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Abstract 

This paper investigates the implications of the Adaptive Market Hypothesis (AMH) by 

studying the nature of cross-correlation between price and volume and assesses whether the 

price-volume relationship has a long memory. The MultifractalDetrended Fluctuation 

Analysis (MF-DFA) is used to capture the behavior of price and volume series whereas the 

MultifractalDetrended Cross-correlation Analysis (MF-DCCA) is used to capture the 

behavior of price-volume cross correlation. 

The findings of this paper assert that the Indian Stock Market is not efficient and provide 

opportunities for arbitrage from time-to-time. The small fluctuations in price are most likely 

to be followed by another small increment or vice versa, whereas large (small) fluctuations 

are followed by small (large) fluctuations. Similarly, a large (small) increment in volume is 

most likely followed by a small (large) increment in volume. A large (small) increment in 

volume is most likely to be followed by a large (small) increment in price. These findings 

have practical implications for traders and investors. 

 

Keywords; Market efficiency; price-volume; efficient market hypothesis; adaptive 

market hypothesis; multifractality; long memory 

 

I. INTRODUCTION 

According to the Efficient Market Hypothesis 

(EMH), asset prices reflect the fundamental value of 

an asset by incorporating relevant information (See 

Fama (1970, 1991)). Thus, in an informationally-

efficient markets it is hard to achieve above average 

profits as every investor has an access to all the 

relevant information simultaneously. It implies that 

the prices must fluctuate randomly and therefore 

should not exhibit long memory. In real world, 

however, such an efficient market is not observed, 

and it is seen that many investors are able to beat the 

market and achieve above average profits. Proof of 

this phenomenon is demonstrated by showing that 

markets have long memory. Long-term memory 

indicates an auto-correlated series in which the 

autocorrelation function decays asymptotically 

hyperbolically. Such a series may exhibit the 

properties that are dependent on its past. Such a 

series allows for arbitrage and is against the tenets of 

an efficient market (Mandelbrot and Van Ness, 

1968). Numerous studies (Cajueiro and Tabak, 

2004, 2005; Di Matteo, Aste and Dacorogna, 2003, 

2005; Eom, Oh and Kim, 2008) have discussed the 

connection between long-range dependence and 

possible efficiency, and have found in many cases 

that the under-developed markets exhibit long-term 

memory. Morales, Di Matteo, Gramatica and Aste 

(2012) and Kristoufek (2012) have described the 

association between the phases of markets and 

efficiency of the markets through time-varying 

Hurst exponent. The importance of the Hurst 

exponent in the development of the fractal theory to 
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understand chaotic theory is acknowledged by its 

originator Mandelbrot in his paper (Refer 

Mandelbrot, 1982). 

   The evidence of long memory has also been 

provided by Mandelbrot (1971); Urquhart and 

McGroarty (2016); Bariviera (2017); Caporale, Gil-

Alana and Plastun (2018). Lo (2004) explained this 

phenomenon through the behavioral aspect of the 

investors in that investors have bounded rationality 

and they adapt to the changing environment over 

time. Therefore, achieving the perfect market 

efficiency is not practically feasible. In the context 

of non-achievability of efficient markets, Lo (2004) 

introduced the concept of adaptive market 

hypothesis (AMH). 

   One of the implications of the AMH – time-

varying efficiency – can be observed in a time series 

by observing the results from time-varying versions 

of the serial correlation tests, long memory tests, etc. 

However, these standard tests are unable to describe 

the multifractality in a series (Bacry, Delour and 

Muzy, 2001). These standard tests only allow one to 

test whether markets are efficient or inefficient in 

certain period. These tests therefore do not allow 

one to compare financial markets across different 

periods and/or markets. 

