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Abstract 

Continuous increase in overall life expectancy has brought forward the 

importance of mortality forecasting. Estimates in mortality trends have become 

extremely crucial and informative in various fields, including the planning and 

funding of health care systems, pension schemes as well as pricing annuity 

portfolios and reserves. Furthermore, while it is universally agreed that while age 

and period effects have significant effects onto mortality modelling, cohort effects 

have presented mixed results, mainly favorable towards the population of 

England and Wales. Underlying cause-of-death has also become a topic of 

interest in terms of mortality modelling, as it brings significance towards the 

forecasted mortality rates, but have yet to be proven or thoroughly understood. 

Hence, the aim of this study is to compare several popular mortality models using 

the population of England and Wales, as well as test the significance of cohort 

effects within the population. This study also intends to classify deaths according 

to their respective causes using the k-nearest neighbor algorithm, allowing 

possible assumptions to mortality data without cause-of-death in future studies.  
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1. INTRODUCTION 

Development within the medical field in the 

21
st
 century has continuously shown noteworthy 

increase in life expectancy. Together with the 

increasing awareness of the public regarding the 

importance of life insurance, the need of 

mortality forecasting has been brought forward 

into the limelight. According to a report by 

Great Britain’s Office for National Statistics 

(2018), the Department of Health and Social 

Care (DHSC) are key users of the currently 

available mortality statistics, analyzing trends 

based on various causes of death between 

different age groups, especially towards infant 

mortality be it stillbirths or neonatal deaths. 

Mortality data on external causes of death are 

the topic of interest for other public-sector 

organizations in identifying and making 

preemptive measures to reduce these deaths. 

Forecasted mortality rates are then fed into all 

kinds of statistical models for the interest of 

various parties, ranging from risk estimation to 

the calculation of pensions and benefits.  

While mortality forecasting has had its fair 

share of history, the methods then were 

simplistic and was subjected to a reasonable 

amount of judgement from the researcher 

themselves. The introduction of stochastic 

methods prompted the revolution in how 

mortality forecasting is done today. It provided a 

major advantage in producing forecasts in terms 

of a probability distribution rather than a 

deterministic point forecast, allowing the 
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development and application of more 

sophisticated and complex forecasting methods.  

In regard to mortality statistics, the World 

Health Organization (2018) have defined 

underlying cause-of-death as “the disease or 

injury which persisted throughout, or a fatal 

injury initiated by the circumstances of an 

accident or violence, leading directly towards 

death”. To date, mortality forecasting has 

generally been done towards overall mortality 

rates. However, it is also argued that trends in 

specific causes of death and future likely 

changes need to be taken into consideration in 

mortality forecasting to fully understand the 

projected mortality rates. Some of these trends 

include medical advancements, changes in 

lifestyle as well as accessibility to medical and 

healthcare. Hence, theoretically speaking, 

mortality rates should be calculated based on 

specific cause-of-death groupings before 

combining them in some manner to make 

forecasts and estimations. While it sounds 

simple from a theoretical standpoint, it is almost 

impossible to carry out practically, mainly due 

to obstacles in understanding specific trends in 

various causes of death, especially within 

disease-based models. 

2. LITERATURE REVIEW 

2.1 Previous Mortality Studies in England and 

Wales 

The Lee-Carter (LC) model has been 

performed in multiple studies in the past due to 

its simplicity in calculation and interpretation as 

well as its sheer popularity, it being one of the 

staples for mortality forecasting models of today. 

Many studies regarding mortality forecasting 

models have also used the LC model as a main 

model for comparison in terms of forecasting 

accuracy, as the results produced are consistent 

with the actual mortality rates. Throughout most 

of these studies however, there has always been 

various adjustments and changes done towards 

some of the variables, thus producing slight 

inconsistencies between results even within 

similar periods. While the LC model is able to 

capture mortality experience in England and 

Wales fairly decently, its projection of mortality 

rates has a tendency to be less accurate 

compared to some of the later models or even 

variants of the LC model itself(Renshaw & 

Haberman, 2003; Booth, et al., 2005).  

