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Abstract 

The data demanding Food and Agricultural Organization-56 Penman-
Montieth model (FPM-56) is the most accurate model in estimating 

evapotranspiration (ET) but it is not applicable at data scarce region. This 

paper evaluates the performance of conventional MLR models and 
improved MLR by using PSO algorithms (MLR-PSO) in estimating 

potential evapotranspiration (ETp) by only using 2 significant parameters 

affecting ETp for tropical climate. In this study, 17 meteorological 
stations around Peninsular Malaysia were used in this study and obtained 

its both MLR and MLR-PSO models. These models were compared by 

using root mean square error (RMSE), coefficient of determination (R2) 

and its accuracy (Acc). The obtained results show MLR models itself has 
accuracy closed to 94% against FPM-56 models. Whereas optimized 

MLR-PSO models has improved up to 2.95% of accuracy. Out of 4 PSO 

algorithm, the standard c1=c2=2.0 and w=1.0 resulted better 
performance in 7 stations compared to others. The results proves that 

MLR and MLR-PSO models both useful for estimating ETp at data 

scarce region as it required only 2 main parameters affecting ETp. 

Keywords: Evapotranspiration model, Particle swarm optimization, 

Peninsular Malaysia, Multi-linear regression, water resources 

______________________________________________________________________________ 

1 INTRODUCTION 

Water scarcity has become the main 

concern to the most of study area throughout 

the world. For a small region like Malaysia 

which received approximately 2000 to 3000 

mm annual precipitation, the country still 

facing the water scarcity issue as the 

distribution of precipitation is not uniform let 

alone throughout the globe. Therefore, the 

increased of competition on preserving, 

managing and optimizing water resources are 

noticeable from various field of study. From 

the hydrological community, the 

fundamental understanding behind water 

vulnerability is the struggling in maintaining 

the water balance system. ET is one of the 
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essential processes in hydrological cycle 

amongst precipitation, evaporation, 

transpiration as well as infiltration. Unlike 

precipitation, physical measurement of ET is 

tedious nearly impossible for certain region. 

Although lysimeter is the prominent 

apparatus to measure actual ET, it consumes 

cost, time and labour. The FPM-56 model 

has been introduced by [1] and has been used 

globally since then. With over 10000 

citation, the accuracy of this model proved to 

be as observed ET. However, FPM-56 also 

known as data demanding model which has 

become a major hindrance for certain region. 

Knowing this setback, the updated 

publication by [2] suggested that instead of 

simplify the FPM-56 model, user should 

estimate the missing data and use the 

Penman-Monteith [3] instead. Nevertheless, 

estimating physically-based processes can 

produce significant error as these processes 

are highly non-linear [4] and [5] suggested 

that the estimation for hydrological 

parameters should be done by established 

forecasting methods in order to accurately 

predict these parameters. 

The simpler empirical models can be 

classified as mass-transfer-based, 

temperature-based, radiation-based, pan-

evaporation-based and combination. The 

example of simpler empirical models such 

Turc [6], Hargreaves-Samani [7], Priestley-

Taylor [8] and Makkink [9] is used at almost 

any region around the globe. These models 

though simple yet need calibration before it 

can be used at other region since it is a site 

specific model. By taking Hargreaves as 

example, the model shows overestimates ET0 

under humid locations humid locations [10] 

and underestimates under arid locations [11] 

in [12]. Conclusively, [13] found that the 

radiation-based and temperature-based 

models are more suitable in estimating ET in 

humid climate in Iran. As according to [14], 

mean temperature and solar radiation 

variables are the most influential parameters 

of ETp for Peninsular Malaysia.  