Although Mandelbrot, Fisher and Calvet (1997) 

claimed that multifractal nature of the assets 

explains the most of the stylized facts of a time 

series, the research made way into this field after the 

work of Kantelhardt et al. (2002). Zunino, Zanin, 

Tabak, Pérez and Rosso (2009) and Zunino, Tabak, 

Figliola, Pérez, Garavaglia and Rosso (2008) have 

argued that there is an increasing empirical evidence 

for using multifractal analysis to capture the level of 

inefficiency of markets and highlighted the inverse 

relationship between level of development of stock 

markets and level of multifractality. Wang, Liu and 

Gu (2009) showed that as emerging markets become 

more efficient over time, the singularity width of the 

spectrum is narrowed. Thus, multifractality 

properties may be used to assess the level of market 

inefficiency. Since then some of the techniques that 

measure the multifractality of the series have been 

increasingly used in this domain. 

MultifractalDetrended Fluctuation Analysis (MF-

DFA) is a preferred method to test the long-memory 

in a univariate series (Zunino, Zanin, Tabak, Pérez 

and Rosso, 2009; Horta, Lagoa and Martins, 2014; 

Rizvi, Dewandaru, Bacha and Masih, 2014; Stošic, 

Stošic, Stošic and Stanley, 2015; Arshad and Rizvi, 

2015; Ferreira, Dionísio and Movahed, 2017). After 

the seminal work by Podobnik, Horvatic, Petersen 

and Stanley (2009), a large number of investigations 

have been made into price-volume relationship. A 

multivariate version of the test, known as MF-

DCCA (MultifractalDetrended Cross Correlation 

Analysis), measures the long-term cross-correlation 

between price and volume (Bolgorian and Gharli, 

2011; Rak, Drozdz, Kwapien and Oswiecimka, 

2015; Fan and Li, 2015; Yuan, Zhuang and Liu, 

2012; El Alaoui, 2017). India has seen many 

developments in both the regulatory and economic 

environments of stock markets including changeover 

from open outcry system to screen based trading 

(SBT), introduction of DEMAT (dematerialization) 

trading, changes in settlement period of T + 2, and 

abolition of badla trading. Many of the regulatory 

changes and entry of FIIs in big way have impacted 

the way the trading took place in India. These 

microstructural changes have impacted the 

efficiency of markets in India (Shah, 1999). Given 

these phenomenal changes in the Indian Stock 

market in past three decades, it is reasonable to 

assume that the price-volume relationship in Indian 

stock market too would have changed over time 

reflecting the change in the market efficiency. 

There are few studies that assess the market 

efficiency in India (Stošic, Stošic, Stošic and 

Stanley, 2015; Razdan, 2002; Manimaran, Panigrahi 

and Parikh, 2005; Ghosh, Manimaran and Panigrahi, 

2011; Dutta, 2010; Hiremath and Kumari, 2014; 

Hiremath and Narayan, 2016) using different 

multifractal analysis of a single financial time series. 

However, barring a study by Hasan and Salim 

(2017) in price-volume relationship and a study by 
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Dutta, Ghosh and Chatterjee (2016) in cross 

correlation between foreign exchange and stock 

price, there is a limited research in understanding the 

market efficiency through changing price-volume 

relationship. There is no paper conducting 

multifractal analysis of price-volume relationship 

done that links the results to the implications of the 

AMH. This paper is an attempt to establish the link 

between multifractality in price-volume relationship 

to the implications of the AMH. The findings of this 

paper will help in establishing the fact that markets 

are dynamic in nature and oscillate around the 

perfect efficiency. Secondly, the more a series is 

away from market efficiency, the more are the 

arbitrage opportunities. Such a series also carries 

more information that is in contradiction with 

perfect efficient markets. This is the motivation of 

this paper to investigate the dependence structure 

between price and volume over the period.   

This paper uses the multifractal properties of the 

time series to test the dependence structure of the 

price-volume relationship with the following 

objectives in mind. 

1. To test if there is a time-varying long-memory in 

the return series 

2. To test if there is a time-varying long-term cross-

correlation between the return series and volume 

series 

The following Section 2 briefly covers the literature 

on the topic followed by Section 3 describing the 

MF-DFA and MF-DCCA methodology employed in 

this study. Section 4 explains the data and conducts 

an analysis. Section 5 elaborates the results and its 

implications are discussed in Section 6, and Section 

7 concludes the paper. 