Booth, Tickle and Smith did a review on the 

LC model and its two popular variants, the Lee-

Miller (LM) variant and the Booth-Maindonald-

Smith (BMS) variant, comparing between 

multiple countries including England and Wales. 

Both variants differ from the LC method in 

terms of adjustment in the fitting period, the 

calculation of the index for overall mortality in 

each respective year and the jump-off rates. The 

study concluded that both LM and BMS variants 

were superior to LC in terms of both forecast 

accuracy and width of prediction interval(Booth, 

et al., 2005).  

A generalized linear modelling (GLM) 

regression-based approach was done by 

Renshaw and Haberman in comparison with the 

LC method, rooting from retrospective study 

regarding actuarial mortality reduction factors 

performed in the United Kingdom. While there 

was evidence that the GLM approach is more 

successful at capturing age specific mortality 

trends, it was significant only towards the males 

and not the females. The study also showed 

improvement in overall life expectancy at birth 

as well as a diminishing gap of life expectancy 

being forecasted between both genders using the 

GLM approach(Renshaw & Haberman, 2003).  

The LC method was once again used 

together with its variants, LM and BMS in a 

study for fourteen developed countries which 

includes England. Another variant of the LC 

method was also introduced named the 

Tuljapurkar-Li-Boe (TLB) method, which 

restricts the fitting period to 1950 and make no 

adjustments to the index for overall mortality in 

respective years. Additional comparisons were 

also done using a non-parametric method, the 

Hyndman-Ullah (HU) method including some 

variants which was proposed based off a 

functional data analysis technique to model and 

forecast log mortality rates. Among the 

forecasting methods performed, the weighted 

HU method was the most accurate due to the 
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smaller age-specific errors attributed by greater 

weight to recent data. Other than that, the study 

also found that the LM method was the least 

biased, the BMS method performed best for 

male mortality and the TLB method performed 

best for female mortality(Shang, et al., 2011).  

2.2 Cohort Effects in Mortality Forecasting 

During 2006, Renshaw and Haberman then 

introduced two cohort-based mortality models, 

one of them being an extension using the LC 

model, which was applied to mortality data from 

England and Wales ranging since 1961 to 2003 

for each gender. The projection of mortality 

experience by the suggested LC cohort-extended 

model (RH model) outperformed the LC model, 

as it managed to capture characteristic and 

systematic mortality directly attributable to not 

only age and period, but also towards cohort 

effects(Renshaw & Haberman, 2006).Another 

suggested cohort model (APC model) also 

performed considerably well compared to the 

LC model, but trailed behind the RH model. 

Since then, many mortality models which 

involved cohort effects have used these cohort 

models in their research to better understand the 

significance of cohort effects in the countries of 

their respective studies, with relative amount of 

success(Booth & Tickle, 2008).  

Several papers were published after that, 

continuing to compare the RH and APC models 

with other mortality models using the population 

of England and Wales as well as other countries. 

Martina Gustafsson (2011) conducted a study in 

testing cohort effects on Swedish mortality but 

also included data from England and Wales as 

well as Denmark. According to the study, cohort 

effects in England and Wales were negligible for 

ages above 60 and remained inconclusive for the 

rest, which contradicts with another popular 

study done by Cairns, Blake and Dowd (2006) 

which developed the CBD model named after 

themselves. In their study, they found cohort 

effects in England and Wales of ages above 60 

to significant and their model was best fit 

towards this age group.  

2.3 The Relationship between Cause-of-Death 

and Overall Mortality Rates 

The topic of mortality modelling and 

forecasting have recently shifted from overall 

mortality towards cause of death. This helps 

insurance companies and healthcare experts to 

identify and hopefully, better understand 

mortality trends in specific causes of death. 

While the initial appeal of breaking down 

mortality data into respective cause-of-death can 

be easily done and understood, the 

recombination of separate projections by cause-

of-death to produce overall mortality rates is 

extremely difficult. This is because most trends 

by cause-of-death are not independent and may 

have cause-and-effect relationships which are 

easily misunderstood(Richards, 2009).  

