
 

January - February 2020 

ISSN: 0193 - 4120 Page No. 2264 - 2272 

 

 

2264 Published by: The Mattingley Publishing Co., Inc. 

Algorithms for Calculating Eigen Values of 

Differential Operators with Unsmooth Potential on A 

Projective Plane 

Olga Torshina
1*

, Elena Moskvina
1
, Yuliya Somova

1
, Mars Khayrullin

2
, Elizabeth Dick

3
, Svetlana Arslanbekova

3
, 

Hodak Sergey
2
, Andrey Goncharov

2
, Maria Belousova

2
 

 
1
Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation 

2
K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University), 

Moscow, Russian Federation 
3
Bashkir State Agrarian University, Ufa, Russia 

*Corresponding author: rebezov@ya.ru 

 

Article Info 

Volume 82 

Page Number: 2264 - 2272 

Publication Issue: 

January-February 2020 

 

 

 

 

 

 

 

Article History 

Article Received: 14 March 2019 

Revised: 27 May 2019 

Accepted: 16 October 2019 

Publication: 16 January 2020 

Abstract: 

The modeling of various processes in natural and engineering sciences in 

some cases leads to problems of finding the eigenvalues of operators.  The 

problems of the hydrodynamic theory of stability, electric oscillations in a 

long line, seismic prospecting, problems of non-destructive testing, image 

processing, composite materials identification, etc. are a good example. The 

solving of a wide range of natural science problems which involves finding 

eigenvalues of differential operators with complex spectral parameter, as a 

rule, means finding asymptotic formulas.  The latter, in turn, seriously 

complicates the process of obtaining the desired result.  The addition 

theorem allows to circumvent these difficulties in the case of considering 

operators with a unsmooth potential on the projective plane.  On its basis, 

some fairly effective algorithms for calculating perturbation theory 

corrections have been developed. 

Keywords:mathematical modeling, differential operators, eigenvalues, 

projective plane, unsmooth potential 

 

1. Introduction 

 

The spectral theory of differential operators is the 

most important part of the general spectral theory 

of operators and occupies a prominent place in the 

mathematical research of the 19th and 20th 

centuries, as well as in numerous applications of 

mathematics to various physics theories. 

 The spectral theory of differential operators 

originates in the theory of eigenvalues and 

eigenfunctions of boundary value problems of 

mathematical physics.  The origin of the latter 

refers to the XVIII century and is associated with 

the works of D. Bernoulli, L. Euler and J. 

D'Alembert on string oscillations. Mainly, the 

interest arose in trigonometric systems of 

functions. The initial stage of the research 

development in this area ends with the work of J. 

Fourier. 

The start of the general theory of boundary value 

problems related to a differential equation of the 

second order was made in 1830 with the J. Sturm 
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and J. Liouville’s works.  The most important 

result of these studies was the proof of the 

existence of a sequence of eigenvalues and a 

sequence of eigenfunctions of the boundary value 

problem.  At the same time, scientists considered 

the possibility of expanding a function belonging 

to a certain class in a series in a system of 

eigenfunctions. 

In the second half of the XIX century, starting 

with the P.L. Chebyshev’s works, the study of 

systems of orthogonal functions became 

independent.  In subsequent studies, considerable 

attention is paid to the systems of orthogonal 

polynomials.  These include the studies of E. 

Laguerre, S. Hermite, I. Gram, N. Y.  Sonin and 

others.  The theory of the expansion of functions 

into series in systems of orthogonal functions 

arising when solving boundary problems of 

mathematical physics is significantly developed in 

the works of V.А. Steklov.  For its further 

development, a great contribution was made by 

the Gauss’s method of least squares and the 

research of P.L Chebyshev establishing a 

connection between the theory of the expansion of 

functions into series of orthogonal functions and 

the problem of the best quadratic approximation 

of functions. 

New creative ideas in the theory of eigenvalues 

and eigenfunctions of mathematical physics 

appeared at the end of the 19th century due to the 

development of the theory of linear integral 

equations.  Especially significant results in the 

theory of linear integral equations were obtained 

by I. Fredholm. The scientist was guided by the 

analogy of a linear integral equation with a system 

of linear algebraic equations.  A new stage in the 

development of the theory of eigenvalues is 

associated with the name of D. Hilbert.  

