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Abstract  
In order to further optimize the operation mode of China's power grid and improve the 

quality of power supply in the grid, in this study, according to the non-periodic and periodic 

characteristics of the steady state index of power quality, a power quality steady-state index 

evaluation and prediction system based on chaotic system theory and least squares support 

vector machine (LSSVM) in large data background is designed. First, Firstly, chaotic 

system theory is used to reconstruct the phase space of the historical data of classical power 

quality steady-state indices, and to construct a new data information space covering 

attractors. Then, the LSSVM is used to train the samples in high-dimensional space, and the 

particle swarm optimization (PSO) algorithm is used together to get the best index 

evaluation and prediction system model. At the same time, the system is applied to the 

actual monitoring of the electric energy treatment capacity of a distribution network in a 

certain place. The typical steady-state index of power quality is used to evaluate and 

monitor, and the average relative error is less than 7%. Obviously, the result is better than 

the traditional back propagation (BP) neural network prediction method, which proves that 

the power quality steady-state index evaluation system based on chaotic system theory and 

least squares support vector machine under large data can be widely used. 

  

Keywords: chaotic system theory; power quality steady state index; large data; support 

vector machine  
 

1. Introduction 

With the rapid development of China's economy and the 

continuous improvement of science and technology, great and 

significant changes have taken place in the characteristics of 

power grids, load composition and control techniques of 

power systems in the 21st century. Both distribution and 

power generation are developing towards automation and 

distributed energy structure. However, in this process, the 

power system will be affected by a large number of non-linear 

factors, such as harmonics and voltage fluctuations. At the 

same time, it also makes the distribution system become a 

very complex network, which reduces the power quality [1]. 

The concept of big data and the development and application 

of technology gives a new breakthrough to China's power grid 

system. Therefore, the national smart grid strategy model 

based on large data analysis has been well applied [2, 3]. 

 

However, in the smart grid system, after a long-term and 

uninterrupted evaluation and monitoring of the key points of 

the power grid, it constitutes an effective large steady-state 

data of power quality. Through the corresponding data 

mining, the power quality indicators in a specific area are 

evaluated and predicted, and the corresponding trend changes 

of power quality at monitoring points can be obtained in 

advance [4]. Nowadays, there are a lot of problems in the 

operation of distribution and power generation systems. 

Through the correlation analysis of steady-state power quality 

indicators, this problem can be well solved. The influence of 

steady-state power quality problems is wide and deep. There 

are many relative factors affecting the change of power quality 

steady-state index in power system, such as voltage deviation 

and power flow separation, power supply distance and reactive 

power capacity, three-phase voltage unbalance and system 

planning, distribution structure, power network structure 

parameters and so on. If these factors are considered 

comprehensively, the corresponding difficulty and complexity 

of evaluation, prediction and monitoring will be greatly 

increased [5]. 

 

Based on this, a power quality steady-state index evaluation 

and prediction system model is designed in this study, which 

combines chaotic system theory and least squares support 

vector machine (LSSVM). Chaotic system theory is based on 
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phase space reconstruction, which can extend a certain time 

series to a specific embedded space architecture, and find its 

potential evolution law in data information. LSSVM maps the 

data information of input space into high-dimensional space 

in a non-linear way, calculates and solves it in the 

corresponding high-dimensional region, and then input 

relative variables and output relative variables, so as to obtain 

the non-linear relationship between the input and output 

relative variables. The premise of the system design in this 

study is not to consider many other factors directly. The 

monitoring data information of power quality steady-state 

index evaluation and prediction is considered. Particle swarm 

optimization (PSO) is used to optimize LSSVM parameters, 

which reduces the complexity and difficulty of steady-state 

index evaluation and prediction. The superiority of the system 

model has been proved by the application of corresponding 

cases. 