One of the most recent cause-specific 

mortality was done in Korea, which consisted up 

to 12 major causes of death based on past trends 

from years 1983 to 2012, including ranging from 

various diseases, accidents to suicides. The 

estimates of future mortality rates were done 

using the APC model with slight modifications 

which has been frequently used mainly in cancer 

mortality data all over the world. However, the 

study does have its flaws that there is no 

mention in any testing of the forecasts’ accuracy, 

mainly focusing on the projected mortality rates 

along with its interpretations towards the 

shifting mortality trends on each respective 

cause-of-death.  

The most relevant research done in England 

and Wales with cause-of-death in mind was 

done by Cesare and Murphy back in 2009. In 

their study, they forecasted mortality with 

various approaches for the cases of lung cancer; 

influenza, pneumonia and bronchitis (IPB) as 

well as motor vehicle accidents (MVA). The LC 

model and BMS variant was engaged in the 

study, together with the APC model and the 

Bayesian model. The study made three key 

conclusions(Cesare & Murphy, 2009):  

1. LC based approaches are best selected 

in situations where drivers of past trends 

act in a largely linear fashion and copes 

well with unpredictable changes in 

trends (MVA) and period effects (IPB).  
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2. APC models produce the best forecast 

for causes of deaths with clear cohort 

patterns (lung cancer) but is worse than 

the LC approaches in terms of 

forecasting period-driven causes of 

death.  

3. The Bayesian model estimates mortality, 

but nothing significantly better than the 

other models considered.  

2.4 The K-Nearest Neighbor Algorithm and 

Classification 

The k.-nearest neighbor classification uses 

the concept that a set of data should be classified 

based of its nearest neighbor which shares the 

most similar characteristics with the data being 

classified. This form of classification is 

considered as a conventional, non-parametric 

classifier that when provided an optimal k-value, 

produces well-performed classifications on the 

dataset.  

The algorithm of the k-nearest neighbor was 

first proposed by Cover and Hart in 1968 with 

the calculation of certain measures which 

include the Euclidean distance, the cityblock 

(taxicab metric), the cosine distance as well as 

correlation. Among these measures, the 

Euclidean is widely used due to its ease of use 

and interpretation(Aman Kataria, 2013).  

The parameter k is another concept whereby 

the k-value decides the amount of the closest 

neighbors should be chosen for the algorithm. 

The k-value impacts the diagnostic performance 

of the algorithm significantly, as a large k-value 

may ignore smaller yet important patterns, but 

greatly reduces the impact of variance caused by 

random errors and vice versa. Although there 

have been authors that suggested setting the k-

value to equal to the square root of the number 

of observations in the training dataset for the 

algorithm, the most optimal k-value can only be 

obtained through trial and error in most 

cases(Zhang, 2016).  

The k-nearest neighbor classification is one 

of the most useful forms of classification but 

does have its shortcomings(Imandoust & 

Bolandraftar, 2013; Zhang, 2016). The main 

issue with this form of classification using k-

nearest neighbor algorithm is the dependence in 

choosing an optimal number of neighbors, or the 

k-values. Different samples may produce 

varying optimal k-values and may sometimes 

have multiple k-values of seemingly equal 

accuracy. Hence, many studies have been 

performed to solve this problem, with little 

success(Hassanat, et al., 2014).  

Another issue with the k-nearest neighbor 

classification is the memory requirement and 

time complexity in running the 

algorithm(Hassanat, et al., 2014). This is 

because the algorithm is completely dependent 

on each example available in the training set. 

Hence, a large training set may cause the 

algorithm to take more time to classify any data 

that is to be validated, which can cause this form 

of classification to be unfeasible for extremely 

large datasets to run. 

3. METHODOLOGY 

3.1 Data Collection 

The datasets used in this study are all taken 

from the official website for the Office for 

National Statistics of Great Britain, 

https://www.ons.gov.uk. In terms of overall 

mortality, the dataset consists of mortality data 

compiled using the 3-year life tables provided 

based on ages 0 to 100 taken from years 1980 to 

2017. The single-year life tables for years 1980 

to 2014 are derived from the already available 

single-year life tables for years 2015 to 2017. 

The dataset is then further segregated in terms of 

central rate of mortality mx and number of 

exposures Ex as well as male and female 

population to fit the demogdata function 

available in R for analysis purposes. 

