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Abstract 

The technology in the research of the non-line-of-sight positioning method for smart 

mobile terminals based on acoustic signals in the wireless sensing room effectively 

solves the test of non-line-of-sight positioning, which traditional sensors cannot solve. 

The successful development of the non-line-of-sight positioning method of smart mobile 

terminals based on acoustic signals in wireless sensing rooms has realized the indoor and 

outdoor non-distance positioning of smart mobile terminals. 
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1. Introduction 

With the development of the Internet, many smart 

mobile devices require intelligent terminals with 

acoustic signals, such as navigation, positioning, etc., 

and the real data will always have corresponding 

errors due to the unstable factors of the sensors[1-3]. 

Foreign countries have long studied passive acoustic 

detection technology, but there are few 

non-line-of-sight positioning in existing research[4-6]. 

This paper proposes a non-line-of-sight positioning 

method for smart mobile terminals based on wireless 

sensors, and establishes a linear model through 

acoustic signals to achieve improved positioning. 

2. Basic principles 

2.1. Positioning model 

In the actual non-line-of-sight acoustic localization 

environment, the main obstacles are generally hills 

and mountains with slow undulation, which 

determines that the acoustic signal generally 

propagates to the base array through direct or 

diffraction. Introduce the following assumptions: 

(1) The sound source is a point sound source and 

is far away from the receiving array; 

(2) The signal propagation from the target to the 

base array in the model is simply divided into three 

segments: direct-diffraction-direct, that is, the 

acoustic signal reaches the obstacle in a direct way, 

and then the propagation mode on the surface of the 

obstacle is diffraction until it leaves After the 

obstacle, shoot directly to the base array; 

(3) The coordinates of each point on the base 

array and obstacle surface in the model are known, 

and there are multiple base arrays to measure the 

AOA value of the acoustic signal. 

The model is shown in Figure 1. 

 
Figure 1. Ray tracing positioning model. 

2.2. Principle of diffraction 

In the model in Figure 1, the presence of obstacles 

makes the acoustic signal reach the base array only 

through diffraction. Due to the effect of the obstacle 

surface, the sound wave will continuously leak 

(radiate) energy along the tangent direction of the 

surface during the diffraction and propagation 

process, and propagate close to the surface. 

Physically, the wave transmitted in this way is called 

a creeping wave. Or creeping waves. When the 

crawling wave travels along the curved surface, it 
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follows the generalized Fermat principle: the 

propagation path is a short-range line, that is, the 

path that the crawling wave travels between two 

points on the curved surface is the path with the 

smallest length value among all possible paths. 

Geodesic has the following properties: 

(1) Starting from every point on the surface, to 

any other point, there is always a unique geodesic; 

(2) The necessary condition for a curve Γ to be a 

geodesic on a curved surface is that Γ is a straight 

line, or the tangent plane of Γ (the plane formed by 

the tangent and the secondary normal is called the 

secondary tangent, and the secondary normal is the 

normal and the tangent. The vector of intersection) 

coincides with the tangent surface of the surface; 

(3) On a curved surface, among all curves with 

the same tangent at the same point, the curvature of 

the geodesic is the smallest, and the curvature of the 

geodesic is the normal section of the same direction 

(the intersection of the normal plane of a certain 

point on the surface and the surface Called normal 

section) curvature. 

The propagation path of the signal on the curved 

surface can be obtained by solving the geodesic. If 

the surface is relatively simple, ray tracing can be 

performed by solving analytical geometric equations 

or second-order differential equations, but most 

arbitrary surfaces cannot be analytically solved. In 

this paper, the geodesic of the diffraction part is 

approximated by a series of discrete points, and then 

the ray tracing is carried out through the iterative 

relationship between points. 

A three-dimensional coordinate system is 

established on the curved surface, and the schematic 

diagram of ray tracking is shown in Figure 2. 

 
Figure 2. Schematic diagram of ray tracing. 