 

2 STUDY AREA AND METHODS 

Daily meteorological data of 

maximum- (Tmax) , minimum- (Tmin), average 

temperature (Tmean), relative humidity (RH), 

solar radiation (Rs) and wind speed (u) 

recorded from 1987-2003 from 17 stations 

located around Peninsular Malaysia were 

used in this study as shown in Figure 1. The 

stations includes Alor Setar (AS), Batu 

Embun (BE), Bayan Lepas(BL), Cameron 

Highland (CH), Chuping (Chu), Kota Bharu 

(KB), Kuala Krai (KKrai), Kluang (Klu), 

Kuala Terengganu (KT), Kuantan (Ktn), 

Melaka (Mlk), Mersing (MS), Muadzam 

Syah (Mdz), Subang (Sbg), Senai (Sn), 

Stitiawan (Stwn) and Temerloh (TM) were 

chosen due to its arability of desired 

meteorological data.  

 
Figure 1. Location of meteorological station 

in Peninsular Malaysia 

 

2.1 FPM-56 Models 

FPM-56 has been recognized in 

hydrologist world as the most prominent 

empirical model that gives close to accurate 

estimation of ET. However, note that this is 
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also a data demanding model which is not 

applicable at some region. Despite that, 

estimation of ETp from FPM-56 is used as 

the observed data for analysis. The 

mathematical equation is presented as in Eq. 

(1).  
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In which Rn is the net radiation 

(MJ/m
2
/day), G is the soil heat flux 

(MJ/m
2
/day), γ is the psychrometric constant 

(kPa/°C), es is the saturation vapor pressure 

(kPa), ea is the actual vapor pressure (kPa), Δ 

is the slope of the saturation vapor pressure-

temperature curve (kPa/°C), Ta is the average 

daily air temperature (°C) and u2 is the 

average daily wind speed at 2m height (m/s). 

Therefore, grass height and bulk canopy 

resistance were assumed to be 0.12m and 

70m/s respectively.  

 

2.2 Multi-Linear Regression, MLR 

MLR is a one of the oldest statistical 

analysis that observed the relationship 

between several predictor independent 

variables and dependent variables [15]. MLR 

represents a mathematical equation 

expressing the response variable as a 

function of several explanatory variables and 

is described as in Eq. (2). The equation 

describes how the mean changes with the 

explanatory variables.  

c
x

x
n

bxbxbay  ...
2211  

(2) 

Where a is the intercept, b is the slope or 

coefficient, n is number of observations and 

c is the unexplained noise in the data (error).  

 

2.3 Particle Swarm Optimization, PSO 

The application of (PSO) is no longer a 

stranger for computer science community. 

This based on the social behavior of animals 

theory model [16] may have not yet 

established but its evolutionary algorithm 

that can be used to find optimal solutions to 

numerical and qualitative problems [17] 

prevails to another field of study such 

hydrology [18, 19]. Based on the theory of 

animal social behavior, a certain numbers of 

individuals known as particles are collecting 

information from each other through their 

respective positions. Each particle has their 

own pbest and will update their position and 

velocity to their neighbors in order to obtain 

the objective function. The new velocity and 

position of the swarm is called as gbest that 

can be represent by using Eq. 3 and Eq. 4. 

This process iterates until the termination 

criteria is satisfied.  
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pCv
new

v
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vp
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p 


 

(4) 

Where new
v , v

 , 
new

p and p
  are 

new velocity, current velocity, new position 

and current position of particles respectively. 

Unlike the basic PSO proposed by [16] 

where no inertia weight (w) is included, [20] 

has introduced initial weight as it helps in 

balancing the both local and global search. 

The suggested range of initial weight is from 

0.9 to 1.2 for a better performance. 

According to [19, 21] a large inertia weight 

contributes in good global search while a 

smaller value aid in local exploration. The 

practice is to use larger initial weight during 

the initial exploration and gradual reduction 

of its values as the search proceeds in further 
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iterations. The equation to update the 

velocity can be expressed as in Eq. (5).  

   p
best

gCp
best

pCvw
new

v



21  

(5) 

Where c1 and c2 are the cognitive and 

social coefficients respectively. In this study, 

4 sets of PSO algorithms were used in this 

study as shown in Table 1.  