 

 

 

 

 

2. Methodology 
2.1 Process design of evaluation and prediction system 

For the evaluation, monitoring and prediction of the main 

indicators of power quality, the change trend of power quality 

at the corresponding monitoring points can be obtained in 

advance, which causes the corresponding operation of power 

grid and the attention of managers to potential power quality 

problems, so as to provide correct decision-making for the 

management and protection of power quality problems. At 

present, in China's power quality forecasting, monitoring and 

evaluation system, data collection and collation are carried out 

by day, week, month, season and year. Quantitative statistics is 

often used as index data with probability values approaching 

96%. According to previous data statistics, it is found that the 

trend change of power quality steady-state index has the 

characteristics of quasi-periodic and non-periodic. In chaos 

theory, this trend can be restored by spatial reconstruction. For 

this reason, a prediction system model based on chaotic system 

theory and LSSVM is designed. The design process is shown 

in figure 1. 

 

 
 

Figure. 1 Flowchart of forecasting model of power quality steady state indices 

 

In the figure above, the process of power quality steady-state 

index evaluation and prediction system mainly includes the 

following steps. 

 

Firstly, the data of power quality steady-state index evaluation 

and prediction system are pre-processed, and the abnormal 

data are judged, corrected, and normalized. According to 

Laida theorem [6], the abnormal data information is identified 

and the steady-state index sequence x = {xi/i=1, 2,...n} in 

power quality assessment is obtained. The corresponding mean 

value x  and residual error vi are obtained. 

i iv = x - x(i =1,2, ,n)  (1) 

According to Bessel expression, the corresponding standard 

error σ is calculated. If the detection value xk(1≤k≤n) satisfies 

[7]: 

k kv = x - x > 3σ            (2) 

Data 

normalization
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reconstruction
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Then, xk is judged as an abnormal value, and the average 

value of the values in the two monitoring points at the 

adjacent time points is identified and corrected. 

Secondly, the optimal mosaic frequency m and the optimal 

delay time point τ are obtained by the corresponding 

improved C-C method [8], and the phase space reconstruction 

of the steady state index of the electric energy treatment 

quantity is performed. At the same time, the largest Lyapunov 

exponent is calculated by the small data method [9], and the 

chaotic model of the sequence is entered. 

 

Thirdly, according to the phase space trajectory expression 

theory in chaos theory [10], the training sample and the test 

sample are taken. 

 

Fourthly, the LSSVM is used to test and train the newly 

extracted samples in the high-dimensional region, and the 

PSO algorithm is used to find the optimized normalized 

numerical parameters C and numerical parameters δ. 

 

Fifthly, the trained LSSVM system [11] is used to evaluate 

the steady state index in the power quality assessment, and the 

corresponding error analysis operation is performed. 

 

The main links of the steady state index evaluation and 

prediction system in the power quality assessment mentioned 

above is phase region reconstruction and LSSVM and 

parameter optimization, which will be elaborated on the 

following. 

 

2.2 Phase space reconstruction of chaos theory 

Chaos theory is finally reached into a specific trajectory 

through a series of evolutions. The reconstruction of phase 

space is an effective way to explore and analyze the dynamic 

behavior of chaotic theory system model. Reconstruct 

attractors with certain data information is used to analyze the 

corresponding chaotic characteristics of the system model. 

Among them, when the mosaic dimension m meets 

2 1m d +  (d refers to the dynamic correlation dimension), 

the system model after the delay coordinate redistribution is 

equivalent to the corresponding prime mover system in the 

topological sense. At the same time, the chaotic sequence 

x={xi/i=1, 2, . . . , N} is considered. m represents the mosaic 

dimension, and τ represents the time delay. Then, the phase 

space is reconstructed, and the following formula [12] is 

obtained: 

 T

i i i i+τ i+(m-1)τX = X / X = [x , x ,L, x ] , i = 1,2,L,M        (3) 

In the formula, M=N-(m-1)t is the corresponding number of 

points in the phase space. In the process of phase space 

reconstruction, the values of mosaic dimension m and delay 

time point τ have a great influence on the accuracy of 

evaluating prediction monitoring. In this study, the improved 

C-C method is applied to perform corresponding phase space 

reconstruction. 