Suppose the coordinates of a point Ai on the 

geodesic line are (xi, yi, zi), and the unit vector i  

of the incident direction of the acoustic signal at the 

point Ai is (αi, βi, γi). Assuming that the acoustic 

signal propagates in a straight line from point Ai to 

point A'i+1 in the i  direction, the x coordinate 

value increases by h, because point Ai and point 

A'i+1 are both on the straight line with the direction 

τi, it is easy to deduce point A'i The increase in the y 

coordinate of +1 is hαi/βi. Assuming that when the 

acoustic signal propagates along the geodesic line to 

the next point Ai+1, the xy coordinate of the point 

Ai+1 is equal to the xy coordinate of the point A'i+1, 

and the obtained xy coordinate value is substituted 

into the geographic information system to obtain the 

point Ai+1 The corresponding z coordinate, set its 

value to zi+1. Then the coordinates of point Ai+1 on 

the geodesic line are: 

1 1, ,i
i i i i

i

A x h y h z



+ +

 
= + + 
 

                            

(1) 

From the geographic information of the small 

area near Ai+1 point, the normal vector 1in +  of the 

surface at Ai+1 point can be calculated (in this 

simulation experiment, any three points with Ai+1 

point distance less than h are taken to obtain a small 

triangular area. Geographical information can know 

the coordinates of these three points, and the normal 

vector of the plane determined by these three points 

is used as the normal vector of the surface at Ai+1), 

and G is any point on the plane, and the point Ai+1 

can be determined. The point normal vector equation 

of the tangent plane Q1 is: 

( )1 1 0i in G A+ +− =                                

(2) 

Translate the unit vector i  to Ai+1, the plane 

Q2 determined by Ai+1, i  and 1in +  is: 

( ) ( )1 1 0i i in G A+ + − =                             

(3) 

According to the properties of the geodesic 

proposed in the previous section, the direction of the 
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intersection line L of Q1 and Q2 is the direction of 

the geodesic at point A. Because the line of 

intersection L is perpendicular to the normal vector 

of Q and Q2, it is also perpendicular to the plane 

determined by the normal vector of planes Q1 and 

Q2. Therefore, the direction of the intersection, that 

is, the direction vector of the signal propagating at 

Ai+1 is: 

1 1 1i i i in n + + +=                                  

(4) 

After setting the value of the initial point, iterate 

according to equations (1) and (4) to obtain the 

coordinates and ray directions of all discrete points 

on the geodesic line of signal propagation with an 

interval of h. 

Suppose a total of two base matrices are involved 

in positioning, and the j-th discrete point of base 

matrix 1 and the k-th discrete point of base matrix 2 

are arbitrarily taken, and the coordinate and acoustic 

signal direction vectors at these two points are Aj, 

j  and Ak, k . The straight lines Lj and Lk that 

have made discrete points and whose directions are 

the direction vectors to be sought, the parametric 

equations with s and t as parameters are: 

( )

( )

jj j

kk k

L s A s

L t A t





 = +


= +

                               

(5) 

Ideally, when two straight lines intersect at a 

point, the intersection point is considered to be a 

location estimate point. However, due to the 

calculation accuracy of the computer, the 

approximate value in the iterative algorithm, and the 

error of the measured value, the two lines generally 

do not intersect strictly. Assuming that the distance 

between the point Pj on Lj and the point Pk on Lk is 

the minimum distance between the two straight lines, 

when the minimum distance is less than the fixed 

threshold g, it is considered that this set of discrete 

points can obtain an estimated value point, and Let 

the estimated value point be the midpoint of the 

connection between Pj and Pk 

3. System Model 

3.1. Inertial sensor alignment 

Compared with its own sensor, when the wireless 

sensor room is based on robot navigation, the 

direction of the inertial sensor relative to the robot is 

unknown, so the inertial sensor of the smart terminal 

needs to be aligned, that is, the yaw angle, pitch 

angle and roll of the smart terminal gyroscope are 

measured. Angle. Pitch angle and roll angle are 

based on the measurement of gravitational 

acceleration relative to the world, and the yaw angle 

is the measurement of relative terminal position. 