II. LITERATURE REVIEW 

Stock returns have been studied extensively in 

academic research and models such as CAPM have 

been developed to understand the dynamics of the 

returns. Illiquidity, a concept related to trading 

volume, has been added to this model only recently 

by Acharya and Pedersen (2005) to study the price 

equilibrium process. Blume, Easley and O‟hara 

(1994) and Suominen (2001) have investigated the 

role of volume as carrier of information in financial 

markets. They suggest that prices do not contain all 

the information and volume is an important 

parameter that investors use to derive information. 

Suominen (2001) shows that investors extract 

information from the past volume for their 

investment strategies. 

2.1. Price-volume relationship 

According to Karpoff (1986, 1987), price-volume 

relationship is instrumental in understanding how 

the information flows to the market. Various studies 

corroborate the positive relationship between price 

and volume (Assogbavi, Khoury and Yourougou, 

1995; Chen, Firth and Rui, 2001; Crouch, 1970; 

Epps and Epps, 1976; Karpoff, 1986, 1987). 

Different models describe the price-volume 

relationship. Copeland (1976), Jennings and Barry 

(1983), and  Morse (1980) elaborate how 

information arrives sequentially. Clark (1973), Epps 

and Epps (1976), Lamoureux and Lastrapes (1990), 

Tauchen and Pitts (1983), and Harris (1987) have 

argued how price-volume connection can be 

expressed in terms of mixture of distributions. 

Admati and Pfleiderer (1988) and Kyle (1985) 

discuss how the information flows asymmetrically 

whereas Varian (1985), Harris and Raviv (1993) 

impact of information based on the difference of 

opinion on the interpretation of the information. On 

the other hand, Assogbavi et al. (1995) and Karpoff 

(1986, 1987) have discussed how asymmetrically 

volume responds to return due to varied expectations 

and costs of short selling. Henry and McKenzie 

(2006) have found asymmetrical bi-directional 

price-volume relationship. 

2.2. Time-Varying Market Efficiency: An 

implication of the AMH 

According to AMH, markets evolve through time 

and prices only reflect information such as business 

situations and level of profitable prospects. These 

business situations indicate the churn out 
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competitors in the industry. Although AMH is 

qualitative in nature, it is verified on its practical 

implications for the market. The two implications of 

the AMH: (1) there will be arbitrage opportunities 

from time to time and (2) there will be time-varying 

relation between the risk and return can be 

empirically tested to prove the AMH. Such financial 

variables that provide arbitrage opportunity imply 

that they have long memory. The financial time 

series quantities having long memory are found to 

exhibit power-law correlations and multifractality 

(Kwapien et al., 2015; Wang et al., 2013; Yuan et 

al., 2012). Therefore, multifractal analysis of these 

financial quantities may reveal the existence of the 

relationship between these variables. 

2.2.1 Multifractality in Prices 

Cont (2001) discusses intermittence, a property of a 

time series having the oscillatory and heterogenic 

fluctuation, as one of the stylized facts. Such 

fluctuation over different time scales is found to be 

fractal in nature (Mandelbrot et al., 1997). To say 

that a univariate series has a long-term memory 

implies that the series has long term auto-

correlations and thus the series can be predicted. If 

the series can be predicted, then it implies that 

markets are not efficient. Similarly, a multivariate 

series can have long-term cross correlations and it 

can be predicted if the series has long-term memory. 

As such highest multifractal properties in a series 

indicate lowest market efficiency (Han, Wang and 

Xu, 2019). 

   The time-varying Hurst effect observed in the 

fluctuations of a time series captures the long-term 

memory. On the other hand, Generalized Hurst 

Exponent approach was employed by Di Matteo et 

al. (2003) to study scaling properties of markets. 

Zunino et al. (2008) use multifractal approach (MF-

DFA) to illustrate the phase of market development 

and Rizvi et al. (2014) to study stock market 

efficiency. Kristoufek and Vosvrda (2013) presented 

a new quantity of market efficiency using fractal 

dimension. If the series shows a time-varying 

dependence structure, then the series adheres to the 

implications of the AMH. This dependence structure 

has implications for the Adaptive Market 

Hypothesis. 