Fundamental research of a scientist on the general 

theory of linear integral equations (1904-1910) led 

to the introduction of one of the basic 

mathematical concepts of the 20th century - the 

Hilbert space. 

The integration of geometric ideas and images 

with the abstract concepts of the set theory on the 

basis of relevant analytical theories was very 

productive. The classical theory of eigenvalues of 

boundary value problems for differential 

equations, namely, the Sturm-Liouville problem 

allowed as 4 factors of the differential expressions 

only continuous function on a finite closed 

interval. The theory of symmetric linear integral 

equations contributed to a significant extension of 

the theory of eigenvalues and eigenfunctions for 

new classes of differential equations and boundary 

value problems. Under the influence of D. 

Hilbert’s ideas, a great number of studies related 

to the problem of the expansion in eigenfunctions 

of differential equations of second and higher 

order were performed. Among them, there is  the 

works of E. Schmidt, A. Miller, B. L. Bunitsky, A. 

Kneser, M. Plancherel, J. Tamarkin, E. Hilbe and 

others. 

A new important move in the direction of the 

study of differential operators was made thanks to 

the spectral theory of symmetric limited and 

particular cases of unbounded bilinear forms 

developed by D. Hilbert. Thus, in the works of G. 

Weil (1908–1910), the theory of expansion in 

eigenfunctions of second-order differential 

operators for singular cases was first stated.  Thus, 

the beginning of the general spectral theory of 

ordinary singular differential operators was made.  

In the works of D. Hilbert and his followers, in 

particular, G. Weil, the classical mathematical 

apparatus is mainly used.  At the same time, the 

Hilbert space theory started its developing in an 

abstract form. The development of the theory of 

concrete Hilbert spaces — the space of sequences 

and the space of functions with an integrable 

square was of great importance for the formation 

of a general functional analysis. For two decades 

(1910–1930), the theory of linear operators in 

Hilbert space had been taken a completely modern 

form.  The central place in this theory is occupied 

by the spectral theory.  An axiomatic presentation 

of the theory of linear operators in a Hilbert space 
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was given almost simultaneously in the works of 

J. von Neumann (1929), M. Stone (1929) and in 

the book (1932) by F. Riss (1930). Later 

presentations of the theory of linear operators in a 

Hilbert space, along with methodological 

improvements, contained the results of new 

research.  A fairly complete description of the 

modern state of the theory of linear operators in a 

Hilbert space can be given by the book of N.I.  

Akhiezer and I.M.  Glasman "The theory of linear 

operators in Hilbert space", N. Dunford and J.T. 

Schwarz "Linear operators", A.I.  Plesner "The 

Spectral Theory of Linear Operators", F. Riss and 

B. Szőkefalvi-Nagy "Lectures on Functional 

Analysis", K. Morin "Methods of Hilbert Space". 

By the mid-20s of the 20th century, the results 

which were obtained in the theory of Hilbert 

space, especially in the spectral theory of linear 

operators, turned out to be so complete and perfect 

that the new mathematical theory was able to 

successfully respond to queries of the rapidly 

developing physical quantum theory.  The spectral 

theory of linear operators in Hilbert space was the 

mathematical basis of E. Heisenberg’s ―matrix 

mechanics‖ and E. Schrödinger’s ―wave 

mechanics.‖ The application of the spectral theory 

of linear operators in quantum physics gave new 

benchmarks and opportunities for further 

development of the spectral theory. A 

fundamental statement of the mathematical 

apparatus in quantum mechanics was presented in 

1932 by J. von Neumann in the book 

"Mathematical Foundations of Quantum 

Mechanics". 

In the following years, special attention is paid to 

the study of singular differential operators 

simultaneously with the development of the 

general spectral theory of linear operators and its 

application to the study of specific operators. The 

methods of the general spectral theory of linear 

operators in a Hilbert space often turned out to be 

insufficiently flexible in some aspects of the 

theory of singular differential operators.  For 

instance, the direct application of analytical 

methods turned out to be more efficient to study 

the properties of the spectrum of differential 

operators depending on the behavior of the factors 

of the operators. The spectral theory of differential 

operators is presented without formal involvement 

of  the general theory of linear operators in a 

Hilbert space in the monograph by E.Ch.  