In the case of cause-of-death based mortality, 

the dataset consists of mortality data compiled 

based on age groups with intervals of 10 (except 

age group of 1 to 4) and underlying cause from 

years 2008 until 2017. Only the data from this 

10-year period is publicly available and 

accessible on the website relative to the data for 

overall mortality. Mortality data for ages under 1 

are ignored as there are extreme values among 

https://www.ons.gov.uk/
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these data, mainly due to infancy-related 

diseases. Mortality data for ages 85 and above 

are also not used as the original data itself does 

not show a specific limiting age, which may 

cause inaccuracy in the current study.  

3.2 Research Model 

3.2.1 Lee-Carter (LC) Model 

The LC model is one of the first models that 

popularized the principal components approach 

to mortality forecasting, extrapolating age and 

period, both time-related parameters using time 

series methods(Booth & Tickle, 2008). 

Assuming Poisson distribution of deaths 

similarly to Renshaw & Haberman (2006) in 

forecasting mortality for the population of 

England and Wales, the underlying two-factor 

LC model is given as:  

𝑙𝑛 𝑚𝑥 ,𝑡 = 𝛼𝑥 + 𝛽(1)
𝑥𝑘𝑡 + 𝜀𝑥 ,𝑡  

mx,t - the central rate of mortality at age x as of 

year t,  

αx - the age-specific mean value of the log-

mortality at age x averaged across the years 

over which the model is fitted,  

β
(1)

x- the rate of change in ktbased on age x, 

kt- the index of the overall level of mortality as 

of year t,  

εi,x - the residuals or error terms for age x as of 

year t.  

The LC model is used with parameter 

constraints of:  

 𝛽𝑥
(1)

𝑥

= 1,  𝑘𝑡
𝑡

= 0 

 

3.2.2 Renshaw-Haberman’s (RH) Lee-Carter 

Cohort-Extended Model 

The RH model with cohort extension that 

has been selected is a recent addition by 

Renshaw and Haberman (2006), whereby they 

extended the LC model to include cohort as a 

third factor. The number of deaths, Dx,t is 

assumed to follow the Poisson distribution. The 

model is given as:  

𝑙𝑛 𝑚𝑥 ,𝑡 = 𝛼𝑥 + 𝛽(1)
𝑥𝑘𝑡 + 𝛽(0)

𝑥𝛾𝑡−𝑖 + 𝜀𝑥 ,𝑡  

where similar parameters observed from the LC 

model have the same meaning, the exceptions 

being:  

β
(0)

x- the rate of change in xt-xbased on age x,  

γt-x- the overall level of mortality for the cohort 

born in year t-x. 

The set of parameter constraints for the RH 

model are also similar to the original LC model 

with some additions:  

 𝛽𝑥
(1)

𝑥

= 1,  𝑘𝑡
𝑡

= 0,  𝛽𝑥
(0)

𝑥

= 1,

 𝛾𝑐

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝑘

= 0 

 

3.2.3 Renshaw-Haberman’s Age-Period-Cohort 

(APC) Model 

The APC model was subsequently 

developed together with the RH model and 

shows the same model with only changes 

corresponding to parameters β
(1)

x= 1 and β
(0)

x= 1, 

resulting in the following model with similar 

explanations to the models previously mentioned:  

𝑙𝑛 𝑚𝑥 ,𝑡 = 𝛼𝑥 + 𝑘𝑡 + 𝛾𝑡−𝑖 + 𝜀𝑥 ,𝑡  

The following parameter constraints are imposed 

when using the APC model:  

 𝑘𝑡
𝑡

= 0,  𝛾𝑐

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝑘

= 0   𝑐𝛾𝑐

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝑘

= 0 

3.2.4 Euclidean Distance 

In terms of the k-nearest neighbor 

classification for varying causes of deaths for 

this study, the Euclidian distance has been 

employed due to its simplicity and ease of 

understanding which can be expressed through 

the following equation(Aman Kataria, 2013):  
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𝐷 𝑥𝑖 , 𝑥𝑗  =    𝑥𝑖 ,𝑘 − 𝑥𝑗 ,𝑘 
2

𝑝

𝑘

 

xi,k is an input (training) sample with k 

characteristics from a total of m training samples,  

xj,k is an input (test) sample with k characteristics 

from a total of n test samples, and 

p is the total number of characteristics, which in 

this study we have 2.  