   The AMH has been tested in Indian stock market 

by Hiremath and Kumari (2014) using auto-

correlation tests, and the test results show oscillating 

efficiency. Tiwari et al. (2019) employed MF-DFA 

which uses the Hurst exponent to describe the level 

of efficiency and find multifractal markets having 

long-term persistency. Hiremath and Narayan 

(2016) employed fixed and rolling window 

technique to find long-range dependence that 

changes over time but moving toward efficiency in 

case of Indian Markets. Anagnostidis et al. (2016) 

also used rolling window technique to find Eurozone 

stock prices are moving towards their means. 

Sensoy and Tabak (2015) established that stock 

markets have long-term memory which varies with 

time, while Horta et al. (2014) used MFDMA i.e. 

multifractaldetrended moving average to find 

existence of long memory during the crisis period. 

Wang, Liu and Gu (2009) and Cajueiro and Tabak 

(2004) found that markets are moving closer to 

efficiency. Tuyon and Ahmad (2016), Noda (2016), 

Urquhart and Hudson (2013) and Al-Khazali and 

Mirzaei (2017) have argued that efficiency varies 

with time and AMH explains the markets better. 

2.2.2. Multifractality in Price-Volume relationship 

Implications of the AMH are studied by Ferreira 

(2019), Hasan and Salim (2017), El Alaoui (2017), 

and Ruan et al. (2016) finding in general that price-

volume relationship is multifractal in nature. Other 

studies finding the price-volume connection are 

those of Sukpitak and Hengpunya (2016), Wang et 

al. (2013), and He and Chen (2011). Podobnik et al. 

(2009), on the other hand, finds absence of any 

connection between price and volume. However, 

none of these studies link their results to adaptive 

market hypothesis. 

   There are no studies that use MF-DCCA and 

directly link the results of the studies in stock 

markets using price-volume relationship to the 

AMH. This paper bridges this gap by conducting a 

study using MF-DFA and MF-DCCA to test 
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whether there is a long memory between price and 

volume and attempts to link the results to the 

implications of the AMH. The findings of this study 

will be important from the perspective of investors, 

traders, and regulators to know how the price-

volume relationship changes over period in Indian 

stock market as it will determine their trading 

strategy in the market. If the market efficiency 

changes over period as measured by price volume 

relationship, then it is apparent that EMH does not 

hold over a period. 

   The following section describes the MF-DFA and 

MF-DCCA methods. 

III. METHODOLOGY 

A series is said to have scale invariant structure if it 

replicates itself over different time-segments of the 

series. Fractal analyses are used to determine a 

specific structure of series that doesn‟t change with 

scales chosen. This is achieved through the power 

law exponent, denoted by H. Mathematically, the 

series X(t) exhibit this type of repeating structure 

when X(ct) = c
H
X(t). There are two kinds of these 

structures: Monofractal structures, for which power 

law exponent is constant and multifractal structures, 

for which power law exponent takes range of values.  

Detrended Fluctuation Analysis (DFA) is used to 

assess the properties that define how the structure of 

the series changes over time and to capture the 

existence of long memory in the series. Kantelhardt 

et al. (2002) developed a multifractal version of the 

DFA, called multifractal-DFA (MF-DFA), using 

generalization of DFA that can be applied to a non-

stationary time series that may have trend or cannot 

be normalized.  

Study of long-range correlation tries to assess the 

statistical dependence between the points of a series 

as the time interval between them increases. 

Usually, there is a slow decay of statistical 

dependence with increasing time interval. This slow 

decay (slower than the exponential decay) follows a 

power law behavior, and this power law behavior 

can be captured in a statistical scaling exponent 

referred to as the Hurst exponent (Hurst, 1951). 

Multifractal processes exhibit different scaling 

behavior of series over different time periods for 

small and large fluctuations. This scaling behavior is 

assessed through the hierarchy of scaling exponents. 

A multifractal series shows different scales at 

different time intervals and analysis of such a series 

requires the calculation of different scaling 

exponents (Kantelhardt et al., 2002).  

The following section illustrates the procedure for 

calculating scaling exponents using MFDFA and 

MF-DCCA methods. 

