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Abstract: 

The paper attempted to gauge the optimum portfolio selection in the Amman Stock 

Exchange by using multi-objective stochastic goal mixed-integer programming. 

This paper presents a solution approach for a complex portfolio selection problem 

that captures the uncertainty in financial markets. Data were collected from every 

stock that got listed and continuously traded in the ASE from January 2010 to 

December 2014. The findings confirmed that the pure stock portfolio, the 

combination of stock and bond portfolio and a large number of managing 

constraints allow the portfolio to hold a strategy that beat the benchmark portfolio 

in certain stages. The result revealed the SGMIP dynamic general portfolio for a 

single scenario compared to the benchmark portfolio and show that the portfolio 

achieved a 24% of the return. The SGMIP portfolio achieved 29.2% total return 

which is greater than the total return of the index portfolio. The portfolio results in a 

loss of 9.8% in total return from investing in security and achieves a profit of 5.1% 

from bonds. The SGMIP algorithm has a strong effect on solution speed. The 

SGMIP model managed to reduce the risk of both portfolios and outperform the 

performance of the benchmark in two-stage pure portfolio and in the first stage of 

stock and bond portfolio. This study offers new insights by investigating the 

dynamic role of multi-objective stochastic goal mixed integer programming to 

gauge optimum portfolio selection in the Amman stock exchange. This study is 

limited because its only applicable and useful to countries with similar policies and 

regulations. Further studies can explore a comparative study between developed 

and developing economies' stock exchange.  

Keywords:Portfolio Selection (PS); Mean-variance (MV); Stochastic Mixed Integer 

Programming (SMIP); Stochastic Goal Mixed Integer Programming (SGMIP); 

Amman Stock Exchange (ASE). 

 

I. INTRODUCTION 

Historically, the financial markets use stochastic 

models to represent the seemingly random behavior 

of assets such as stocks. The stochastic portfolio was 

firstly introduced by Robert Fernholz that aims at 

flexibly analyzing the performance of certain 

investment strategies in stock markets relative to 

benchmark indices and developed impressively by 

numerous different researchers. This theory gives 

reasonably intense methods to deal with an uncertain 

environment. 

In light of utilizing empirical and experimental 

data for displaying and modeling a real-world 

problem, a deterministic mathematical model cannot 

represent a realistic problem perfectly. Few 

approaches were found to deal with such 
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phenomena, for example, stochastic models, fuzzy 

techniques, and interval analysis, which vary by their 

favorable circumstances and drawbacks (Nguyen et 

al., 2012). In numerous practical circumstances, the 

uncertainties are not of the interval or statistical 

type; it depends on the experts' perception or human 

judgment. Therefore, a stochastic situation of 

different scenarios can be arranged and every value 

and parameter can be predicted (Solaymani Fard and 

Ranezanzadeh, 2017). 

Dealing with uncertainty, investors find 

themselves obliged to rebalance their portfolios. To 

examine the dynamic portfolio, a Mixed-Integer 

Programming (MIP) employed to select the optimal 

portfolio configured with an objective and 

restrictions that account for various financial 

variables and significant portfolio attributes 

encompassing investment decisions. Extensive 

researches were directed to research the size of the 

portfolio as a main constraint (e.g. Chang et al., 

2000); Jobst et al., 2001; Crama and Schyns, 2003; 

Yiu, 2004; Shaw et al., 2008; Stoyan 2009). The 

Stochastic Goal Mixed-Integer Programming 

(SGMIP) model created by Stoyan, (2009) presents 

liquidity and transaction cost as additional 

constraints in addition to portfolio size. 

The Amman Stock Exchange (ASE) witnesses an 

uncertainty situation demonstrated by the ASE 

indicators that recorded the decrease in liquidity 

flows, market value, and Gross Domestic Product 

(GDP) by 75.5%, 37.6%, and 71.3%, respectively in 

2013 as compared to 2007. It is also noticed that 

there was an increase of 72.6% in the total deposits 

in banks for the same period. Responding to this 

situation, some investors withdrew from the market, 

while others refrained from trading and/or become 

more careful in selecting their investments. This 

situation creates a motive to hedge against the 

uncertainty by holding a passive stock-bond 

portfolio and uses the SGMIP model to solve the 

portfolio selection problem. As a result, investors 

trading in such conditions within ASE are interested 

in selecting their optimal portfolio in order to 

minimize the portfolio risk. Satisfying this need, the 

multi-assets portfolio selection problem is presented 

to find the best combination that suits the investor’s 

preferences.  

Even for moderate size problems, portfolio 

selection models require modeling strategies and 

solution techniques to oblige for factors, for 

example, multiple portfolio goals, uncertainty and 

portfolio rebalancing. There are many factors or 

practical constraints that generate interest of 

investors to include them in their portfolios to 

improve the decision in selecting the optimal 

portfolio such as limiting the portfolio size and 

transaction cost, at the same time, encouraging 

liquidity and diversity. Regarding modeling, Goal 

Programming (GP) might be utilized to encourage 

portfolio objectives, and Stochastic Programming 

(SP) can represent uncertainty issues along with 

asset price. This paper displays a stock–bond 

portfolio selection model that invests initially in 

stocks while taking into account bond investment. 

The model captures uncertainty and diverse traits 

associated with stock and bond investments utilizing 

a Stochastic-Goal Programming (SGP) approach (Ji 

et al., 2005; Ibrahim, 2008; Stoyan, 2009; Stoyan 

and Kwon, 2010; Stoyan and Kwon, 2011; Brown 

and Smith, 2011; Moallemi and Sa˘glam, 2017; He 

and Qu, 2014). Moreover, uncertain conditions 

require periodic rebalancing of the portfolio or 

adapting with new circumstances (Valian, 2009).  