Since the position of the intelligent terminal on the 

robot is unknown, this article uses the automatic 

alignment method in the literature to obtain the 

intelligent terminal Relative to the robot's yaw angle 

γS-V, the yaw angle obtained from a single sampling 

is 

arcsin , 0

arcsin ,

V

KF

V

V

V

z

y

yz

S V

z

yz

a
a

a

a
other

a

 −

  
   

 
  

= 
 
  −
   

                            

(6) 

Where: azV is the z-axis acceleration; ayzV is the 

composite acceleration of the y-axis and z-axis; 

ayKF is the acceleration of the y-axis after Kalman 

filtering, and 

2 2

V V Vyz y za a a= +  

Then, the terminal coordinate system and the 

robot coordinate system are projected to the world 

coordinate system (as shown in Figure 3), thereby 

establishing a dynamic model in the world 

coordinate system. 
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Figure 3. Robot motion model in the world 

coordinate system. 

3.2. Acoustic signal acquisition of preliminary 

indoor position of smart mobile terminal 

In this paper, the iBeacon wireless network is 

deployed indoors to determine the initial position of 

the robot, and then particle filtering is used to fuse 

inertial sensors for precise positioning. Due to the 

complex indoor environment and the iBeacon signal 

has a strong time-varying nature, the wireless signal 

attenuation model cannot accurately reflect The 

relationship between distance and received signal 

strength, and the matching and positioning method 

based on fingerprint database has good robustness. 

The matching and positioning algorithm of 

fingerprint database is mainly divided into two steps: 

① Offline sampling. Measurements at each 

reference point come from different iBeacon The 

received signal strength, and the iBeacon data major 

and minor, longitude and latitude are stored in the 

fingerprint database; ②Online positioning. Use a 

suitable matching algorithm to match the signal 

strength vector received by iBeacon with the data in 

the fingerprint database to Seek the most similar 

data to obtain the estimated robot position. This 

paper uses the weighted nearest neighbor algorithm 

to find the target position of the robot. 

3.3. State equation 

The system state equation is established according to 

the robot motion model, and the state vector of the 

system at time k is 
T

e n e n

k k k k kX p p v v  =                              

(7) 

Where: e

kp  is the east position of the robot at 

time k; n

kp  is the north position of the robot at time 

k; e

kv  is the east speed of the robot at time k; n

kv  is 

the north speed of the robot at time k; θ is the 

observed track and the estimated track The angle 

between (DR). The discrete state equation is 

1k k kX AX W+ = +                                 

(8) 

3.4. Observation equation 

Taking the preliminary position information 

obtained by iBeacon and GPS as two sets of 

different observations, the observation equation of 

the obtained system is 

k k k kZ H X G= +                                 

(9) 
T

e n e n

k k k k kZ p p v v    =
 

                           

(10) 

Considering that the observation noises of GPS 

and iBeacon are different during the traveling of the 

robot, two sets of observation white noise 

( )1,2i

kG i =  are introduced, and the resulting model 

set is 

1k k k

i

k k k k

X AX W

Z H X G

+ = + 


= + 
                               

(11) 

4. Fusion Algorithm 

The Markov parameter adaptive interactive 

multi-model particle filter AMP-IMM-PF 

(Adaptating Markov Parameter-Interactive Multi 

Model-Parti-cle Filter) algorithm structure diagram 

proposed in this paper is divided into input 

interaction, model matching filtering, and model 

probability. Update, estimate output and real-time 

correction of Markov transition probability in 5 

parts. 

4.1. Input interaction 

The AMP-IMM-PF algorithm uses the second-order 

Markov chain as the basis for model switching, as 

shown in Figure 4. The model switching probability 

is 

( ) 1

1

1
i j i

k j ij k

i

j ij k

i

u c p u

c p u

−

−

=



= 



                               

(12) 
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Figure 4. Markov chain. 