3.1. MF-DFA 

Multifractal analysis helps to uncover nonlinear 

properties of a series. Computationally, conducting 

DFA or DMA of the time series gets the Hurst 

exponents. There are two ways to reveal a 

multifractal structure in a time series (1) generalize 

the concept of Hurst exponent and (2) construct a 

multifractal spectrum. The classical way to calculate 

multifractal spectrum is detailed out in Kantelhardt 

et al. (2002) and Peng et al. (1995) and is elaborated 

below. The classical way to calculate multifractal 

spectrum is detailed out in Kantelhardt et al. (2002), 

Peng et al. (1995) and Jiang et al. (2019). The 

methodology below is based on Jiang et al. (2019) 

and is elaborated below. 

Step 1: As the DFA requires a random walk like 

time series, the time series is ensured to have the 

random walk like structure before employing DFA. 

Suppose that such a series is represented by X(i), 

where i can take values from 1 through N. 

Step 2: Calculate the detrended residuals. The 

Equation (1) calculates detrended residuals 

𝜖(𝑖) = 𝑋(𝑖)− (𝑋) ,                                          (1) 

where 𝑋  presents the local polynomial linear trend 

function. 

Step 3: These residuals 𝜖(i) are divided into 

𝑁𝑠 = 𝑖𝑛𝑡[
𝑁

𝑠
] of equal size s, such that the segments 
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do not overlap. The v
th

 segment is given as  𝑆𝑣 =

𝜖  𝑣 − 1 𝑠 + 𝑗 , where j can take values from 1 

through s. Then using Equation 2, the local 

detrended fluctuation function, Fv(s), is then 

calculated as the root mean square of the detrended 

residuals: 

[𝐹𝑣(𝑠)]
2 =

1

𝑠
 [𝑠

𝑗=1 𝜖((𝑣 − 1)𝑠 + 𝑗)]2           (2) 

• Step 4: In the next step, the fluctuations calculated 

as above are averaged over all the segments to get 

the q
th

 order overall detrended fluctuation as shown 

in Equation 3 

[𝐹𝑣(𝑠)]
2 =

1

𝑠
 [𝑠

𝑗=1 𝜖((𝑣 − 1)𝑠 + 𝑗)]2               (3) 

where q is limited to assume any real value except 0. 

When q= 0, we can calculate the fluctuation as 

𝑙𝑛[𝐹0(𝑠)] =
1

𝑁𝑠
 𝑙

𝑁𝑠
𝑣=1 𝑛[𝐹𝑣(𝑠)] using l‟Hôpital rule.  

    Equation 4 describes the relationship between s 

and fluctuation function. One can see that the 

relationship is governed by the power law, 

𝐹𝑞(𝑠) ∼ 𝑠ℎ(𝑞).                                                        (4) 

These multifractals can be understood in terms of 

(1) the function 𝜏(𝑞), the mass exponent function 

and (2) the function 𝑓(𝛼), the singularity spectrum, 

where, 𝑞 denotes the order of moments and 𝛼, the 

singularity strength. These two terms are related as 

shown in Equation 5 (the Legendre transform) 

𝛼 = 𝑑𝜏(𝑞)/𝑑𝑞                                (5) 

and the spectrum 𝑓(𝛼), which signifies the fractal 

dimension, is calculated as shown in Equation 6. 

𝑓(𝛼) = 𝑞𝛼 − 𝜏(𝑞).                               (6) 

The singularity spectrum 𝑓 (𝛼) (also known as 

multifractal spectrum) and q is the slope of the 

spectrum. 

    The 𝜏(𝑞) function can be expressed in two 

comparable functions 𝐷𝑞  and 𝐻(𝑞), where 𝐷𝑞  

denotes the generalized dimensions and is calculated 

as shown in Equation 7. 

𝐷𝑞 = lim
𝑞′→𝑞

 
𝜏(𝑞′)

𝑞′−1
 , (7) 

The term generalized Hurst exponent, 𝐻(𝑞) is 

defined by Equation 8 shown below.  