Titchmarsh "Expansions in eigenfunctions 

associated with second-order differential 

equations" (1946). Also, the works of M. G. Krein 

on the theory of extensions of symmetric 

operators and the method of directing functionals 

are important in the development of the spectral 

theory of singular differential operators.  Using 

the method mentioned above M.G. Kerin proved 

the eigenfunction expansion theorem for ordinary 

self-adjoint differential operators. The M.G. Kerin 

method of guiding functionals is the connecting 

link between the general theory of linear operators 

and the theory of expansion in eigenfunctions of 

differential operators.  Another proof of the 

expansion theorem for ordinary differential 

operators was given in 1949-50 in the works of K. 

Kodaira.  Later B.M.  Levitan, K. Yosida and N. 

Levinson obtained new proofs of the 

decomposition theorem. 

The next stage in the development of the spectral 

theory of differential operators is associated with 

its formation as an independent section of 

functional analysis with its own tasks and 

methods.  This is due to the advent of monographs 

by E.Ch. Titchmarsh, B.M. Levitan (1950) and 

M.A. Naimark (1954). So, in the book of M. A. 

Naimark, the theory of differential operators is 

presented for operators of arbitrary order.  A great 

number of research papers are related to the study 

of the central problem of the spectral theory of 

differential operators, as mentioned above, the 

theorem on expansion in eigenfunctions.  In 

addition to the proof of the main decomposition 

theorem, there arises the question about the 

uniqueness of the decomposition or the 

uniqueness of the so-called spectral function.  

Another equally important problem of the spectral 
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theory of differential operators is the problem of 

expansion of operators.  A large number of studies 

have been devoted to the study of the asymptotic 

properties of eigenvalues, the spectrum, and 

eigenfunctions.  The main tasks of the spectral 

theory include determining the defect index of a 

differential operator depending on the behavior of 

the coefficients of the differential expression.  The 

most important task of the spectral theory of 

differential operators is the characteristic of the 

spectrum of the operator, also depending on the 

behavior of the coefficients of the differential 

expression generating the operator.  The results 

obtained in this field give an incomplete idea of 

the nature of the spectrum.  Individual classes of 

operators with a discrete spectrum have been 

studied, and some information has been obtained 

about the location of the continuous part of the 

spectrum.  Direct methods for the qualitative 

spectral analysis of singular differential operators 

are being successfully developed.  An overview of 

the results got by these methods is presented in the 

monograph by I.M. Glasman. 

The spectral theory of higher-order differential 

operators is comparatively little studied.  The 

complete solution of the inverse 6 problem of 

spectral analysis related to the definition of an 

ordinary differential operator by the spectral 

function is given in the works of I.M. Gelfand, 

B.M.  Levitan, M. G. Kerin, V.A. Marchenko.  A 

considerable circle of problems were posed in 

connection with the problem of constructing a 

spectral theory of non-self-adjoint differential 

operators.  The new direction of the spectral 

theory of differential operators gets in the 

transition to the space of generalized functions.  

The mathematical analysis of physical problems 

continues to serve as a beneficial source for the 

development of the spectral theory of differential 

operators. 

The areas of application of the theory of 

differential operators are constantly expanding.  

So, in particular, the study of scientists W.N.  

Traves [28], T. Levasseur and J. Stafford [29], 

Schwartz [30].  ]. Constructive invariant theory 

was a preoccupation of many nineteenth century 

mathematicians, but the topic fell out of fashion in 

the early twentieth century. In the latter twentieth 

century the topic enjoyed resurgence, partly due to 

its connections with the construction of moduli 

spaces in algebraic geometry and partly due to the 

development of computational algorithms suitable 

for implementation in modern symbolic 

computation packages. 

Nowadays, the ideas of an effective method for 

the approximate calculation of eigenvalues and 

eigenfunctions of perturbed self-adjoint operators, 

called the method of regularized traces by the 

authors, were formulated in the works of V.A. 

Sadovnichy, V.V. Dubrovsky and S.I.  