3.3 Measure of Forecasting Errors 

Following previous studies of Renshaw and 

Haberman (2006) on the population of England 

and Wales, independence between period and 

cohort effects have been observed and are also 

assumed in generating estimations of kt and γt-

xusing univariate ARIMA processes for this 

study. Various ARIMA processes will be carried 

out for comparison to best generate estimations 

of the parameters before ultimately projecting 

mortality rates.  

It is generally agreed upon that higher 

number of parameters in a model leads to a 

better fit towards data when evaluating 

goodness-of-fit for different models. However, it 

is also that the performance of the model is 

severely affected by over-parametrization over 

several possible models. To figure out which 

ARIMA process is the most suitable for the 

period index and cohort index, the Akaike 

Information Criteria (AIC) and the Bayesian 

Information Criteria (BIC).  

AIC: -2logp(L) +2p 

BIC: -2logp(L) + plog(n) 

For both criterion, L refers to the likelihood 

under the fitted model; p is the number of 

parameters in the model and; n is the sample size 

of the fitted data(Aikake, 1973; Schwarz, 1978). 

Lower values of both criterion for the fitted 

models are preferred, generally presenting more 

accurate results(Acquah, 2010).  

For the k-nearest neighbor classification of 

cause-of-death, only k-values of 1 to 10 are 

tested due to constrictions in time. To identify 

the most suitable k-value for classification 

between the male and female population 

respectively, cross tables are created to cross-

validate between the predicted classification and 

the true classification of the test data, whereby 

this method is suggested in many k-nearest 

neighbor algorithm related studies(Aman 

Kataria, 2013; Anava & Levy, 2016). This 

allows a better understanding as to the 

effectiveness of the model varying of k-values, 

as well as the possible reasons of 

misclassification for certain diseases.  

 

4. DISCUSSION 

4.1 Forecasting Mortality for All Causes of 

Death 

4.1.1 Goodness-of-Fit Test on Models 

Model Male Female 

LC 

  

RH 

  

APC 

  
Table 1: Residual scatter plots for cohort index 

of fitted models based on gender 

Residuals of each fitted model is calculated 

using the StMoMo package, which is then 

plotted into scatter plots by age, period and 

cohort to better visualize any patterns within 

these residuals. Based on the cohort patterns 

shown in Table 1, the cohort residuals of the LC 



 

January - February 2020 
ISSN: 0193 - 4120 Page No. 843 - 854 

 
 

849 Published by: The Mattingley Publishing Co., Inc. 

model do not appear to be random especially 

those after the year 1920, revealing that the 

fitted LC model fails to capture relevant cohort 

effects. On the other hand, the cohort residuals 

for the APC as well as the RH model appears to 

be more random.  

Models 

Criterion 

AIC BIC 
Log-

likelihood 

LC 50811 52299 -25167 

RH 41905 44250 -20577 

APC 49354 51067 -24403 
Table 2: AIC, BIC and log-likelihood values for 

fitted models of male population 

Models 

Criterion 

AIC BIC 
Log-

likelihood 

LC 46909 48397 -23216 

RH 40112 42456 -19681 

APC 44597 46310 -22024 
Table 3: AIC, BIC and log-likelihood values for 

fitted models of female population 

By applying AIC, BIC and log-likelihood 

onto the fitted models, the RH model returns the 

smallest values of AIC and BIC as well as the 

largest value for log-likelihood for both male 

and female population compared to the other 

two models. Thus, we have mathematically 

concluded that the RH model is the most 

suitable and appropriate method among the three 

in forecasting future England and Wales 

mortality rates using the currently available 

mortality dataset with the support of various 

residual plots.  

4.1.2 ARIMA Testing on Period and Cohort 

Index 

With the RH model being selected, several 

independent univariate ARIMA processes are 

tested to best forecast the period index, kt for 

respective genders. Furthermore, due to cohort 

effects being computed using the RH model, 

ARIMA processes are also tested on the cohort 

index γt-xfor more accurate results.  