𝐻(𝑞) = lim
𝑞′→𝑞

 
(𝜏(𝑞′)+1)

𝑞′
          (8) 

3.2.  MF-DCCA 

Zhou et al. (2008) proposed multifractaldetrended 

cross-correlation analysis (MF-DCCA) as detailed 

below. The method was based on the seminal work 

of Podobnik and Stanley (2008). The methodology 

below is based on Jiang et al. (2019) and is 

elaborated below. 

 In this method, two series having equal number 

of observations are considered: {X(i)} and {Y(i)}, 

where i = 1, 2, ..., N. As with the MF-DFA, in this 

case also each time series is divided into segments 

of equal size, s, such that they do not overlap. Any 

two such segments of series can be coupled for each 

𝑣𝑡ℎ  box [𝑙𝑣+1, 𝑙𝑣+𝑠] and are denoted by 𝑋𝑣(𝑘) and 

𝑌𝑣(𝑘) with 𝑘 = 1, . . . , 𝑠, where 𝑙𝑣 = (𝑣 − 1)𝑠. Then 

{𝑋𝑣(𝑘)} and {𝑌𝑣(𝑘)} represent the local trend 

functions of  for each segment. The cross-correlation 

in each segment is then determined as shown in 

Equation 9 

𝐹𝑣
2(𝑠) =

1

𝑠
 [𝑠

𝑘=1 𝑋𝑣(𝑘) − 𝑋𝑣(𝑘) ][𝑌𝑣(𝑘) − 𝑌𝑣(𝑘) ]. (9) 

Equation 10 represents cross-correlation between 

two series for the q
th

 order. 

𝐹𝑥𝑦
2 (𝑞, 𝑠) =  

1

𝑚
 𝐹𝑣

𝑚
𝑣=1 (𝑠)𝑞 

1

𝑞
  (10) 

Equation 11 expresses the scaling relation  

𝐹𝑥𝑦 (𝑞, 𝑠) ∼ 𝑠𝐻𝑥𝑦 (𝑞)    (11). 

IV. DATA AND ANALYSIS 

4.1. Data 

For this study, daily closing prices and volume 

(number of trades) of Sensex, a market index of 

Indian stock market, from 13
th

 July1995 – from the 

day the volume data is available – to 6thAugust2019 

– to the date the volume data is updated – is 

collected. The price and volume data are first 

transformed into return and volume change using 

natural logarithm. This series is used for further 

analysis. Refer Table 4.1 for the summary statistics 

of the data analyzed in this study. 

Table 4.1: Descriptive Statistics of Data 

 Price Volume Return volChange 
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Number of Observations 5959 5959 5959 5959 

Minimum 2600.12 423 -0.11 -5.68 

Maximum 40267.62 1166709 0.17 5.29 

Median 13137.49 148391 0 0 

Mean 14149.49 167627.58 0 0 

SE of mean 136.56 1513.2 0 0 

CI of mean 0.95 267.7 2966.42 0 0.01 

Standard Deviation 10541.44 116810.96 0.01 0.29 

Note: SE and CI stand for the Standard Error and Confidence Interval of 

the mean respectively. Confidence Interval is at 95 percent probability 

level. 

 

The Figure 4.1a shows the plot of Sensex price 

series. The plot clearly indicates a trend in the series. 

The Figure 4.1b shows the plot of Sensex volume 

series. The series displays volatility and exhibits 

instances of clustering. The Figure 4.2a shows the 

plot of Sensex Return series and the Figure 4.2b 

shows the plot of Sensex Volume Change. Both the 

returns and volume show clear sign of volatility 

clustering, but the return series is more volatile. 

 

Figure 4.1 Plot of Sensex Price and Volume from 

1995 to 2019 

 

Figure 4.2IV Plot of Sensex Return and Volume 

Change from 1995 to 2019 

4.2. Analysis 

The DFA requires that the series under study is a 

random walk (Peng et al., 1995). Therefore, the time 

series is transformed into a random walk before the 

test is applied. Since both return and volume change 

under study are noise like structures, they are 

converted into random walks by deducting the mean 

and then integrating the series. Next, the values of 

scale,  the order of moments (q) and m are set as 

required in MFDFA. The minimum size of the 

segment is taken to be 10 as a „rule of thumb‟, as in 

smaller segments a trend will be over-fitted and 

there is a chance of error in computation of local 

fluctuation using root mean square (RMS). A choice 

between -10 to 10 is made for q, and m is set at 1. 