Few financial researches such as Ji et al. (2005) 

used a Stochastic Goal Linear Programming 

approach. The portfolio designed to maximize a 

target value involving a rebalancing strategy over 

risky assets and a risk-free asset. The problem 

involved only one goal, a target wealth constraint, in 

which they included an investigation on the size of 

the relaxation parameters associated with this goal. 

Ballestero (2005) provided the SGP to construct a 

mean-variance optimization model. SGP methods 

have been generalized and examined in various 

publications (Heras and Aguado, 1999; Sengupta 

and Calif, 1979; Van Hop, 2007). Other researches 

approached the SP using different techniques 

(Muhlemann et al., 1978; Kallberg and Ziemba, 
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1983; Abdelaziz et al., 2007; Stoyan and Kwon, 

2010, 2011). Some of the researches satisfied one 

goal )Mulvey and Vladimirou, 1992; Golub et al., 

1995; Gaivoronski and Stella, 2003; Hibiki, 2006; 

Escudero et al., 2007; Tapaloglou et al., 2008). The 

SP model with multi-objectives was developed by 

Muhlemann et al. (1978) with two portfolio goals. It 

was one of the first portfolios examining the 

uncertainty and multiple objectives, but with a small 

size. Brown and Smith (2011) introduced a model 

with a large number of assets. It was not required to 

be capable of running time software, but it also did 

not reach the optimal portfolio.  

As opposed to portfolio formulation, solvability 

issues are addressed to deal with complex issues 

resulting from adding more goals to the portfolio 

(Bienstock, 1996; Chang et al., 2000; Jobst et al., 

2001; Lin and Wang, 2002; Canakgoz and Beasley, 

2008; Ruiz-Torrubiano and Suarez, 2009). For 

example, Chance Constrained Programming (CCP) 

offered in (Charnes and Cooper, 1959; Abdelaziz et 

al., 2007), heuristic algorithms designed in (Beasley 

et al., 2003; Canakgoz and Beasley, 2008), genetic 

algorithms are employed in (Lin and Wang, 2002; 

Ruiz-Torrubiano and Suarez, 2009), Crama and 

Schyns (2003) used simulated annealing approach. 

This study formulates the Mixed-Integer 

Programming (MIP) to model a dynamic portfolio 

that involves a set of objectives and constraints 

considering different real-world financial factors. 

The number of assets involved in all portfolio 

designs as an essential practical value for the 

portfolio managers ensured in this study (Stoyan, 

2009; He and Qu, 2014). The Stochastic-Goal 

Mixed-Integer Programming (SGMIP) model 

developed in this paper posed additional factors 

besides problem size which are transaction cost, 

liquidity, diversity, risk and return.  

This study stands to answer the question of "How 

can real-world dynamic (multi-period) portfolio 

selection be efficiently solved using SGMIP with 

samples from ASE?” An algorithm composed of a 

decomposition strategy was designed to solve the 

multi objectives stock-bond portfolio problem. 

While prior studies use SGP with one goal and a 

target wealth constraint to maximize a target value, 

the portfolio structure as a SGMIP and the algorithm 

solution to the portfolio problem are the main 

contributions in this paper. The selection model of 

the study portfolio involves SGMIP and integrates 

bond investments as multi types of assets, discrete 

choice (integer) constraints, and multi-objective 

while considering stochasticity problem. The 

algorithm designed in this study was successful at 

outperforming current state-of-the-art MIP solvers 

and reports optimal results for many test cases. In 

addition, the study provides the financial results of 

the portfolio over a period involving unstable 

markets. 

The outline of this paper is as follows: Section 2 

defines the portfolio model. Section 3 describes the 

algorithm solution method of the SGMIP portfolio. 

Finally, Section 4 displays the computational and 

financial results, and discussion and conclusion is 

explicated in Section 5. 

 

II.LITERATURE REVIEW 

This section outlined the decision variables related 

to the two assets' types that is included in the 

portfolio, which are stocks and bonds. Thereafter, 

the SGMIP will be formulated specifically. 

The portfolio problem formulation 

 

The portfolio characteristics are well defined, 

implying that 𝑥𝑖 , is the fraction of the portfolio 

invested in security i that is purchased in the first-

stage (t=0). y𝑖𝑙
𝑡  is the fraction of the portfolio 

invested in security i that is purchased in the second-

stage (t>0).Ø𝑖𝑙
𝑡

 is the unit price of security i at time t 

= 0,1,…,m under scenario l = 1,2,… L , i = 1,2,…n 

.Where 𝑥𝑖 ∈ 𝑅 , and y𝑖𝑙
𝑡 ∈ 𝑅 , note that the security 

price is known at t = 0 and there is only one scenario 

in the first stage. z𝑗𝑙
𝑡  is the fraction of the portfolio 

invested in bond j to purchase at time t under 

scenario l, hence z𝑗𝑙
𝑡 ∈ 𝑅. φ

𝑗𝑙
𝑡  is the price of bond j at 

time t under scenario l. 𝑈𝑗𝑙
𝑡   is the bond return at 

maturity. 𝐵  is the initial wealth of the portfolio. 
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Obtaining the portfolio problem requires defining 

the portfolio elements that consist of transaction 

cost, liquidity, diversity by minimizing the 

unsystematic risk, risk and return and their vectors 

referred to stocks and bonds.  Including these 

elements to the portfolio of this study is because 

they suit the long-term strategy and the stock-bond 

investment. To define the portfolio elements let’s 

start to maximize the return of the portfolio as in the 

following equation: 

