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5. Conclusion 

The multiobjective algorithm that is based on the 

strategy of decomposition is a new type algorithm 

framework to solve the sports training method. At 

present, most MOBC algorithms adopt the traditional 

recombination operator. In view of this situation, this 

paper has certificated or analyzed the defects of 

several typical recombination operators under the 

current sports training methods. On this basis, the 

MOBC algorithm based on the mixture Kalman model 

MOPE is put forward. MOPE applies the mixture 

Kalman model to obtain the distribution of the 

population, and perform the sampling on the 

distribution to obtain the new individuals; at the same 

time, a greedy strategy is adopted to update the group. 

The experimental analysis results show that, the 

mixture Kalman model can effectively extract the 

structure information of the population, which can 

achieve approximation more effectively to the 

complicated PS compared to the DE operator; and the 

greedy update strategy can promote the evolution of 

the population more effectively. 
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