 

ARIMA 

(p, d, q) 

Criterion 

AIC BIC 
Log-

likelihood 

0, 0, 0 370 374 -183 

0, 0, 1 326 331 -160 

0, 1, 0 127 130 -61 

1, 0, 0 201 206 -97 

0, 1, 1 129 134 -61 

1, 0, 1 194 201 -93 

1, 1, 0 129 134 -61 

1, 1, 1 130 137 -61 
Table 4: AIC, BIC and log-likelihood values of 

tested univariate ARIMA processes on male 

period index 

ARIMA 

(p, d, q) 

Criterion 

AIC BIC 
Log-

likelihood 

0, 0, 0 227 231 -111 

0, 0, 1 196 201 -95 

0, 1, 0 124 127 -60 

1, 0, 0 135 140 -64 

0, 1, 1 120 125 -57 

1, 0, 1 134 141 -63 

1, 1, 0 117 122 -55 

1, 1, 1 119 126 -55 
Table 5: AIC, BIC and log-likelihood values of 

tested univariate ARIMA processes on female 

period index 

In the case for male period index, the final 

values show a close tie among ARIMA (0,1,0), 

ARIMA (0,1,1) and ARIMA(1,1,0). Among the 

three univariate ARIMA processes, ARIMA 

(0,1,0) was selected as it showed the lowest AIC 

and BIC, with the log-likelihood trailing slightly 

behind the other two. The selection of ARIMA 

(1,1,0) for the female period index was more 

direct, as it was ranked first in terms of AIC and 

BIC values as well as second in terms of log-

likelihood. 

ARIMA 

(p, d, q) 

Criterion 

AIC BIC 
Log-

likelihood 

0, 0, 0 306 311 -151 

0, 0, 1 129 138 -61 
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0, 1, 0 -446 -440 225 

1, 0, 0 -433 -424 219 

0, 1, 1 -459 -450 232 

1, 0, 1 -448 -436 228 

1, 1, 0 -472 -463 239 

1, 1, 1 -418 -406 213 
Table 6: AIC, BIC and log-likelihood values of 

tested univariate ARIMA processes on male 

cohort index 

ARIMA 

(p, d, q) 

Criterion 

AIC BIC 
Log-

likelihood 

0, 0, 0 231 237 -113 

0, 0, 1 58 66 -26 

0, 1, 0 -555 -549 279 

0, 1, 1 -558 -549 282 

1, 1, 0 -561 -552 283 

1, 1, 1 -561 -549 284 

Table 7: AIC, BIC and log-likelihood values of 

tested univariate ARIMA processes on female 

cohort index
1
 

Based on Tables 6 and 7,ARIMA (1,1,0) is 

the most appropriate univariate ARIMA process 

to be applied in forecasting the cohort index for 

both genders respectively. This is further 

supported by Renshaw and Haberman’s (2006) 

study, which also uses ARIMA (1,1,0) for 

projecting the cohort index of the England and 

Wales population.  

4.1.3 Mortality Forecasting and Simulation with 

the RH Model 

The period index, kt and cohort index, γt-x 

are then forecasted 30 years ahead. In terms of 

the male population, ARIMA (0,1,0) and 

ARIMA (1,1,0) are applied respectively. 

ARIMA (1,1,0) is applied to both indexes for the 

case of the female population.  

                                                           
1
ARIMA (1,0,0) and ARIMA (1,0,1) are omitted due to 

error values being return using R.  

 

Figure 8:Forecasted period index, kt(left) and 

forecastedcohort index, γt-x(right) for male 

population 

At first glance, the forecasted male period 

index seems to be more consistent across the 

90%, 95% and 99% confidence intervals with 

very little deviance as it continues to slope down. 

However, the male cohort index seems to spread 

across a wider range across previously 

mentioned confidence intervals. Based on the 

Figure 8, it can also be said that while the 

forecast favors the cohort index to increase in 

the next 30 years, it is not impossible for the 

cohort index to decrease as well.  