  Ø𝑖𝑙
1 𝑥𝑖

𝑛

𝑖=1

𝐿

𝑙=1

+     𝑝𝑙Ø
𝑖𝑙
𝑡+1

𝑛

𝑖=1

𝐿

𝑙=1

𝑇

𝑡=1

y𝑖𝑙
𝑡 +   𝑝𝑙𝑈𝑗𝑙

𝑡

𝑕

𝑗=1

𝐿

𝑙=1

𝑇

𝑡=1

𝑧
𝑗𝑙

𝑡−𝑕𝑗
∗

                                                    (1) 

 

Where pl denotes the probability of a scenario 

realization, where  𝑝𝑙 = 1𝐿
𝑙=1  and pl >0.  To keep 

the portfolio managing fees at minimum level, 

minimizing transaction costs is required which 

entails minimizing the number of transactions 

between time periods. Thus, defining transaction 

cost ẅtil to be the following: 

𝜔 𝑖𝑙
𝑡 =   y𝑖𝑙

𝑡 −  y𝑖𝑙
𝑡−1    i= 1,2,…,n t=2,…,T, l = 1,…,L                                                      (2) 

for t=1 

𝜔 𝑖𝑙
1 =   y𝑖𝑙

𝑡 − 𝑥𝑖  i= 1,2,…,n, l=1,…,L;                                                                  (3) 

Where 𝜔 𝑖𝑙
0   = 0,  𝜔 𝑖𝑙

𝑡  equals the fraction of a 

security that traded between two periods. The 

previous equation will be minimized in objective 

function in order to maintain the portfolio cost to a 

minimum. Maximizing the sector diversity and 

minimize the portfolio risk is the second objective of 

this study. Diversifying the portfolio throughout the 

market sectors offers a reduction in unsystematic 

risk. To include the sector exposure element, the 

variable Q(i, s) determine the security i to which 

sector is belonged; Hence, Q(i, s) = 1, if security i 

belonged to sector s ,otherwise = 0, where S 

represents the total of sectors, Q(i, s) ∈  B. To 

provide the portfolio with the appropriate sector 

diversification, considering that  𝑓𝑠
𝑡  is the fraction of 

the portfolio, it will be 

 𝑓𝑠
𝑡𝑆

𝑠=1 = 1         𝑡 =

0, … , 𝑇                                            (4)                                                

f st  ∈ [0, 1], it is now already known that f s0 is a 

first stage parameter, and when t> 0 ,  f st  is a 

second stage parameter. The form of sector exposure 

element will be as follows: 

 Q(𝑖, s)

𝑛

𝑖=1

Ø𝑖𝑙
𝑡 y𝑖𝑙

𝑡 = 𝑓𝑠
𝑡 Øil

t

𝑛

𝑖=1

yil
t + ξ

sl
t                                                                                                     (5) 

Where ξ
sl  
t

is the sector relaxation variable which is 

compatible to the fraction of the portfolio𝑓𝑠
𝑡  that 

invested in sector, it permits the model to find 

suitable solution for 𝑓𝑠
𝑡 if the feasible solution cannot 

be found with the current variable used. The above 

constraint can be used for variable 𝑥𝑖  by replacing 

the variable 𝑦𝑖𝑙
𝑡 .  Finally, to bound the different 

number of securities and bonds used in the portfolio. 

Consequently, gtil defined as follows:  

 

1, if security i is used in the portfolio at time t 

gtil   =           under scenario l (i.e. if xi, yti  > 0);                                                                      (6) 

0, otherwise 

where gtil ∈ B , there is one scenario in the first 

stage l= 1 for g𝑖𝑙
0 , considering Gt as the upper bound 

of stocks to hold in the portfolio and in order to 

achieve the goal of limiting number (quantity) of 

security to hold the cardinality constraint will be:                                                

 g𝑖𝑙
𝑡𝑛

𝑖=1 ≤ Gt t= 0,…, T              , l= 1,…,L.                                                   

(7) Assuming 𝐵  is the initial wealth of the portfolio; 

the constraints of balancing the portfolio are as 

follows: 
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𝐵 =  Ø𝑖
0𝑥𝑖

𝑛

𝑖=1

+ φ
𝑗𝑙
0 𝑧𝑗

0

𝑕

𝑗=1

 

                                                    (8) 

𝐵𝑙
1 =  Ø𝑖𝑙

1 𝑥𝑖 − Ø𝑖𝑙
1 𝑦𝑖𝑙

1 + 𝑈𝑗𝑙
1𝑍
𝑗

1−𝑕𝑗 − φ
𝑗𝑙
1 𝑍𝑗

1 − 𝜏𝑙
1𝑤 𝑖𝑙

1

𝑕

𝑗=1

𝑕

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

   (9)

 

where, 𝜏 is the transaction cost of a security. Thus, 

equations (8) and (9) guarantees that the total 

portfolio wealth including dividends is being 

invested at each time period. Note that, adding upper 

bounds to the decision variables of security and bond 

offers more force to be divers, where di and d j are 

the maximum fractions of the portfolio to be 

invested in security i or bond j; respectively. In order 

to capture passive investment in PS model, these 

components in addition to performance measures 

and various goals of the portfolio will be taken in 

consideration by adding GP to the problem. 