Where: i j

ku  is the transition probability of model 

i input to model j at time k; pij is the model 

transition probability of Markov chain, which 

represents the transition probability from model i to 

model j; 1

i

ku −  is the transition probability of model i 

at time k-1 Model probability. 

The calculated initial estimate of model j at time 

k is 
0 0

1

j i i j

k k k

i

X X u−=                                

(13) 

The initial covariance of model j at time k-1 is 

 0 0 0 0 0 0

1 1 1 1 1 1 1

T
j i j i i j i j

k k k k k k k

i

S u S X X X X− − − − − − −
   = + − −
                      

(14) 

4.2. Model matched filtering 

The fusion of GPS/IMU and iBeacon/IMU is a 

non-linear and non-Gauss problem. Therefore, this 

paper uses two different particle filters to filter the 

observation distance. The designed particle filter 

process is as follows: 

(1) Particle initialization. Set up an initial sample 

set in the initial stage of particle filter positioning. 

Each particle in the set has a corresponding weight, 

which represents the possibility of the robot at the 

position of the particle. According to the position 

coordinates of the east and north directions Range, 

initialize M random particle samples, the initial 

weight qi of particle i is set to 1M, namely 

( )

( )

min max

min max

,

,

1

1,2, ,

i

i

i

x rand x x

y rand y y

q M

i M

= 


= 


= 
= 

                             

(15) 

In the formula, rand is an equal probability 

random value. 

(2) Prediction stage. According to the robot 

motion model and combined with the data 

processing results of the IMU sensor, the system 

state equation is used to predict the position of the 

robot at the next moment. 

First, make a decision. The particle weight is 

updated, and the particle weight updated at k+1 is 

( )
2

1

1
exp

22

i

k ki

k

Z X
q

RR
+

 −
 =
 
 

                          

(16) 

Where: 1

i

kq +  is the weight of particle i at k+1; R 

is the variance of the measurement noise. 

Then, use the following formula to normalize the 

particle weights: 

1 11

1

M
i i j

k kk

j

q q q+ ++

=

=                               

(17) 

Next is resampling. Resampling is the key to 

particle filtering. This article uses the posterior 

probability density P(Xk|Zk) to generate M new 

particles to solve the particle degradation problem, 

namely 

( ) ( )1 1

1

M
i i

k k k k k

i

P X Z q X X+ −

=

= −                         

(18) 

In the formula, ( )1

i

k kX X −−  is the unit impulse 

function. 

Finally, return to the particle prediction stage, 

enter the next cycle, and predict the state Xk+1 at 

time k+1. 

4.3. Model probability update 

Assuming that the model likelihood is a Gaussian 

distribution, the residual 0 j

kV  and the residual 

covariance ( )jS k  of the j-th model observation 

value and the measured value under the action of M 

particles are used to calculate the model likelihood 

at time k, namely 

( )( )0
;0,

jj j

k kN V S k =                              

(19) 

( )jS k  can be obtained by the covariance of M 

particles, namely 

( ) ( ) ( )
1

M
T

j j j

i i

i

S k S k S k
=

   =                               

(20) 

Then, use the following formula to update the 
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model probability: 

( )1j j

k k j

j

k j

j

u c u

c u

= 

= 




                                

(21) 

Where: uj is the model probability; j

k  is the 

likelihood function of each observer at time k. 

4.4. Estimated output 

Using the estimated value output by the particle 

filter and the mean value of its covariance, the final 

robot position obtained by weighted fusion is 
j j

k k k

i

X X u=                                 

(22) 

4.5. Real-time correction of model transition 

probability 

When the robot is in the non-transition area, the 

accuracy loss caused by the competition of the 

mismatched model should be avoided; when the 

robot is in the transition area, the switching speed of 

the GPS and iBeacon observation models should be 

ensured, and the measurement information of the 

two should be fully utilized to improve the particle 

filter. Based on the traditional interactive 

multi-model particle filter (IMM-PF) algorithm, this 

paper uses the weighted power of the 2 model error 

compression ratios to modify the IMM-PF algorithm 

to meet the transition area and non-transition area 

The requirements for the Markov state transition 

matrix and improve the tracking and positioning 

accuracy. 