Table 1. PSO Algorithm 

C1 C2 w Reference 

2.0 2.0 1.0 [20] 

2.0 2.0 0.9 [22] 

2.0 2.0 0.4 [22] 

1.49618 1.49618 0.7298 [23] 

 

3 RESULTS 

All the runs performed in this study 

were executed on a computer with a 2.4 GHz 

Core i5 processor. Four set of algorithm 

were run 10 times in order to avoid the 

influence of randomicity at 17 stations. The 

performance indicators used in this study are 

root mean square error (RMSE), coefficient 

of determination (R
2
) and accuracy (Acc.) 

 

3.1 Models Development 

By taking 2 most prominent 

parameters affecting ETp; Rs and Tmean in 

tropical region, 17 MLR models were 

developed correspond to each station used in 

this study. MLR models shows the accuracy 

between 86% to 93.8% when compares to 

FPM-56 (Figure 4). Further, the coefficients 

of MLR models were optimized using PSO 

algorithms in order to improvise the 

accuracy. The accuracy has improved 

ranging between 0.04% to 2.95% as 

tabulated 

 

Table 2. Seven models were taken from 

PSO algorithm (w=1.0) followed by 5 

models from w=0.9, 3 models from 

w=0.7928 and 2 from w=0.4. This has 

proved that the larger initial weight, the 

better performance of PSO as mentioned by 

[19, 21] stated that larger initial weight 

facilitate global search instead local 

exploration only.  

 