 

III. THE SGMIP DESIGN 

This section presents the remaining elements as 

objectives goals which are return, risk and 

liquidity.These objectives are solved in separate 

portfolio problems to obtain the optimal value then 

constraint them as goal constraints. Any deviation 

from the optimal value will penalize in the objective 

function. Displaying the performance measure as the 

first portfolio goal is to ensure that the portfolio 

cannot outperform the obtained optimal value. To do 

so, assume Rtl as a maximum benchmark, the 

investment is not allowed to outperform at time t and 

under scenario l. The value of Rtl is obtained after 

calculating the index return. The performance 

constraint is as follows:   

 

For first stage  Ø𝑖𝑙
𝑡+1𝑥𝑖𝑙

𝑡 ≤ 𝑅𝑙
𝑡 + X𝑙

t

𝑛

𝑖=1

𝑡 = 1  , 𝑙 =  1    (10)  

 

For first stage  Ø𝑖𝑙
𝑡+1𝑦𝑖𝑙

𝑡 ≤ 𝑅𝑙
𝑡 + X𝑙

t

𝑛

𝑖=1

𝑡 = 1,…T  , 𝑙 =  1,   , L 

 

Where X𝑙
t  ≥ 0 is a relaxation element that satisfies 

the GP model, X𝑙
t ∈ R, and l= 1 for𝑅𝑙

0 . As noticed 

from (10) the performance of the securities is only 

constrained which permits the portfolio to invest in 

bond when the investment in securities is not 

favorable. The second portfolio objective is to 

minimize the portfolio risk measured with beta. The 

value of optimal beta β* is calculated by using first 

stage variables as the accompanying sub-problem: 

𝑚𝑖𝑛𝜇 𝛽𝑠

𝑛

𝑠=1

𝑔𝑠
0 +  (1 − 𝜇)   Ø𝑠

0𝑥𝑠 − 𝐵𝛽

𝑛

𝑠=1

                      (11) 

 

Subject to 

 gs
0 ≤ G0

𝑛

𝑠=1

 12  

 

𝑥𝑠 ≤ 𝐶𝑔𝑠
0                             ∀ 𝑠 ∈ ϒ                                                                                                 (13) 

 

𝑥𝑠  ≥ 0 ,    𝑥𝑠  ∈ ǁ            ∀ 𝑠 ∈ ϒ                                                                                               14  
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𝑔𝑠
0  ∈ 𝔹                                 ∀ 𝑠 ∈ ϒ                                                                                                    (15) 

 

Where 0< 𝜇 <1 and 𝐵𝛽  the initial portion of 

portfolio invested in security. Consequently, 

β
∗ =  𝛽𝑠

𝑛
𝑠=1 (𝑔𝑠

0)∗ , where (𝑔𝑠
0)∗  is the optimal 

value resulted from solving the model (11) – (15). 

The equation (12) presented in the sub-problem 

model to bind the number of security names in the 

portfolio as cardinality constraint. Because the 

calculation of β
∗

are based on historical price 

movement it gives the best recognized risk in the 

first time period t=0. The optimal risk value β
sl
∗

 of 

the security s at time t>0 is computed using SP to 

facilitate future uncertainty of the market. Then, the 

following constraint is added to the model: 

 𝛽𝑖

𝑛

𝑖=1

𝑔𝑖
0 ≤ 𝛽∗ + δ

0                                                                (16) 

For time t > 0 uncertainty must add to the optimal 

risk value by including scenarios. Thus, for time t > 

0, the optimal security risk becomes 𝛽𝑙
∗ and when 

associated with single stock it becomes 𝛽𝑖𝑙
∗  as shown: 

 𝛽𝑖𝑙
𝑡 𝑔𝑖𝑙

𝑡

𝑛

𝑖=1

≤ 𝛽𝑙
∗ + δ𝑙

𝑡𝑡 =  0, … , T   , 𝑙  =  1, … L        (17) 

 

Penalty variables δ
0

, δ𝑙
𝑡

 are accompanied by 

penalty parameter and minimized in the objective 

function. The last element considered in the study 

problem is the liquidity. Liquidity already exists in 

all financial investment, where usually stocks are the 

most liquid. Liquidity cost is calculated by the 

difference between the buying price paid by exigent 

or a rush purchaser and price received by an exigent 

seller. Since brokerage firm commissions do not 

fluctuate with the length of time taken to finish a 

transaction. Rather, ranges in bid-ask spread specify 

the liquidity cost (Parra et al., 2001). 

Percent spread

=
𝐴𝑠𝑘 − 𝐵𝑖𝑑

𝐴𝑠𝑘
∗ 100%                                    (18) 

 

As the investor aims to invest in instruments with 

high liquidity, the liquidity will be solved for the 

optimal value ᴧ𝑙
∗ under each scenario, similar to 

equations (11) - (15). Thus, the following constrain 

will be include  

 ᴧ 𝑖,𝑡,𝑙 

𝑕

𝑖=1

𝑔𝑖𝑙
𝑡 ≥ ᴧ𝑙

∗ − ʎ𝑡          , t =  0, … , T   , 𝑙  = 1,… , L     (19)

 

as a constraint in the main model of the problem, 

where ¸ ʎ𝑡 ≥ 0  is a penalty variable that is 

minimized in the objective function and 

accompanied by a penalty parameter. 

The SGMIP model will be 

 

𝑀𝑖𝑛  − 𝜇1    Ø𝑖𝑙
1

𝑛

𝑖=1

𝐿

𝑙=1

𝑥𝑖 +     𝑝𝑙

𝑛

𝑖=1

𝐿

𝑙=1

𝑇

𝑡=1

Ø𝑖𝑙
𝑡+1y𝑖𝑙

𝑡 +    𝑝𝑙

𝑕

𝑗=1

𝑈𝑗𝑙
𝑡 𝑧
𝑗𝑙

𝑡− 𝑕𝑗
∗

𝐿

𝑙=1

𝑇

𝑡=1
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+ 𝜇2     𝑝𝑙

𝑛

𝑖=1

𝑤 𝑖𝑙
𝑡

𝐿

𝑙=1

𝑇

𝑡=1

 +  𝜇3    ξ
𝑠
0 

𝑆

𝑠=1

+     𝑝𝑙

𝑆

𝑠=1

𝐿

𝑙=1

𝑇

𝑡=1

 ξ
𝑠𝑙
𝑡   +  𝜇4  δ

0 +    𝑝𝑙

𝐿

𝑙=1

𝑇

𝑡=1

δ𝑙
𝑡 

+  𝜇5  λ
0 +    𝑝𝑙

𝐿

𝑙=1

λ𝑙
𝑡

𝑇

𝑡=1

 + 𝜇6  χ0 +    χ
𝑙
𝑡

𝐿

𝑙=1

𝑇

𝑡=1

  20  

Subject To 

Initial investment amount constraints: 