5. Results and analysis 

In this paper, an iBeacon/IMU/GPS combined 

positioning system experimental platform is built on 

a robot equipped with an Apple tablet. The 

experimental site is located in Building 2, Qiyuan 

Science and Technology Park, Shanghai. 11 iBeacon 

beacons are deployed indoors, and the fingerprint 

points are separated by 5m. Among them, The 

light-colored line segment is the indoor path, and the 

dark-colored line segment is the outdoor path. The 

initial Markov transition probability matrix of the 

AMP-IMM-PF algorithm proposed in this paper is 

set as 

 0.95 0.05 0.05 0.95P =  

The initial probability of the model is set to 0.5, 

the initial input value of each model is set to the 

measured value, and the weighted power exponent 

t=2.5. 

The iBeacon observation model using the 

AMP-IMM-PF algorithm is compared with the 

measured distance error and the cumulative 

probability distribution of the error obtained from 

the GPS observation model of the traditional 

IMM-PF algorithm. It can be seen that the 

measurement distance error of the iBeacon 

observation model is smaller, and the GPS is used 

The error of the measurement distance obtained by 

the observation model is relatively large; after 

particle filtering, the errors of the iBeacon and GPS 

observation models are reduced, and the positioning 

accuracy of the entire system is improved. Figure 

7(c) and (d) show IMM- The probability statistics 

results of the PF algorithm and the AMP-IMM-PF 

algorithm. It can be seen that the AMP-IMM-PF 

algorithm estimates the probability of the model 

very accurately. When the real situation is indoor 

(t=0~100s), it is suitable for the indoor environment 

The probability of the iBeacon observation model is 

greater than that of the GPS observation model. 

When the traditional IMM-PF algorithm is in a 

non-transition area, the model probability fluctuates 

more than the AMP-IMM-PF algorithm, which is 

caused by the competition of the introduction of 

mismatched models. The accuracy is reduced; and 

the Markov transition probability matrix of the 

AMP-IMM-PF algorithm in the transition area and 

the non-transition area can be adjusted adaptively, so 

that it has strong robustness and high in the 

transition area and the non-transition area. The 

tracking accuracy of the model and the dynamics of 

the model probability can produce a faster response 

to the observation model, so as to adapt to the scene 

of indoor and outdoor non-line-of-sight switching. It 

can be seen that the AMP-IMM-PF algorithm 

proposed in this paper has a good effect. 
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Table 1 lists the comparison results of the 

positioning error of the algorithm in this paper and 

other algorithms. It can be seen that the average 

error of the algorithm in this paper is small, and the 

cumulative probability of its error less than 10m is 

significantly higher than that of other algorithms. 

Other algorithms are in the order of ms. 

Table 1. The positioning error of the algorithm in 

this paper and other methods. 

Algorithm 
Average 

error/m 

Cumulative 

probability of 

error less than 

10m/ 

AMP-IMM-PF 3.2 94 

IMM-PF 3.7 92 

PF-iBeacon 5.0 86 

PF-GPS 5.2 93 

IMM-EKF 5.9 81 

6. Conclusion 

In order to realize the indoor and outdoor 

non-line-of-sight positioning of the intelligent 

mobile terminal of the acoustic signal, this paper 

derives the robot motion model based on the 

intelligent terminal, and proposes the AMP-IMM-PF 

algorithm, and uses the intelligent terminal to 

construct the iBeacon/IMU/GPS combined 

positioning system. It shows that compared with the 

single-model algorithm, the proposed 

AMP-IMM-PF algorithm can reduce the positioning 

error in different environments and the linearization 

error of EKF; in the case of uncertain observation 

noise, the algorithm in this paper can automatically 

adjust System model to ensure rapid system 

convergence and improve positioning accuracy. 
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