The output of the analysis is explained with Hurst 

exponent and multifractal spectrum, the 

interpretation of which is explained below. 

4.2.1 Interpretation of Hurst exponent 

For a series having multifractality, H(q) declines as 

q increases. Alternatively, a nonlinear relationship 

between 𝜏(q) and q indicates that the time series has 

a multifractal nature. For a series having long-

memory, the fluctuation function (Fq(n)) will 

increase with n. 

Table 4.2 explains the interpretation of Hurst 

exponent values. 

4.2.2 The interpretation of multifractal spectrum 

The presence of a multifractal structure in a series 

indicates that the series has long-range correlations 

exhibited on different intrinsic time scales. The 

multifractal spectrum reveals this multiscaling 

structure. Computationally, the multifractal 

spectrum denotes the aberrations in fractal structure 

over period. Kantelhardt et al. (2002) corroborate 

that h(q) represent small fluctuations when q is 

positive and represent large fluctuations when q is 

negative. Thus, right and left side of the spectrum 

denote small and large fluctuations respectively.  

If the spectrum is left shifted from 𝛼 = 0.5, the series 

is anti-persistent.  For example, if left side of the 

spectrum (which describe large fluctuations) are left 

shifted from  𝛼 = 0.5, then the large fluctuations are 

anti-persistent.  

Table 4.2: Interpretation of Hurst Exponent 
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Hurst Exponent 
Value 

Interpretation(s) 

0 ≤ H < 0.5 

The data are fractal and therefore, the EMH 
cannot be corroborated. The series are anti-
persistent (or mean-reverting). It also means 

that returns are negatively correlated. Such a 
market is riskier for individual participants. It 
denotes anti-persistence or negative long-
memory, which indicates that the changes in 
this kind of series is significantly different from 
that can be observed in a random series. It also 
signifies a change of a trend. 

H = 0.5 

The data are random which corroborates the 

EMH. In other words,  prices move randomly 
and have no memory. In such a situation,  
traders cannot beat the market. 

0.5 < H ≤ 1 
The series is fractal and persistent.  The EMH 
cannot be supported. Returns have long 
memory. 

Note: Collated by authors from various papers quoted in this study. 

 

V. RESULTS 

The entire analysis was done using tidyverse 

package (Wickham et al., 2019), MFDFA package 

(Laib et al., 2019) in software R (R Core Team, 

2019), and R studio (RStudio Team, 2019). The 

Figure 5.1 shows the multifractal properties of the 

price series and the legend in Table 5.1 can be used 

to read the plots. 

The plot of Fluctuation function f q in Figure 5.1 

displays that log2F(q) increases for large 

Table 5.1: Legend to read Spectrum 

Variable Description 

Fq(n) Fluctuation function denotes change in the 
fluctuation of a series for different orders across 

different time segments.  

H(q) Scaling exponent. Scaling exponent is the slope 

of the regression fit of log version of Fq(n) 
against n. 

τ(q) Multifractal exponents = qh(q) − 1. These 
exponents are nonlinear if the series has 
multifractal structure. 

f(α) Singularity spectrum. It represents fractality 
dimension of subperiod of the series. 

Note: n is non-overlapping segment length, q is the order of 
fluctuation function and α is singularity strength. 

 

 

Figure 5.1: Plot of Price Spectrum 

value of s, demonstrating an existence of long-range 

power law correlation in the series (Refer Equation 

4). The plot of Hq versus q shows a decreasing trend 

indicating multifractality of the series. The 

multifractality of the series is also confirmed by the 

non-linear relationship between mass exponent τq 

and q.  