For first period: 

 Ø𝑖
0𝑥𝑖

𝑛

𝑖=1

+ φ
𝑗𝑙
0 𝑧𝑗

0 =  𝐵 

𝑕

𝑗=1

                                                                                                                     (21) 

For second period: 

 Ø𝑖𝑙
1 𝑥𝑖 − Ø𝑖𝑙

1 𝑦𝑖𝑙
1 + 𝑈𝑗𝑙

1𝑍
𝑗

1−𝑕𝑗 − φ
𝑗𝑙
1 𝑍𝑗

1 − 𝜏𝑙
1𝑤 𝑖𝑙

1

𝑕

𝑗=1

𝑕

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

= 𝐵𝑙
1 ,     𝑙 ∈  Ω                                (22) 

For other period 

 Ø𝑖𝑙
𝑡

𝑛

𝑖=1

𝑦𝑖𝑙
𝑡−1 − Ø𝑖𝑙

𝑡 𝑦𝑖𝑙
𝑡 + 𝑈𝑗𝑙

𝑡 𝑍𝑗
𝑡−𝑕∗𝑗 − φ

𝑗𝑙
𝑡 𝑍𝑗𝑙

𝑡 − 𝜏𝑙
𝑡

𝑛

𝑖=1

𝑤 𝑖𝑙
𝑡

𝑕

𝑗=1

𝑕

𝑗=1

𝑛

𝑖=1

= 𝐵𝑙
𝑡𝑡Є T                           (23) 

The performance of portfolio will not exceed market portfolio (Passive St.) Constraints, when t=0,    t > 1: 

 Ø𝑖𝑙
1 𝑥𝑖 ≤

𝑛

𝑖=1

𝑅0 + χ0                                                                                                                                    (24) 

 Ø𝑖𝑙
𝑡 𝑦𝑖𝑙

𝑡 ≤

𝑛

𝑖=1

𝑅𝑙
𝑡 + χ

𝑙
𝑡  ,       ∀ 𝑙 ∈  Ω, t ∈ 𝑇            (25) 

 Q(𝑖,𝑠)

𝑛

𝑖=1

Ø𝑖
0𝑥𝑖 = ƒ

𝑠
0  Ø𝑖

0𝑥𝑖 + ξ
𝑠
0

𝑛

𝑖=1

 ,      𝑠 ∈ 𝑆            (26) 

 Q(𝑖,𝑠)Ø𝑖𝑙
𝑡

𝑛

𝑖=1

𝑦𝑖𝑙
𝑡 = ƒ

𝑠
𝑡 Ø𝑖𝑙

𝑡

𝑛

𝑖=1

𝑦𝑖𝑙
𝑡 + ξ

𝑠𝑙
𝑡         , 𝑙 ∈ Ω, s Є S, 𝑡 Є T, 𝑙 ∈ Ω, t ∈ T                                         (27) 

Bound the upper bound # of Assets when t=0, t > 0 

 𝑔𝑖
0

𝑛

𝑖=1

≤ 𝐺0                                                                     (28) 

 𝑔𝑖𝑙
𝑡

𝑛

𝑖=1

≤ 𝐺𝑡         ∀𝑙 ∈  Ω, t ∈ T                                   (29) 

Bound # of bonds when t=0, t > 0 

 𝑔 𝑖
0

𝑕

𝑗=1

≤ 𝐺 0                                                                     (30) 

 𝑔 𝑖𝑙
𝑡

𝑕

𝑗=1

≤ 𝐺 𝑡          ∀𝑙 ∈  Ω, t ∈ T                                 (31) 

Minimizing the stock’s risk 
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 𝛽𝑖

𝑛

𝑖=1

𝑔0 ≤ 𝛽∗ + δ
0                                                      (32) 

 𝛽𝑖𝑙
𝑡

𝑛

𝑖=1

𝑔𝑖𝑙
𝑡 ≤ 𝛽𝑙

∗ + δl
t   ,                     𝑙 Є Ω, 𝑡 Є T         (33) 

Liquidity constraints 

 Ʌ(𝑖,0)

𝑛

𝑖=1

𝑔𝑖 ≥ Ʌ
∗ − λ0                                                                                                                               (34) 

 Ʌ 𝑖,𝑡,𝑙 

𝑛

𝑖=1

𝑔𝑖𝑙
𝑡 ≥ Ʌ𝑙

∗ − λ𝑙
𝑡                        ∀ 𝑙 Є Ω, 𝑡 Є T  35  

Transaction cost constraints 

𝑤 𝑖𝑙
1 =  𝑦𝑖𝑙

𝑡 − 𝑥𝑖   ,               ∀𝑖 ∈ ϒ , 𝑙 ∈ Ω                                                            (36) 

 

𝑤 𝑖𝑙
𝑡 =  𝑦𝑖𝑙

𝑡 − 𝑦𝑖𝑙
𝑡−1 ∀𝑖 ∈ ϒ , 𝑙 ∈ Ω, t ∈ T               (37) 

Stock 

𝑥𝑖 ≤ 𝐶gi
0∀𝑖 ∈ ϒ                                      (38) 

 