 

After the phase region is redeployed, the steady-state indicator 

sequence in the power quality assessment becomes a 

corresponding multi-dimensional spatial data information set, 

but still maintains the same dynamic equivalence property as 

the original model system. Therefore, there is a certain smooth 

map f: Rm → Rm, which refers to the attractor of the trend of 

the sequence. The corresponding trajectory formula for phase 

space is [13]: 

X(t +1) = f(X(t)), t = 1,2, ,M                    (4) 

The above mapping can be expressed as [14]: 

(x(t + τ), x(t + 2τ),L, x(t + mτ)) =

f(x(t), x(t + τ),L, x(t + (m -1)τ))
                   (5) 

In formula 5, in the mathematical model of steady-state index 

sequence evaluation and prediction monitoring in power 

quality assessment, the computational solution of the mapping 

relationship f is the top priority of this model system. 

 

2.3 The optimization of LSSVM  

In order to better express the attractors of the steady-state 

indicator sequence in the power quality assessment, that is, 

the mapping relationship f mentioned above, the 

corresponding training samples (xtrain, ytrain) are selected. 

xtrain and ytrain generally do not have a corresponding linear 

relationship. Using the LSSVM can map xtrain into high-

dimensional space [15], and the relationship between xtrain 

and ytrain can be transformed into a linear ambiguous 

estimation problem. If the regression function is: 

Ty = w φ(x) + b                              (6) 

In the formula, x refers to the training input xtrain obtained by 

re-sequencing the steady-state indicator sequence in the 

power quality assessment through the phase region; y refers to 

the ytrain of the rigorous training output; w refers to the 

normal vector; b refers to the offset. The solution to the 

relational operation of x and y can be expressed as: 

k
2 2

i
w,b,e

i=1

T

i i i

1 C
min J(w,b,e) = w + ξ

2 2

s.t.y -ξ = w φ(x ) + b,i = 1,2, k


                     (7) 
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In the formula, C denotes the normalization parameter, and ξi 

denotes the relaxation variable; e= [1, .... 1] T. By introducing 

Lagrange function, formula 8 can be obtained [16]: 

k
T

i i i i

i=1

L(w,b,e,a) = J(w,b,e) + α [y -ξ - w φ(x ) - b]            (8) 

 

In the formula, ai represents the multiplier of Lagrange 

function [17]. From the Karush-Kuhn-Tucker (KKT) [18] 

condition, it can be concluded that: 

k

i i

i=1

T

i i i

k

i

i=1

i i

L
= 0 w = α φ(x )

w

L
= 0 y - ξ - w φ(x ) - b = 0

w

L
= 0 α = 0

w

L
= 0 α = Cξ

w


→




→




→




→






                     

(9) 

 

The solution of the above formula can be transformed into: 

T

-1

0e b 0
× =

e α yQ + C I

    
    

    

                       

(10) 

 

In the formula, I denotes the identity matrix; a= [a1,... ak]T; 

y=[y1, ... yk]T; Q refers to k * k order kernel matrix of Kij, 

where Kij = ((φ(xi), (φ(xj)). If Qn = Q + I / C, the formula 11 

is obtained: 

T -1

n

T -1

n

-1

n

e Q y
b =

e Q e

α = Q (y - e×b)







                          (11) 

 

The radial basis function is used as the kernel function. 

2
2

i p i pK(x , x ) = exp(- x - x / 2δ )  (12) 

 

In the formula, δ2 is the corresponding variance of the kernel 

function. From formula 10 to 12, the formula of steady-state 

index evaluation and prediction system in power quality 

assessment is as follows: 

k

i i

i=1

y = f(x) = α K(x , x) + b   (13) 

The prediction input XP is substituted into the above formula 

to obtain the prediction value

k

p p i i p

i=1

y = f(x ) = α K(x , x ) + b
     (14) 

 

2.4 LSSVM parameter optimization based on PSO  

In the process of training and monitoring the LSSVM, the 

values of normalized numerical parameter C and numerical 

kernel parameter δ are particularly important. In order to 

optimize the evaluation and prediction system, the PSO 

algorithm is used to find the optimal numerical parameter C 

and the numerical kernel parameter δ [19]. 