 

Figure 9:Forecastedperiod index, kt(left) and 

forecasted cohort index,γt-x(right) for female 

population 

On the other hand, the forecasted female 

period index shows a larger deviance across the 

90%, 95% and 99% confidence intervals 

compared to its male counterpart. Although an 

increase may happen in the few years to come, 

the overall consensus is that the period index 

will have decreased 30 years later.  The female 

cohort index shows a much smaller spread 

compared to its period index as well as its male 

counterpart. This may be due to the more 

obvious downward trend displayed in the female 

cohort index that began in earlier cohorts unlike 

the male cohort index which have had drastic 
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changes over time. This may also be generalized 

as an assumption that the female cohort effect is 

more significant to capture compared to the male 

population.  

 

Figure 10: Forecasted log-mortality rates for 

ages 45 (black), 65 (red) and 85 (blue) for male 

population (left) and female population (right) 

Using 1000 simulated trajectories for the 

period and cohort indexes, mortality rates of all 

ages for both genders were forecasted at 90%, 

95% and 99% confidence intervals. Figure 10 

displays the forecasted log-mortality rates of 

ages 45, 65 and 85 for years 2018 to 2047. It can 

be observed that as the age of forecast increases, 

the spread also increases for both genders. This 

can be interpreted that the actual mortality rate is 

much more like to differ if we were to use 

traditional singular-value forecast methods.  

When we compare the plots for both genders, 

it can be said that the forecasted female 

mortality rates have a much smaller spread 

compared to the male population for across all 

ages. This shows that there is less deviation in 

the forecasted values of female mortality rates 

compared to male mortality rates, allowing us to 

better pinpoint the actual mortality rate within 

the female population in the future. This does 

not mean the male mortality rates are less 

accurate. It just simply means that there are 

more possible values for the male mortality rates 

to deviate compared to the female mortality rates.  

4.2 K-Nearest Neighbor Classification on 

Causes of Death 

4.2.1 Fitting and Adjusting the Data 

To ensure that the k-nearest neighbor 

classification can be run effectively, certain 

limitations were put unto the data to remove 

possible outliers, whereby this technique is very 

sensitive towards. The data being used is from 

years 2008 to 2017, as there is no data publicly 

published prior to 2008. The diseases being 

classified are shortlisted to circulatory, 

digestive,external causes of death, neoplasms, 

nervous and respiratory as these causes of death 

have the highest mortality in England and Wales 

based on their respective causes. Moreover, ages 

below 1 and above 85 are not considered, the 

former being heavily affected by infancy and 

newborn related diseases. The latter is due to no 

specification on the upper limits of deaths that 

occur past age 85.  

Once all the data have been inputted into the 

R program, the data is normalized so that the 

data across all independent variables are 

consistent with each othersuch that the data will 

always fall in the range of 0 to 1. The 

normalized dataset is then segregated into two 

parts: the training set and validation set. The 

training set is the dataset that will be used by the 

program to assist in its initial analytical model 

building of the k-nearest neighbor classification, 

whereas the validation set is then inputted to 

evaluate the performance of the analytical model 

built by the program. In this case, we initially 

create partitions of 2/3 and 1/3 for the training 

and validation sets respectively. To ensure that 

the partitions remain the same for future use or 

reference, a constant seed was set beforehand 

within the R program in creating the required 

partitions.   

4.2.2 Analysis of Data 

Using the knn3Train function from the caret 

package to perform k-nearest neighbor 

classification, we first input the training set for 

the program to create the analytical model in 

classifying our dataset into the three causes of 

death previously mentioned. The validation set 

is also tested with varying k-values to evaluate 

the performance of the model done using 

machine learning through trial and error. 

Evaluation is done via cross tabulation, where 

we test the classification results of the model 

against the actual cause-of-death. K-values from 
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the range of 1 to 10 are tested multiple times, as 

it is possible to have differences in predicted 

classifications with the same k-value due to 

possible ties in classification, causing the final 

classificationto be randomly chosen between the 

tied classes.  