𝑦𝑖𝑙
𝑡 ≤ 𝐶g𝑖𝑙

t ∀𝑖 ∈ ϒ, 𝑙 ∈ Ω, 𝑡 ∈ T             (39) 

Bond 

𝑍𝑗
0 ≤ 𝐶𝑔𝑗

𝑜𝑗 ∈ Ξ 40  

 

𝑍𝑗𝑙
𝑡 ≤ 𝐶𝑔 𝑗𝑙

𝑡 ∀𝑗 ∈ Ξ, 𝑙 ∈ Ω, 𝑡 ∈ T  41  

Stock 

𝑥𝑖 ≤ 𝑑𝑖   ,                        ∀𝑖 ∈ ϒ                                       (42) 

 

ytil ≤ di ∀   i ∈ ϒ, l ∈ Ω, t ∈ T           (43) 

Bond 

𝑍𝑗
0 ≤ 𝑑 𝑗∀𝑗 ∈ Ξ                                      (44) 

𝑍𝑗𝑙
𝑡 ≤ 𝑑 𝑗∀𝑗 ∈ Ξ, 𝑙 ∈ Ω, 𝑡 ∈                        (45) 

Non-negative Constraints 

𝑥𝑖 ≥ 0,        𝑥𝑖 ∈ R                               ∀𝑖 ∈ ϒ 46  

 

𝑦𝑖𝑙
𝑡 ≥ 0,       𝑦𝑖𝑙

𝑡 ∈  R     ∀𝑖 ∈ ϒ, 𝑙 ∈ Ω, 𝑡 ∈ T            (47) 

 

𝑍𝑗
0 ≥ 0 ,      𝑍𝑗

0 ∈  R        ∀𝑗 ∈ Ξ                                     (48) 

 

𝑍𝑗𝑙
𝑡 ≥ 0 ,      𝑍𝑗𝑙

𝑡 ∈  R       ∀𝑗 ∈ Ξ, 𝑙 ∈ Ω, 𝑡 ∈ T          (49) 

 

𝑤 𝑖𝑙
𝑡 ≥ 0,       𝑤 𝑖𝑙

𝑡 ∈  R         ∀𝑖 ∈ ϒ, 𝑙 ∈ Ω, 𝑡 ∈ T              (50) 

 

𝛿0 ≥ 0,        𝛿0 ∈ R                                                             (51) 
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𝛿𝑙
𝑡 ≥ 0 ,       𝛿𝑙

𝑡 ∈ R      ∀𝑙 ∈ Ω, 𝑡 ∈ T                        (52) 

 

λ
0 ≥ 0,         λ0 ∈ R                                                             (53) 

 

λ𝑙
𝑡 ≥ 0, λ𝑙

𝑡 ∈ R              ∀𝑙 ∈ Ω, 𝑡 ∈ T                        (54) 

 

𝑔𝑖
0 ∈ 𝐵,       𝑔 𝑗

0 ∈ 𝐵∀𝑖 ∈ ϒ, 𝑗 ∈ Ξ                       (55) 

 

𝑔𝑖𝑙
𝑡 ∈ 𝐵,       𝑔 𝑗𝑙

𝑡 ∈ 𝐵∀𝑖 ∈ ϒ, 𝑗 ∈ Ξ ,   𝑡 ∈ T  56  

 

ξ
𝑠
0 ∈ 𝑅,         ξ

𝑠𝑙
𝑡 ∈ R      s ∈ S, 𝑙 ∈ Ω, 𝑡ЄT                  (57) 

 

(Stoyan and Kwon, 2011) 

 

 

In equations (38) to (41), C is a large constant and 

expresses the binary decision variables, and Ω is the 

scenario generation. The solution method is 

discussed in the next section. 

 

Solution Method 

Solving the large SMIP depends on decomposing 

the problem into two sub-problems security and 

bond (see Fig. 1), after constructing set of 

constraints and relaxing others by adding penalty 

variables.  At the same time, the relaxations (penalty 

variables) are minimized in the objective function. 

The stock sub-problem in its turn decomposed 

according to the sector into three divisions (sub-

problems). Each sub-problem are solved separately, 

then, the resulting values combined in the master 

problem presented in (20) – (57) searching for 

optimality. The model either reaches the optimality 

or needs adjusting the initialization.  

 
Figure 1 outlined the algorithm design. 

 

Fig. 1. Chart Flow of SGMIP Decomposition. 

This Figure shows the SGMIP Decomposition 

between stocks and bonds, the stocks on its turn 

decomposed into three sub-problems relative to the 

sectors in ASE. The main model consists of the 

results of the stocks three sub-problems and the 

bonds.   

The strengths of the algorithm refer to the model 

specific decomposition of stock and bond sub-

problems. The other strength of the algorithm comes 

from the relaxation γ added to the name to hold 

constraint G0, Gt in (28) and (29). Accordingly, the 

model parameters such as G0, Gt, B0, Bt and the 

portfolio benchmark R0, Rt are divided between 

sectors in the security sub-problem, then collected in 

the master problem as follows: 

G0 = 𝐺1
0 + 𝐺2

0 + 𝐺3
0                                       (58) 

 

Gt = 𝐺1
𝑡 + 𝐺2

𝑡 + 𝐺3
𝑡                                          (59) 

 

B0 = 𝐵1
0 + 𝐵2

0 + 𝐵3
0                                        (60) 

 

Bt = 𝐵1
𝑡 + 𝐵2

𝑡 + 𝐵3
𝑡                                          (61) 

 

R0 = 𝑅1
0 + 𝑅2

0 + 𝑅3
0                                        (62) 

 

Rt = 𝑅1
𝑡 + 𝑅2

𝑡 + 𝑅3
𝑡                                          (63) 



 

July-August 2020 

ISSN: 0193-4120 Page No. 1607 - 1621 

[ 

1616 Published by: The Mattingley Publishing Co., Inc. 

The solutions of the stock sub-problems are added 

to the bond sub-problem in the master problem. The 

master problem measures the optimality of the 

solution by checking if the portfolio goals fall within 

the benchmark criteria (62) to (63) and hold the 

same constraints. Then, either accept the optimal 

solution or need improvements by increasing the 

parameters related with the variables that have a 

value lower than the criteria and resolution. 

