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Abstract: A numerical solution method of stress distribution in the 

deformation region under wedge indentationare presented. The granular 

materials are assumed to obey Mohr-Coulomb yield condition in a plane 

strain condition. The numerical methods used to determine the stress field at 

each position (x,y) in the deforming region under the punch. The formation 

of the centered fan region was constructed by the network of the stress 

characteristic lines. The construction of the region is presented by using 

MATLAB. The solution obtained in this research only refer to the initial 

movement of the granular materials after the punch. The stress field 

obtained were then compared to the analytical solution. This solution 

method provides a simple algorithms that is easy to be applied in 

deformation and this will subsequently provide a contribution in designing 

tools and the construction industries involving granular materials. 
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I. INTRODUCTION 

The numerical solution method of stress field in a 

centeredfan regionformed under the wedge 

indentation is considered. The approximation to 

the solution for the double-slip and double-spin 

model was presented in [1]. The authorgeneralized 

the numerical algorithm that commonly used in 

metal plasticity into thedeformationandflow 

ofgranularmaterials by a flat-ended rigid punch. By 

following closely the method described in [1], the 

extension was made by [2] and [3]. Reference [2] 

has applied the method to the axisymmetric 

problem, while the latter provides the solution for 

the region under the wedge punch. The work of this 

paper is the extension of the numerical solution 

methods by  

[3].The method was then applied to the second 

elementary boundary value problem, namely 

centered fan region. The solution to the wedge 

indentation problem was once first presented by 

[4]. The author made the assumption that the 

granular materials are modelled well by the 

Mohr-Coulomb failure conditions and the 

associated flow rule. The slip line approach with 

the aid of [5] for metal plasticity problemwas 

applied to soil plasticity problem. Reference [6] 

proposedan analytical solution method to the 

wedge indentation problem for dilatant material 

model developed through [7] and [8]. In this study, 

the stress distribution in centered fan region 

beneath a smooth rigid wedge indentation by 

anumerical solution technique is described. In 
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section II, we discussedthe fundamental equations 

for deformation in regions of high stress 

concentration. In sectionIII, we mentioned the 

numerical solution approach for the stress 

distribution. The construction of stress 

distributionby using MATLAB are introduced in 

section IV and the outcomes are in section V. 

II. THE EQUATIONSOF THE STRESS 

The equilibrium equations for the stress are 
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and Mohr-Coulomb yield condition is given by 

 tannc   (2) 

where c represent the material cohesion and 

represent the material friction angle. In a plastic 

state, the stress components were given by 
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where   is the inclination angle between the failure 

line and the x-axis, meanwhile p denote 

thepressure and q is the shear stress represented by  
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From (1), the stress characteristic directions were 

given by

 















 


4

2
tan


 

dx

dy  (5) 

 

for - and  -characteristic line respectively. 

By substituting (3) into (1), the governing equation 

for p and   were defined by 
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where 
D

 , 
D

  are the directional derivatives 

along  - and  -characteristic line respectively. 

III. NUMERICAL PROCEDURE METHOD 

 

Fig. 1.Deformationregion under wedge punch 

Figure 1 shows the deformation region under the 

wedge indentation of granular materials. When a 

smooth rigid wedge with semi-angle 3 move 

downwards into the granular materials surface, the 

material will deform.Since the configuration is 

symmetrical, we only consider the right-hand half 

of the field. There are three distinct regions formed 

under the indentation which are two triangular 

regions XUT and TVW and a centered fan region 

TUV of angle
2 . In this study, we consider only 

the centered fan region, TUV. This deformation 

region is generated by the stress distribution 

network and is then constructed using Matlab. For 

this region, there were two types of elementary 

boundary value problem involved. 

A. Riemman Problem 

 
Fig 2: Riemman problem 
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Thedeformationfield is determined uniquely 

whengiventwointersectingcharacteristiclines. Let 

an  -characteristic line passed through 
20nn and 

-characteristic line passed through
21nn . The 

position of  yx, and the stress elements  ,p at 

points
0n ,

1n , and
2n  are denoted by 

   ,,,,,,,, 11110000  pyxpyx and  2222 ,,, pyx  

respectively. From the discretization of (5), the 

approximated solution at point 
2n  2222 ,,, pyx were 

given by 
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where 
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at the  -characteristic line 
20nn  and 

-characteristic line 
21nn  respectively.  

The following approximated equations has been 

made in order to determine the approximation 

solution for  22 ,p , 
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where
D  is the distance between 

0n  and 
2n while

D is the distance between 
1n  and 

2n . We therefore 

have the following approximations from (6),  
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Theequations for stress variables 
2 and 

2p can 

therefore be obtainedas, 
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The initial approximated value for 
2p  and 2

represented by 0

2p  and 0

2 respectively were given 

as 
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Special Case (Riemman Problem) 

 

Fig 3: Fan shaped region 

This elementary boundary value problem is a 

special case of the Riemann Problem when one of 

the characteristic line degenerates to a single point, 

namely singular point and forms a fan shaped 

region as shown in Fig. 3, namely centered fan 

field region.In this case, we considered an 
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-characteristic line to degenerates to a single point. 

In region PQR, the  -characteristic lines are 

straight and all meet at a point, P, and the angle of 

QPR is denoted by
2 . At the singular point, P, 

stress variables   and p are discontinuous and at 

each point along  -characteristic line, PQ these 

values are known. Suppose that the degenerated 

-characteristic is divided into n  points which are 

denoted by        n,1,...,3,1,2,1,1,1 . The approximated 

value of and p at point P were given by  
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where n1,2,3,...,i  . Then, from the known values 

along QR and at a singular point,P, the stress 

distributionthroughout the region PQR may be 

defined. 

IV. THE CONSTRUCTION OF THE STRESS 

FIELD 

 

Fig 4: Centered fan field in deformation region 

Let 1) TUV(i,  where n1,2,3,...,i  denoted the initial n  

points at T as illustrated in Fig. 4. The coordinates 

 yx, of all initial points are identical to the initial 

point 1) TUV(1,  with distinct values of pressure, p

and angle . The initial value of p and angle  at 

T are known from(18) and (19). Now, the point 

TUV(2,1)  and adjacent point 2) TUV(1,  is 

considered. Let the  -characteristic and 

-characteristic passed through 2) TUV(1, and

TUV(2,1) respectively intersect at 2) TUV(2, . From 

the known values at point 2) TUV(1, and 1) TUV(2, , 

the coordinates  yx,  and the stress variables  ,p  

at point 2) TUV(2, were obtained. Then, the 

construction continues to the next point TUV(3,2) . 

Repeating the steps mentioned in section III, the 

stress distributionare defined throughout the region 

TUV and the construction of the stress field is 

shown in Fig. 4. 

V. RESULTS AND CONCLUSION 

In this research, the wedge semi-angle, is taken as
453  , granular material frictional angle, 30 , 

and the cohesion, 2c . For a region TUV in Fig. 

4, the calculated values of p and   were then 

compared to the solution given by [6] that was 

solve analytically. The comparison is shown in Fig. 

5. 

 

Fig 5: Comparison of the value p versus   with 

T or desillas’s analytical method 

As shown in Fig. 5, the results show a very small 

differences between the analytical and the 

numerical methods. To conclude, the numerical 

method for the construction of the stress 

distribution in the granular materials deformation 

region under the wedge indentation found in this 
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study is convenient to beused for the related field. 
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