 

In PSO, random particles update the corresponding velocity 

and position relationship by searching individual extreme 

value Pbest and group extreme value gbest. In this way, after 

repeated updates, the global optimal solution of the group is 

finally found. The updating formula of particle velocity and 

position information is as follows: 

t+1 t 1 1 best t 2 2 best tv = wv +c r (p - x ) +c r (g - x )              (15) 

t+1 t t+1x = x + v                              (16) 

In the formula, vt and xt respectively refer to the speed and 

coordinates of the particle's t-th update; w refers to inertial 

weights; r1 and r2 refer to random values in the region [0, 1]; 

c1 and c2 refer to learning factors [20]. 

 

The detailed steps of optimizing the corresponding numerical 

parameters by using PSO algorithm [21] are as follows: 

 

Firstly, the numerical parameters are initialized. The 

information of particle size, update times, learning factors and 

particle accident location and speed are set. 

Secondly, the normalized numerical parameter C and the 

numerical kernel parameter δ are considered as a set of random 

particles. Each group of particles corresponds to a LSSVM 

model. In the current model, xtrain and ytrain are trained. The 

predicted and actual values are compared and the particle 

adaptation values in this coordinate are obtained. 

 

Thirdly, in the relative motion of particles, the adaptive values 

in different coordinates will be obtained. Each movement of 

the particle is then compared in size. The relatively small 

adaptive values are corresponded to the corresponding 
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coordinate positions and are taken as the current optimal 

coordinate positions of the particle. 

 

Fourthly, by comparing the fitness values between the 

particles in the same time period, the fitness values with 

smaller values are corresponded to the position of a particle, 

and then are taken as the current optimal coordinate position 

information in the population. At the same time, the particles 

are updated by formula 15 and formula 16. 

 

Fifthly, whether the maximum number of updates has been 

reached is checked. If it meets the corresponding conditions, 

it is necessary to finish the calculation and output the 

corresponding numerical results, or return to the second step 

for recalculation. 

 

2.5 Case study and contrast test 

Through the design of the voltage quality steady-state index 

evaluation and prediction system mentioned above, using 

chaos theory, and combining the optimized LSSVM algorithm 

and improved PSO algorithm, a smart grid voltage quality 

steady-state index evaluation system based on large data 

analysis is obtained. In order to further prove that the system 

can be better applied, the voltage quality steady-state index 

evaluation and prediction system designed in this study is 

applied to a substation monitoring point for test experiments. 

At the same time, it is compared with BP neural network 

method [22] to verify its optimization degree. 

 

In order to quantify the accuracy of analysis and prediction, 

relative error Ere, average relative error Emre and root mean 

square error Ermse are introduced to obtain the following 

formula [23]: 

re

F(i) - L(i)
E = 100%

L(i)
                               (17) 

n

mre

i=1

1 F(i) - L(i)
E = 100%

n L(i)
                    (18) 

n
2

rmse

i=1

1
E = (F(i) - L(i))

n
               (19) 

In the formula, F(i) refers to the predicted value and L(i) refers 

to the actual value. The three formulas are used to further 

verify whether the BP neural network method and the 

optimization system involved in this study have smaller and 

more accurate relative error maximum, average relative error 

and root mean square error. 

 

3. Results and discussion 
3.1 Experimental analysis of a case 

In the steady-state index of power quality evaluation, the data 

information monitored on the day is taken as the daily index 

value, and the large data collected by the power quality 

evaluation and prediction monitoring system of a certain 

power grid is taken as the experimental sample. The index 

values of voltage deviation, distortion rate of total harmonics, 

unbalance of three-phase voltage and long-term flicker are 

evaluated and predicted. Taking the deviation value of voltage 

as a sample, the evaluation and prediction process of power 

quality index is described concretely. 