Table 2. MLR and PSO Model for All Stations 

No. Station Model 

Accuracy 

Improvement, 

% 

1 AS 

MLR 
824.5107.029.0 

s
R

mean
T

p
ET

 
0.06 

PSOw=0.7298  

2 BE 

MLR 
294.3133.0166.0 

s
R

mean
T

p
ET

 
1.32 

PSOw=1.0  

3 BL 

MLR 
181.7154.0285.0 

s
R

mean
T

p
ET

 
0.04 

PSOw=0.7928  

4 CH 
MLR 

838.1118.0126.0 
s

R
mean

T
p

ET
 

2.95 

026.1133.0086.0 
s

R
mean

T
p

ET

310.1111.0101.0 
s

R
mean

T
p

ET

015.0086.0095.0 
s

R
mean

T
p

ET
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PSOw=1.0  

5 CHU 

MLR 
2.9148.0356.0 

s
R

mean
T

p
ET

 
0.08 

PSOw=0.9  

6 KB 

MLR 
478.2152.0119.0 

s
R

mean
T

p
ET

 
2.47 

PSOw=0.9  

7 KKrai 

MLR 
821.3166.0154.0 

s
R

mean
T

p
ET

 
2.02 

PSOw=1.0  

8 KLU 

MLR 
717.2168.0117.0 

s
R

mean
T

p
ET

 
1.94 

PSOw=0.4  

9 KT 

MLR 
024.2159.0098.0 

s
R

mean
T

p
ET

 
1.1 

PSOw=0.9  

10 KTN 

MLR 
059.0163.0026.0 

s
R

mean
T

p
ET

 
1.72 

PSOw=1.0  

11 MDZ 

MLR 
524.1122.0117.0 

s
R

mean
T

p
ET

 
1.96 

PSOw=0.7928  

12 MLK 

MLR 
499.515.0229.0 

s
R

mean
T

p
ET

 
0.66 

PSOw=1.0  

13 MS 

MLR 
171.2150.011.0 

s
R

mean
T

p
ET

 
1.03 

PSOw=0.4  

14 SBG 

MLR 
637.4159.0192.0 

s
R

mean
T

p
ET

 1.09 

 PSOw=1.0  

795.1089.0147.0 
s

R
mean

T
p

ET

918.1109.0122.0 
s

R
mean

T
p

ET

775.1116.0119.0 
s

R
mean

T
p

ET

433.1142.0085.0 
s

R
mean

T
p

ET

261.1165.0069.0 
s

R
mean

T
p

ET

149.1120.0093.0 
s

R
mean

T
p

ET

426.1141.0090.0 
s

R
mean

T
p

ET

096.1116.0104.0 
s

R
mean

T
p

ET

979.1145.0109.0 
s

R
mean

T
p

ET

878.0143.0066.0 
s

R
mean

T
p

ET

860.0130.0071.0 
s

R
mean

T
p

ET
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15 SN 

MLR 
197.2168.01.0 

s
R

mean
T

p
ET

 
1.88 

PSOw=1.0  

16 STWN 

MLR 
906.4162.0197.0 

s
R

mean
T

p
ET

 
0.21 

PSOw=0.9  

17 TM 

MLR 
075.3133.0169.0 

s
R

mean
T

p
ET

 

0.69 

PSOw=0.9 

 

 

 

Figure 3 shows the R
2
 performance 

of MLR and 4 algorithms of PSO models. 

The R
2
 is well-known performance indicator 

as its ability to evaluate the performance of 

dependent variables from its independent 

variables. A high correlation does not mean a 

good prediction but it measures a good 

precision instead. The precision is compared 

by FPM-56 and there is no significant 

difference shown yet the performance of R
2
 

for MLR models at all stations is better than 

PSO models. The percentage difference of 

R
2
 performances of all models is ranging 

from 0.2-8.5%. Out of 17 stations, 12 

stations with PSO models (w=0.9) shows 

better performance when compared to the 

other PSO models. This interpretation is 

similar to [19, 21] stated that the higher the 

initial weight helps in exploring search space 

globally. In other words, it gives better 

chance in exploring better value. 

Surprisingly, PSO algorithm models (w=1.0) 

shows poor performance among PSO 

algorithm as only 3 stations shows promising 

result.  

 

 

 

 

 
Figure 2. MLR and PSO R

2
 Performance Figure 3. MLR and PSO RMSE Performance 
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ET
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ET
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Figure 4. MLR and PSO Accuracy Performance 

 

Figure 3 shows the RMSE 

performance for the MLR and PSO models. 

All performance fall within satisfactory 

value as the range different is between 1 to 

9%. However from the Figure 3, the RMSE 

for MLR models at all station is lower than 

the all PSO algorithm except at Mdz station. 

The best RMSE for Mdz station is at PSO 

algorithm (w=0.7298) with percentage 

different of 4.6%. At this stage, based on the 

performance of MLR models, it is safe to 

conclude that the MLR models are adequate 

to estimate ET.  

Figure 4 shows in-depth the accuracy 

performance for each PSO algorithm at each 

station. The algorithm with w=1.0 proves to 

be the best among the rest as the different 

accuracy percentage in 7 stations is higher 

with this algorithm. Followed by w=0.9, 

w=0.7298 and w=0.4. Algorithm of w=0.4 

shows poor performance with only 2 stations 

showed higher different accuracy. It can be 

concluded that the performance of PSO is 

affected by initial weight. As the w decrease, 

it lowers the performance of PSO altogether.  

 

4 CONCLUSION 

This study evaluates the performance 

of ETp estimation models both obtained by 

using MLR and optimized MLR using PSO. 

The models were developed by using 2 main 

parameters that have significant effect on 

ETp; solar radiation and average temperature 

for Peninsular Malaysia region. Three 

statistical evaluators R
2
, RMSE and 

Accuracy were applied to examine the 

performance. The results shows that all 

optimized MLR models improved up to 

2.95% and the accuracy of MLR models 

itself were high as 94%. Standard PSO 

algorithm (c1=c2=2.0, w=1.0) stands out 

compared the other algorithm. MLR models 

from 7 stations shows better accuracy in ETp 

estimation by using this algorithm which 

followed by w=0.9, w=0.7298 and w=0.4. In 

light of these results, it is safe to use the 

MLR model in estimating ETp especially for 

data scarce region. Adaptation of PSO in 

optimized the models helps making the 

models performed better.  
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