Generating the initial solution using a decomposition 

algorithm facilitates solving the SGMIP quickly. 

The optimal solution will be reached if Z is set to 

be zero or if all penalty variables are equal to zero. 

Otherwise, limiting the extent of penalty variables 

can be done by adjusting the penalties trying to 

locate an optimal value to the sub-problems. 

According to Taha (2007), if the original inequality 

is of type ≤ and its penalty + γ - is > 0, then the goal 

of inequality is satisfied. The optimality of the 

portfolio depends on the extent (size) of the 

relaxation variables. When the penalty parameters 

are large enough, few of relaxation variables will 

arise. This may increase the CPU time when running 

the CPLEX. Also, it will be more efficient to 

perform the penalty adjustment regarding the 

optimal solution of the parameters obtained from 

solving the sub-problems, since the sub-problems 

can be solved faster than the master problem. The 

following Section will portray the results of the 

proposed SGMIP model in ASE. 

 

The Results of SGMIP 

This paper solves the two-stage SGMIP problem 

portrayed in (20)–(57) using daily returns of the 

Amman Stock Exchange (ASE) and Zero-coupon 

rate bonds. The SP model considers every stock that 

continuously listed and traded in the ASE from 

January 2010 to December 2014. It results to 

approximately 100 securities for the time period 

(Amman Stock Exchange, 2014). Also, it considers 

all issued bonds over the same time period, which 

amount to be two bonds. The ASE100 Float Index 

composites as the portfolio benchmark R0.  For 

forecasting the second stage, three market scenarios 

are designed and further used decomposition for 

sector sub-problem as mentioned in Section 3. 

Considering all these issues, the SGMIP contained 

over 518 decision variables and 791 constraints. The 

SGMIP problem is solved using the previously 

mentioned algorithm with IBM ILOG CPLEX 

software version 12.7, on Intel ® core, 2.53 GHz i3 

CPU. The decomposition of the algorithm improved 

memory allocation and CPU time. 

 

Results of Sample Portfolio 

This section presents the sample portfolio returns 

in percent over the ASE Index return and compares 

the SGMIP portfolio to the benchmark portfolio, in 

which a single proportionate scenario for the 

portfolio is solved permitting CPLEX to run 

completely. Fig. 2 presents the results of an equally-

weighted sample portfolio monthly return in 

comparison to the index monthly returns before 

implementing the algorithm designed in Section 3. 

The index portfolio has a slight difference in 

monthly return over the sample portfolio. 

 

 
Fig. 2. The monthly return of ASE Index and the 

sample portfolio at first stage. 

This figure presents the monthly return of the 

sample portfolio compared with the ASE100 index 

during the period from January 2010 to December 

2014. (Colored) 

After implementing the algorithm, the second 

stage of the equations is applied to the pure stocks 

portfolio. A dynamic portfolio (sectors decomposed) 

is solved by CPLEX which run for 02:00, 03:02 and 

04:36 seconds for the financial, services and 

industrials sectors, respectively. A single scenario 

dynamic portfolio (sectors decomposed) resulted in 

decreasing the losses and achieving the optimal 

return of benchmark portfolio. Fig. 2 revealed the 

SGMIP dynamic general portfolio for a single 
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scenario compared to the benchmark portfolio. Table 

1 show that the portfolio achieved a 24% of the 

return. The SGMIP portfolio is distributed on the 

market’s three sectors. It contains seven different 

stocks from the financial sector, four from the 

service sector, and four from the industrial sector. 

The performance (based on daily return) of each 

sector i.e., financial, services and industrials, in the 

portfolio exhibited 6.1%, 22.8% and -4.9 %, 

respectively.  

 

Table 1: Performance of SGMIP pure stock 

portfolio/ Stage one – Information 

 
Financia

l Sector 

Servic

e 

Sector 

Industria

l Sector 

Portfoli

o 

SGMIP 

pure 

Portfoli

o 

(Sample

) 

0.061 
0.22

8 
-0.049% 0.24 

Index 

Portfoli

o 

0.019 
0.03

3 
0.008 0.17 

 

Figures 3 to 5 show that the returns (monthly) 

range from -0.03 to 0.03 in the financial sector, -0.04 

to 0.06 in the service sector, and -0.07 to 0.04 in the 

industrial sector, indicating that investing in the 

service sector improved the SGMIP portfolio return 

and remained within the index range. The results of 

this study at this stage supported the findings of 

Stoyan (2009). 

 

 
Fig. 3. Financial Sector SGMIP portfolio stage 

one compared to Financial Sector of Index 

 

 
Fig. 4.  Service Sector SGMIP portfolio stage one 

compared to Service Sector of Index. 

 

Fig. 5.  Industrial Sector SGMIP portfolio stage one 

compared to Industrial Sectors of Index. 

 

 
Fig. 6.  Worst case SGMIP portfolio compare with 

Index- Second stage. 

 

The second stage comprises of three scenarios of 

the above SGMIP portfolio which are lw, li, lb. In all 

scenarios, the SGMIP portfolio is managed to 

outperform the index portfolio’s total return. The 

worst scenario of the SGMIP portfolio is presented 

in Fig. 6, where SGMIP portfolio aggressively 

fluctuates compared to the index. The SGMIP 

portfolio achieved 29.2% total return which is 

greater than the total return of the index portfolio. 