Kadchenko.  A feature of the method is the fact 

that it is based not on the matrix representation of 

discrete operators, but on the spectral 

characteristics of the unperturbed operator and the 

spectrum of the perturbed operator.  Besides, 

while developing the Galerkin method, some 

linear formulas are obtained for calculating the 

approximate eigenvalues of discrete lower 

semibounded operators. The formulas allow one 

to calculate the eigenvalues of the specified 

operators of any number, regardless of whether 

the eigenvalues with the preceding numbers are 

known or not.  At the same time, it is possible to 

calculate eigenvalues with large numbers, when 

the application of the Galerkin method becomes 

difficult.  A numerical implementation is also 

possible, for example, in the work [13] there is a 

well-known algorithm for solving the complete 

eigenvalue problem and also its implementation in 

the Fortran language is given.  Under the proposed 

article, we are going to consider the calculation of 

eigenvalues for operators with unsmooth potential 

on the projective plane. 

Let  

Т = 
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
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



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
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





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1
sin

sin

1





 



 

January - February 2020 

ISSN: 0193 - 4120 Page No. 2264 - 2272 

 

 

2268 Published by: The Mattingley Publishing Co., Inc. 

the standard Laplace-Beltrami operator with a 

potential on the projective plane F, acting in the 

Hilbert space H of functions that are square-

integrable according to the Haar measure: 

 ddsin  (  , -spherical coordinates), 

    0,n  1nnn are the eigenvalues of the 

operator T, 12  nn is the multiplicity of the 

eigenvalue n ;  0,2ni  v i,n   is eigenfunctions of 

the operator T, forming a system of orthonormal 

spherical functions.  Let also 

  p ,ip1n|l nn  be 

vertical lines on the complex plane.  Let denote 

with i,n  the eigenvalues of the operator PT   

taken with regard to algebraic multiplicity, such 

that  

  const1nni,n  . 

2. Research methods 

When solving this problem, we used methods of 

functional analysis, spectral analysis of linear 

operators, and perturbation theory. Also, in the 

work, new methods developed by the Moscow 

Scientific School by V.A. Sadovnichiy, the 

member of Russian Academy of Science.  

Let us consider a spherical order function n  

 
 

 
     ,mcoscosPcosP
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 where   is the angle between the radius vectors 

in spherical coordinates   , and   , ; 

  ;coscoscossinsincos    

 2m  when 0m and 1m  when  0m ; 
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polynomial 
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Obviously equality is true. 
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where  pn is the second amendment of the 

perturbation theory to the sum 


n2

0i

i,n , and  pn  

is the third amendment of the perturbation theory. 

 The first amendment is equal to the constant 
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The second amendment of the perturbation theory 

is 
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By the addition theorem for even spherical 

harmonics, we have 
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where 

   ,cossinsincoscoscos   the 

Legendre polynomials nk P,P  are normalized by 

the condition     11P1P nk  . 

  Let us introduce a function 

       
 
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 , 

 where  T is the intersection of a cone having a 

vertex at the center of the sphere, a central angle 

  0 2 and an axis defined by spherical 

coordinates  , , with a sphere in spherical 

coordinates  , ; 
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 According to the condition of the theorem, the 

function p satisfies the Lipchitz condition.  
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Consequently, the function f also satisfies the 

Lipchitz condition, namely: 

         
 
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This fact allows us to conclude that the function f 

is absolutely continuous.  Therefore, at each point 

 ,0 it has a finite derivative  f  which turns 

out to be a summarized function. 

 Based on the above, the second amendment of the 

perturbation theory is (we will choose 0  later) 
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 For the Legendre polynomials, the asymptotic 

Stieltjes decomposition with a uniform estimate of 

the remainder is known [1]. 
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 Using this asymptotic expansion, we transform 

 pn  in the following way: 
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Using integration by parts, we obtain the 

following equalities: 
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Assessing the next item, we get: 
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 As a result, we have 
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Let us note that the remaining terms are estimated 

similarly. 

Summing up, we get 
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Thus, the third amendment of the perturbation 

theory is 
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3. Practical suggestions 

Theorem1. If p  is a potential satisfying the 

Lipchitz condition, then for the eigenvalues of the 

Neumann operator with the potential on the 

projective plane the equality is true 
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Theorem2. The first regularized trace of the 

Neumann operator with a complex potential on 

the projective plane is equal to 
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 In the article, a mathematical model for 

calculating the eigenvalues of differential 

operators with a potential on a projective plane is 

constructed on the basis of spectral theory. 

 The interest in such problems is constantly 

increasing due to the wide scope of their 

application [3] - [10]. 
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