The spectrum shows that small fluctuations are 

persistent or having positive long memory. The right 

side of the spectrum indicates the small fluctuations, 

meaning an increase in return will probably be 

observed after an increase or vice versa. The large 

fluctuations are anti-persistent (or mean reverting) 

meaning that series will move toward mean in the 

long-term. 

Figure 5.2 shows the multifractal properties of the 

volume series. 

The plot of Fluctuation function fq in Figure 5.2 

shows that log2F(q) increases with s, implying the 

series having long-range power law correlation 

(Refer Equation 4). The plot of Hq versus q shows a 

decreasing trend confirming the multifractality of 

the series. The multifractality of the series is also 

confirmed by the non-linear relationship between 
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Figure 5.2: Plot of Volume Spectrum 

mass exponent τq and q. 

The spectrum shows that small and large 

fluctuations are anti-persistent implying large 

(small) changes are most probability will be 

followed by small (large) changes. 

Figure 5.3 shows multifractal properties of both 

price and volume series on a single plot for 

comparison. One can observe that volume series is 

far left shifted from α = 0.5 and wider than the price 

series indicating that the volume series is much 

more anti-persistent and far from efficiency. 

 

Figure 5.3: Plot of Price and Volume Spectrum 

Figure 5.4 shows the price-volume relationship is 

multifractal in nature. The spectrum of price-volume 

cross correlations is far left shifted from the α = 0.5 

indicating anti-persistency in price series. 

Figure 5.5 shows the plot of price, volume and 

price-volume cross-correlation spectrum on a single 

plot for comparison.  

The plot clearly shows that the cross-correlation 

between price and volume is wider and much more 

left shifted from α = 0.5 compared to that of price or 

volume spectrum. The price-volume cross 

correlations are clearly showing negative cross-

correlations meaning that they have long memory. 

 

Figure 5.4: Plot of Price-Volume Cross-

correlation Spectrum 

 

Figure 5.5: Plot of Price, Volume and Price-

volume Cross-correlation Spectrum 
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VI. DISCUSSION 

The findings of this paper in price-volume cross-

correlation contradict with that of Podobnik et al. 

(2009) in showing that Indian stock market indicate 

the cross-correlation between price and volume. The 

results agree with the studies of Ferreira (2019); 

Hasan and Salim (2017); El Alaoui (2017); Wang et 

al. (2009); He and Chen (2011); Ruan et al. (2016). 

The results in the return series concur with the 

findings of Tiwari et al. (2019); Hiremath and 

Narayan (2016) and contradict with that of 

Anagnostidis et al. (2016) and partially agree with 

Hiremath and Kumari (2014); Horta et al. (2014). In 

general, the results of this paper tend to agree if the 

study is conducted in the developing regions of the 

world and disagree otherwise. 

The results of this study confirm that the Indian 

markets have long-memory and chances of arbitrage 

arise over period as explained by the Hurst 

exponent. The volume carries information regarding 

the information and can be used as an informative 

statistic in predicting the price series as indicated by 

the spectrum graphs. Lastly, the results corroborate 

the implications of the AMH in that arbitrage 

chances arise from time to time. This paper uniquely 

links the relationship between price-volume to the 

implications of the AMH using MF-DFA and MF-

DCCA methods. The results of this study will help 

traders to continue using trading strategies as the 

markets are inefficient. The future scope of research 

in this domain will be to identify the time periods in 

which volume carries more information about the 

price. This may have implications for the policy 

makers of a country. 

VII. CONCLUSION 

This paper conducts multifractal analysis of price, 

volume and price-volume relationship for the data 

between 1995 to 2019. It is found that price, volume 

and their cross-correlation show multifractal 

properties and have long memory. The price series 

shows both persistent and anti-persistent behavior, 

whereas volume and price-volume cross-correlation 

shows anti-persistent behaviors. The long-memory 

in price-volume relationship is more prominent than 

that of price and volume series alone. The long 

memory in the series indicate inefficiency of the 

market and chances for arbitrage exist in this 

market. The varying Hurst exponents at different 

time scales indicate that arbitrage opportunities 

show up over period, and hence supports the 

implications of the AMH. This paper confirms the 

nonlinear cross-correlation between the price and 

volume series. 
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