 

Figure 2 reflects the time series of voltage deviation daily 

indicators of a 10kV substation monitoring point in 2016-

2018. Considering that the network structure, load 

classification and volume capacity of the predictive monitoring 

point have not changed much in a certain period of time, the 

detected data can be taken as corresponding experimental 

samples. 
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Figure. 2 Raw voltage deviation time series 

 

By using the improved C-C method mentioned above, the 

phase-area redistribution parameters of the sequence of  

 

voltage deviation time points are calculated, and the first 

partial minimum of ∆𝑠1(t) is taken as the optimal delay τd. 



 

 
 

July - August 2020 

ISSN: 0193-4120 Page No. 4925 - 4932 

 

4930 
Published by: The Mattingley Publishing Co., Inc. 
 

 

The periodic point of |𝑠1(𝑡) − 𝑠2(𝑡)|  is regarded as the 

optimal embedded window τ w. Through the formula 

τw=(md-1) τd, the optimal embedding dimension md can be 

obtained. The corresponding results are shown in figure 3, 

and τd=12.1, τw=96.2, and md=9.02 are obtained. 
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Figure. 3 Reconstruction parameters based on 

improved C-C method 

 

According to the obtained td and md, the maximum Lyapunov 

exponent of the time series of voltage deviation is calculated 

by using the small data information method. If the end shows 

a positive number, the time series has certain chaotic 

characteristics. Figure 4 shows the Lyapunov exponential 

curve of the time series of voltage deviations. k represents the 

steps of discrete time evolution, and y (k) represents the 

logarithmic average of distance. It can be seen that within the 

K interval [0, 200], y (k) is approximately a straight line, and 

its slope is the highest Lyapunov index λ . It can be calculated 

λ  = 0.043, which indicates that the sequence of voltage 

deviation time points at this point has chaotic characteristics. 
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Figure. 4 Lyapunov exponent curve of the voltage 

deviation time series 

md = 9.02, and td = 12.1 are substituted into formula 3. For the 

reconstruction of phase region of voltage deviation time series, 

training samples (xtrain, ytrain) are adopted. LSSVM is used 

to train its parameters in high dimensional space. According to 

PSO, the LSSVM model is optimized to obtain population 

number N = 30, learning factor c1 = c2 = 1.45, maximum 

update number Tmax = 502, and inertia weight W = 0.92. 

Search range C[0, 502] and δ[0, 50] are set. At the same 

time, the LSSVM toolbox is used to make some simulation 

comparisons with a certain web search method. 

 

3.2 Comparisons with web search method 

    In figure 5, PSO and web search are used to optimize the 

parameters of LSSVM model, and the fitness is the root mean 

square error of the predicted and actual values in the 

corresponding training samples. 
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Figure. 5 Fitness curves based on PSO and grid search 

method 

 

Thus, compared with the grid search method, PSO has faster 

convergence speed on the adaptive curve, and the 

corresponding values are obtained: C = 73.127, δ = 0.742. 

 

3.3 Comparison with BP neural network 

The C=73.127 and the δ=0.742 obtained above are substituted 

into the LSSVM model. According to the corresponding 

chaotic theory, the reciprocal value of Lyapunov exponent λ , 

Tm=1/ λ  refers to the upper limit of predictive monitoring 

time in the chaotic theory system, that is, the longest predictive 

time. The maximum Lyapunov exponent λ  = 0.043 for the 

sequence of voltage deviation time points, thus Tm = 21.23d is 

obtained. At the same time, on the basis of guaranteeing the 

prediction accuracy, the daily voltage deviation of the 

monitoring point in December 2018 is evaluated and predicted. 

In the process of forecasting, the forecasting value of each step 

is retained, and then it is used as the reference value for the 

next step. 