Actual 

Class 

Predicted Class 

Cir Dig Ext Neo Ner Res 

Cir 27 1 0 2 0 0 

Dig 0 27 0 0 1 2 

Ext 2 1 23 2 0 2 

Neo 3 0 2 24 0 1 

Ner 2 0 2 1 24 1 

Res 2 2 0 0 3 23 

Table 11: Cross-table between estimates and 

actual results of k-nearest neighbor 

classification for male population (k = 2) 

 It is observed that the k-value of 2 produces 

the most accurate results for the male population, 

ranging between 140 and 148 out of 180 (77.78% 

and 82.22% respectively) possible outcomes 

correctly predicted. Based on Table 11 which 

takes one case where the maximum number of 

correct predictions is achieved for the male 

population, most deaths caused by circulatory 

and digestive system-related diseases were 

correctly predicted at 90% effectiveness, 

whereas external causes of mortality and 

respiratory-related diseases had the least 

predicted correctly at 76.67% effectiveness. Out 

of the 32 wrong classifications, 9 of them were 

wrongly predicted (28.13%) as caused by 

circulatory-related, making it the highest cause-

of-death to be wrongly classified as among the 

male population. 

 

Actual Predicted Class 

Class Cir Dig Ext Neo Ner Res 

Cir 28 1 0 0 1 0 

Dig 3 24 0 0 3 0 

Ext 1 0 21 5 1 2 

Neo 0 0 3 25 0 2 

Ner 0 3 2 2 21 2 

Res 2 0 2 0 4 22 

Table 12: Cross-table between estimates and actual results of k-nearest neighbor classification for female 

population (k = 3) 

 The k-value of 3 is more appropriate for the 

female population with a range of 134 to 141 out 

of 180 (74.44% and 78.33% respectively) 

possible outcomes correctly classified. Based on 

Table 12 which takes one case where the 

maximum number of correct predictions is 

achieved for the female population, most deaths 

caused by circulatory system-related diseases 

were correctly predicted at 93.33% effectiveness, 

whereas external causes of mortality and 

nervous system-related diseases had the least 

predicted correctly at 70% effectiveness. Out of 

the 32 wrong classifications, 9 of them were 

wrongly predicted (28.13%) to be caused by 

nervous system-related, making it the highest 

cause-of-death to be wrongly classified as 

among the female population.  

 Smaller k-values may have played a part in 

the inconsistencies of the predicted 

classifications despite using the same k-value. 

This is because small k-values are much more 

likely to cause ties when voting for the 

classification of the validation data. Although 

larger k-values may theoretically solve this 

problem, it has been observed the results of the 
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k-nearest neighbor classification for both the 

male and female population shows acceptable 

for k-values of smaller values, but becomes the 

estimates become increasingly inaccurate as the 

k-values starting from 5 begin approaching 10, 

which invalidates this possible solution. On the 

other hand, correctly classified estimates for the 

male population seems to be higher compared to 

the female population. Hence, it can be assumed 

that mortality data based on cause-of-death in 

England and Wales for the male population is 

more consistent compared to the female 

population for possible machine learning and 

classification purposes.  

5. CONCLUSION 

When it comes to forecasting 

overallmortality in England and Wales, it is safe 

to assume that the RH model is still one of the 

best mortality models to project future mortality 

rates, be it the male or female population. The 

study has also proved that cohort effects are a 

significant factor in mortality forecasting for 

England and Wales besides the two common 

factors of age and period, further supported that 

the APC model which considers cohort effects 

still produced better forecasts than the LC model 

despite being worse that the RH model 

according to the information criterion. This 

encourages the use of mortality models that 

account for cohort effects to be used in 

comparison with other mortality models for 

future mortality studies, as some countries may 

also have cohort effects that when considered, 

may improve the mortality literature for said 

country or population.  

In terms of classifying certain deaths to their 

respective cause-of-death using the k-nearest 

neighbor algorithm, the study has shown that by 

plugging an appropriate k-value, an 

effectiveness of 70% to 80% can be achieved. 

The success of this form of classifying cause-of-

death is considerably subjective.Hence, 

classification of varying causes of death in 

England and Wales using the k-nearest neighbor 

algorithm remains inconclusive due to other 

considerations that may improve said 

effectiveness tohigher percentages which are 

more satisfactory.  
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