This result may refer to the beta value of the SGMIP 

portfolio. The high value of the beta seems to be the 

reason behind the high return, in line with the direct 

relationship between risk and return. 

Interestingly, the results from the portfolio 

algorithm designed in the first stage found almost no 

difference in the performance between the sample 

portfolio and index portfolio, as shown in Fig. 2. An 

improvement in the portfolio return is achieved after 

applying the algorithm. The portfolio gain in the 

second stage appeared to be connected to the 

algorithm design (speed up) and uncertainty 

condition. Figure 6 reveals the results of the second 

stage between the worst scenario of the SGMIP 
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portfolio performance and the index portfolio. In the 

second stage, the worst scenario takes place in July 

2010 where the index portfolio overtakes the SGMIP 

portfolio by 0.03, as illustrated in Figure 6. These 

results can be enhanced for some months if the best 

scenario is taken, which is presented in Fig. 7. 

 
Fig. 7. Best and worst case comparison- Second 

stage. 

 

Results of Stocks and Bonds Portfolio 

This subsection includes the bonds sample to the 

dynamic pure stocks portfolio and applies the 

decomposition algorithm. The performance of the 

resulted portfolio is displayed in the first and second 

stages as a dynamic portfolio.  

In the first stage, the performance of the sample 

stock and bond portfolio that includes all the 

objectives and decomposed by sectors equals 30.7%. 

This portfolio consists of 14 name-to-hold stocks 

and does not invest in bonds. It consists of six stocks 

from the financial sector, three stocks from the 

service sector, and five stocks from the industrial 

sector. The algorithm portfolio of pure stocks 30.7% 

outperforms the index portfolio by 1.3% times in the 

first stage. 

In the second stage, the three scenarios are best, 

stable, and worst. The portfolios of the best and 

stable scenario invest in stocks and bonds, while the 

worst invests in bonds only. This fascinating result 

satisfied the objective of the SGMIP model in 

investing in mixed stocks and bonds portfolio. The 

objective is to allow the portfolio to abandon risky 

assets to safe investments in bond. The best scenario 

invests in seven name-to-hold stocks and two 

different bonds. The portfolio results in loss of 9.8% 

in total return from investing in security and 

achieves a profit of 5.1% from bonds (see Table 2). 

The stable scenario invests in eight name-to-hold 

stocks and two different bonds. The portfolio 

achieved -12.17% of total return from investing in 

stocks and 5.1% from investing in bonds. The 

algorithm portfolio of pure stocks outperforms the 

SGMIP portfolio of stocks and bonds after 

decomposition in the best, stable and worst scenarios 

which achieved 29.2% in total. 

 

Table 2: Performance of the SGMIP portfolios/ 

stage 2 

Type 

of 

Portfolio 

Best 

Scenario 

Stable 

Scenario 

Worst 

Scenario 

Portfolio-

stock & 

bond 

-0.098 -0.122 ---- 

Average 

return of 

two bonds 

0.051 0.051 0.051 

 

IV. CONCLUSION 

This paper presents a solution approach for a 

complex portfolio selection problem that captures 

the uncertainty in financial markets. The results of 

this study documented that examining the pure stock 

portfolio, the combination of stock and bond 

portfolio and a large number of managing constraints 

allows the portfolio to hold a strategy that beat the 

benchmark portfolio in certain stages. Comparing 

with the original works of Konno and Kobayashi 

(1997) and Stoyan (2009), the portfolio of this paper 

managed additional factors than Konno and 

Kobayashi (1997), which captures uncertainty in 

stock price movements and its risk. Moreover, this 

paper manages two types of a dynamic portfolio than 

Konno and Kobayashi (1997) and Stoyan (2009), 

which are pure stocks portfolio and stocks and bonds 

portfolio. Modeling various portfolio goals and 

managing different characteristics to attain the 

preferred portfolio features.  

 Due to the algorithm construction, the 

complex portfolio problem solved efficiently. Due to 

the sub-problem decomposition strategy that reduced 

the MIP portfolio problem size and the relaxation 

parameters, the algorithm gains its strength. The 

SGMIP algorithm model can be applied to similar 
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problems. The SGMIP algorithm has a strong effect 

on solution speed. The SGMIP model managed to 

reduce the risk of both portfolios and outperform the 

performance of the benchmark in two-stage pure 

portfolio and in the first stage of stock and bond 

portfolio. Also, the model has a fascinating result 

that when the investment condition getting worst the 

portfolio turns to invest completely in bonds, 

avoiding the losses that occur in best and stable 

scenarios.   Because of that, the model can be 

enhanced with the addition of other portfolio 

managing characteristics less common to use or 

adding constraints goals and scenarios. 

This study provides theoretical implications on the 

multi-objective stochastic goal mixed integer 

programming to gauge optimum portfolio selection. 

It bridges the gaps in prior literature who mostly 

focus on single-objective goal integer programming. 

The study provides clarity to contemporary study 

and offersa significant recommendation for future 

research. From the practical perspective, this study 

solves the two-stage SGMIP problem by using daily 

returns of the Amman Stock Exchange (ASE) and 

Zero-coupon rate bonds. It offers significant 

implications for investors and analysts about the 

performance of the SGMIP portfolios Portfolio-

stock & bond on the best, stable and worst Scenario 

which will allow them to be able to abandon risky 

assets to safe investments in stock and bond. The 

limitation of this study is that the results are only 

applicable and useful to countries with similar 

policies and regulations. Hence, further study can 

examine a comparative study in the context of the 

stock exchange between developed and developing 

economies for wider research coverage. 
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