 

In order to explore the rationality and practicability of the 

proposed evaluation and prediction system model, the system 

and BP neural network method are compared and tested. The 

results are shown in figure 6. 
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Figure. 6 Forecasting results of voltage deviation 

 

From the figure, it can be seen that the predicted results based 

on chaotic theory system and LSSVM are similar and closer to 

the actual values. It can be known that the evaluation system 

designed in this study is an evaluation and prediction system 

based on BP neural network method. Secondly, in order to 

further test the accuracy of the system, the maximum relative 

error, average relative error and mean square error of the 

system prediction are compared with the BP neural network 

method. The specific comparison results are shown in table 1. 

The average relative error is less than 7%. 

 

 

Table. 1 Forecasting results of voltage deviation 

Time Actual value/% BP neural network method This paper designs the system 

model 

Predictive value/% Ere/% Predictive value/% Ere/% 

12-01 4.612 5.121 10.431 4.321 -6.872 

12-02 5.087 4.832 -5.021 5.197 3.176 

12-03 4.656 4.312 -8.132 4.490 -3.765 

12-04 4.233 4.197 -0.637 4.401 1.568 

12-05 4.087 4,265 3.781 4.166 1.436 

12-06 4.176 4.323 0.541 4.137 -0.745 

12-07 4.301 4.398 1.276 4.097 -2.043 

12-08 4.825 5,109 -8.605 4.478 -6.436 

12-09 5.266 5.231 -3.834 5.204 -2.143 

12-10 4.377 4.456 19.12 4.231 -4.452 

12-11 4.126 4.564 9.23 4.126 0 

12-12 4.254 4.387 3.677 4.178 -2.798 

12-13 4.209 4.367 5.124 4.561 0.439 

12-14 4.298 4.278 1.198 4.143 -1.107 

12-15 4.785 4.432 -7.561 5.234 6.231 

Emre - 5.912% 2.834% 

Ermse - 0.324% 0.163% 

 

From table 1, the steady-state index evaluation system 

designed in this study has advantages in the approximation of 

relative error, average relative error and root mean square, and 

this system is more accurate. 

 

3.4 Discussion 

The steady state index in power quality assessment reflects 

the state of power system under stable operation. After the 

design of the steady-state index evaluation and prediction 

system in power quality assessment, the chaos theory and 

LSSVM and PSO algorithm are used to construct the system. 

C-C method and small data quantization are used to enter the 

sequence operation. Through the corresponding empirical 

application analysis, compared with the actual error prediction 

value of network search method and BP neural network 

method, it is concluded that the steady-state index evaluation 

system in power quality evaluation in this study has great 

advantages. 

 

4. Conclusion 
Based on the background of large data, the steady-state index 

evaluation system for power quality evaluation of smart grid 

is designed and applied. Chaos theory system, LSSVM and 

PSO are used to construct the system. It is concluded that the 

system designed in this study has faster convergence speed and 

training accuracy than the web search method. At the same 

time, it is concluded that voltage deviation, total harmonic 

distortion rate, three-phase voltage unbalance and long-term 

flicker have chaotic characteristics among the factors affecting 

the change of steady-state index in power quality assessment. 

In addition, the improved C-C method is introduced. By 

calculating the optimal mosaic dimension and the optimal 

system delay with local or partial minima and periodic 

correspondence points, the relevant characteristics of chaotic 

attractors can be well mapped. At the same time, by comparing 

the designed system algorithm with BP neural network 

algorithm, it is concluded that the prediction results of local 

chaotic system and LSSVM model are more accurate and 

closer to the actual values than those of BP neural network. In 

addition, it is superior to BP neural network in terms of 

maximum relative error, root mean square error and average 

relative error. The average relative error of steady-state index 

evaluation and prediction in power quality evaluation is less 

than 7%. The design of this system will bring new technology 

reference for the application of smart grid system based on 

large data background. At the same time, more and more 

attention has been paid to the research of early warning system 

of steady-state indicators in power quality assessment. It is 
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hoped that experts, and scholars will make joint efforts to 

reduce voltage and improve the quality of power supply. 
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